
When Objects ColKde:
Experiences with Reusing Multiple Class Hierarchies

Lucy Berlin

Human-Computer Interaction Department
Hewlett-Packard Laboratories

1501 Page Mill Rd.
Palo Alto, CA 94304
berlin@hplabs.hp.com

Abstract

Well-designed reusable class libraries are often incom-
patible due to architectural mismatches such as error-
handling and composition conventions. We identify five
pragmatic dimensions along which combinations of sub-
systems must match, and present detailed examples of
conflicts resulting from mismatches. Examples are drawn
from our experiences of integrating five subsystem-level
class hierarchies into an object-oriented hypertext plat-
form. We submit that effective reuse will require that
these pragmatic decisions be explicitly identified in de-
scriptions of reusable software. Such descriptions will
enable developers to identify and combine subsystems
whose architectures are compatible.

1 Introduction

Object-oriented methodology promises greater produc-

tivity via reuse. The claim is that applications will

be built by specializing and combining well-designed,

reusable components, instead of repeatedly coding from

scratch [9, lo]. Brad Cox, the developer of Objective-C,

describes the promised benefits this way:

The importance of object-oriented program-

ming is comparable to that of Whitney’s in-

terchangeable part innovation. ._.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1990 ACM 089791-41 I-2/90/0010-0181...$1.50

[Programmers will] produce reusabIe soft-

ware components by assembling components

of other programmers. These components

are called Software-ICs to emphasize their

similarity with the integrated silicon chip, a

similar innovation that has revolutioned [sic]

the computer hardware industry...“[3]

So far, object-oriented programming has had only lim-

ited success. Class libraries do provide a set of compat-

ible components, plus the ability to specialize classes

and protocols. There are testimonials to the productiv-

ity gained by using class libraries in integrated frame-

works such as Smalltalk 141. There aIso exist indi-

vidual subsystems for window management, graphics,

database management, etc. However, we still await gen-

eral plug-compatibility - or the ability to grow reusable

code libraries bottom-up. Incompatibility among well-

designed but independently-developed components re-

mains a major problem for reuse.

This article’s contribution is to show that many compat-

ibility problems in application integration lie not in the

components, but in the current limited understanding

of reuse. We identify five common architectural issues

which frequently cause incompatibilities among compo-

nents and expand the view of reusable components to

include these pragmatic architectural decisions. These

October 21-25, 1990 ECOOROOPSCA ‘90 Proceedinp 181

pragmatic decisions need to be explicitly identified in

descriptions of reusable software. Such descriptions will

prevent unexpected architectual conflicts by enabling

developers to identify and combine classes from com-

patible families of subsystems.

We support our conclusions via examples from our

project’s development of a multi-layer hypertext plat-

form. In each architectural dimension we show that

pairs of independently sensible pragmatic decisions can

cause fundamental incompatiblities among components.

Our hypertext platform was composed of well-designed

subsystems which comprised over 200 CLOS classes.

They included a user-interface management system

(UIMS), a window management toolkit, an environment

kernel, and a CLOS extension that provided object per-

sistence and database access.

Section 2 of this article introduces the conflicting-code

problem of application integration, defines design pmg-

matics, and shows how class decomposition distributes

the pragmatic code and disperses its documentation.

Section 3 introduces our hypertext system.

Section 4 d,?scribes each of the five pragmatic dimen-

sions we identified, presents alternate design choices,

and describes detailed examples of problems caused by

sensible but incompatible decisions. We advocate that

reusable components should explicitly describe their ar-

chitectural model, so that future developers can avoid

unexpected problems and intricate surgery.

2 The Problem of Conflicting
Code in Reuse

A large software system is composed of generic com-

ponents plus some application-specific code. Subsys-

tems are components such as a window system, UIMS,

database, or a graphics package. In an integrated sys-

tem framework such as Smalltalk, these will fit together

like matching puzzle pieces, or like nuts and bolts.

However, if each component is developed separately,

they may conflict - rather like a metric nut and a British

bolt. Here are two examples of software conflicts (which

will be analyzed later):

One subsystem expects the functions it calls to

return error values, while another propagates ex-

ceptional conditions via a non-local jump (e.g.

longjmp in C, or error throw in Lisp). Excep-

tions thrown by the second subsystem cause an

error, since there is no error-handling environment

(setjmp environment or catch frame) on the pro-

cedure call stack.

UIMS and inter-process-communication (IPC)

subsystems each have separate event-handling

loops, so that when the UIMS’s handler is blocked

waiting for user events, IPC messages are not

heard by the IPC’s handler.

Note that each subsystem’s architecture is valid indi-

vidually, but glue code cannot make them compatible.

The problems are not in the mainline functionality, but

in the assumed flow of control. Therefore, a fix requires

breaking encapsulation and redesigning the internals of

one or both modules. So, even if each component is well-

designed, robust, and has the specified functionality, it

may fundamentally conflict with other code.

In general, there are three causes of conflict between

software components: missing code, redundant code,

and conflicting code, The first two are relatively mi-

nor. Glue code can fill in missing code via protocol

translation - coercing argument types, combining ar-

guments, even translating method names. Redundant

code results from more generality than required by the

composite system. Examples are multiple validations

182 ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

of arguments, and multiple representations for data in

different software layers. Such redundancy may reduce

performance, but it is an expected price of using general,

context-independent pieces.

Conflicting code, which is the third type of mismatch,

can be fatal. This is the focus of our article. It occurs

when multiple components each make sensible choices

about how to implement functionality, but the choices

conflict in fundamental ways.

2.1 Pragmatics - A New Issue in Reuse

The standard view of reuse has a developer select a

reusable component based on its mainline semantics and

count on glue code to fix minor differences. To address

problems with conflicting code, we expand the view of

reusable component interfaces to include choices about

information flow that are generally viewed as syntactic

or encapsulated.

We use the term prugmaiics to describe the global ar-

chitecture of a component that affects how it provides

its functionality. Examples include the difference be-

tween (a) a constraint-based and procedural architec-

ture, and (b) t wo databases that provide the same se-

mantics (locks, caches...) but handle exceptions dif-

ferently: (throws and catches vs. error values). Our

categorization fits Hartson’s [6] model of dialogue - se-

mantics separation of software. Hartson focuses on the

semantics required in a user interface for task-oriented

behavior and analyzes the resulting couplings between

a UIMS and an application. Pragmatics describe what

dialogue can be supported between application layers,

and thus between the user and the application.

Global information flow alternatives are often discussed

in workshops for cutting-edge practitioners in a technol-

ogy (e.g. window management [7], remote-procedure

calls, hypertext). However, the tradeoffs and domain

needs discused are often never written down - the in-

sights are shared just among the cutting-edge develop-

ers of that technology. We need to recognize that these

tradeoffs cut across technologies, low-level choices im-

pact user-level capabilities, and choices must be com-

patible between components in a system. Systematic

reuse of multiple components requires a systemic anal-

ysis of the pragmatic issues. As we show below, the

decomposition of object-oriented systems that enables

reuse makes principled choices in these dimensions even

more crucial.

2.2 Pragmatics and Object-Oriented
Programming

The pragmatic dimensions all describe information flow

decisions. The main concepts in object-oriented pro-

gramming [9, 15, 16, X3] are inheritance, polymor-

phism, and abstractions with encapsulation. These al-

low reusability and customization of behavior. Inher-

itance and polymorphism provide compatibility within

each class hierarchy, with customizability via subclass-

ing and common protocols. However, we show that

this decomposition of problems into abstract classes dis-

perses and de-emphasizes control flow, and obscures the

pragmatic decisions of a class hierarchy.

First, class hierarchies disperse code that embodies

pragmatic decisions such as error-handling style. Imag-

ine a window module with four classes, each of which

responds to six mouse events. Testing for errors and

errorhandling may occur in each of the 24 method def-

initions, since each subclass may have to test a slightly

different set of arguments, or may have different con-

straints on argument values. Changing errorhandling

from throws to error-returns would require more than

simply breaking the module’s encapsulation and a local

fix: it may require understanding and re-coding each

event-handler method.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 183

Second, glol:al flow of control and behavior is much

less visible in object-oriented code than in procedural

code. Procedural programs are process-oriented, so the

pragmatic decisions are made explicit. As Rosson and

Gold’s studies show, object-oriented developers tend to

decompose problems by proposing relevant, classes, and

identifying the behaviors each individual class should

have [13]. As Hartson also points out, a major short-

coming of object-oriented programming is that “it lacks

a procedural representation of control flow from which

a behavioral perspective can be obtained at the global

control level:’ [6].

Third, not only is global behavior difficult to identify

by reading the code, it is also de-emphasized in module

documentation. Class documentation is semantics- and

syntax-oriented. Modules are documented by specify-

ing class dependencies, plus exported methods and their

arguments and return values [3, lo]. Thus, there is

no standard place or terminology to describe the prag-

matic decisions that underlie global behavior. These

are only implied by code syntax or exposed piece-meal

in compone:lt-level documentation.

In conclusion, understanding and exposing the prag-

matic decisions becomes especially important in object-

oriented comje. Object-centered decomposition inher-

ently replic;ites and disperses pragmatic code, and in-

heritance complicates and obscures global control flow.

Moreover, -;he methodology currently disregards the

global pragmatics in its method-centered interface de-

scriptions.

3 Hypertext Platform

In this section we introduce the hypertext features used

in later examples and the platform layers we used to

construct t:ne system. Our project’s goal was to pro-

vide group:; with effective access to large amounts of

complex, dynamic information. Our focus was on infor-

mation organization and user interface strategies, with

hypertext as an enabling technology.

Hypertext helps users manage complex information by

providing flexible connections (links) between objects

(nodes). Conklin [2] is a good introductory survey.

Users browse follow relevant references in text or data

by selecting link icons in the user interface. Users

add their own information by adding links and nodes.

To help manage information, we provided aggregate

nodes, browsers to display the hypertext network, and

database queries. Links could be global (referring to

the entire node) or local (pointing directly at a word

or phrase). We provided multi-user functionality using

a shared database with lock-based access control. For

efficiency, each user’s process also cached a portion of

the database. Each process therefore also managed con-

tention and updates from other users’ activities.

Our project seemed to be an excellent candidate for

component-based integration. We had available multi-

ple subsystems that would be useful in a hypertext plat-

form, each developed in a highly object-oriented style

by experienced programmers. All were developed in

CLOS [l, lo], a flexible object-oriented language based

on Common Lisp [17]. CLOS provides multiple inher-

itance, dynamic dispatch via generic functions, and a

powerful meta-object protocol. Most subsystems were

research prototypes already used in other projects. The

subsystems were functionally complementary, as they

were intended to be eventually used together. Any mis-

matches were intended to be fixable via glue code.

Our subsystems included (a) “policy-free” window

system interface [5] to the X Window system [14];

(b) a UIMS, which provided customizable event-

handlers, emacs-like text presenters, etc; (c) an object-

oriented environment kernel; (d) the PCLOS [ll] per-

sistence extension to CLOS; and (e) an inter-process-

184 ECOOFVOOPSLA ‘90 Proceedinp Ocfober 21-25, 1990

communication (IPC) module. Together they com-

prised over 200 classes, each with some 20-200 meth-

ods. We combined these into a multi-user platform for

building hypertext-based applications.

We used these subsystems to build our platform. The

platform included both a hypertext object model and

example user interface classes for manipulating system.

The platform itself was validated by a computer con-

ferencing application [8]. We found the available sub-

systems very useful in developing our hypertext proto-

type. We instantiated, subclassed, and combined plat-

form classes. A hypertext data model, test user inter-

face, and conferencing application prototype required

only about 40 new classes, and most classes made use

of dozens of inherited methods.

As developers, we cared about providing a useful sys-

tem with a full range of appropriate presenters and

functions, not just about mainline “proof-of-concept”

functionality. This goal made us more representative

of reuse needs in product development than in proof-of-

concept prototyping. Our goal of broad and task-driven

functionality made us emphasize appropriate user inter-

face style, group operations, error-handling, and perfor-

mance, and thus led us to analyze the conflicts we found

between subsystems,

We identified dozens of conflicts in combining the com-

ponents. Problems included insufficient decomposition,

missing extensibility hooks, bugs as well as pragmatic

architectural conflicts. This article’s focus is on prob-

lems where the mainline functionality was appropriate,

yet the classes turned out to be incompatible. These

conflicts added over a third to our development time,

and were among the hardest to fix retroactively. The

pragmatic problems under discussion could not be fixed

by glue code - they required either major degradation of

the user-visible functionality, or breaking encapsulation

and substantial surgery of a platform layer.

4 Five Pragmatic Issues in
Component Reuse

The major conflicts between component architectures

occurred along the following five dimensions:

1. argument validation

2. error handling

3. composite object handing

4. control and communication

5. group and compound operations

In this section we discuss each pragmatic issue, present

common alternative choices, and describe examples of

the conflicts we encountered. These issues and examples

of typical conflicts are tabulated in Figure 1.

4.1 Argument Validat ion

Argument validation in the user interface requires co

operation among many layers of an application. For ex-

ample, the command to move a link requires the user to

indicate valid source and destination locations. At one

extreme, if a direct-manipulation user interface visu-

ally indicates potentially valid link locations, then loca-

tions must be validated real-time, before the command

is completed. We will examine the coupling required

for different types of user interfaces and the effect of

the choices on software complexity.

There are three ways for a user to specify arguments:

declaratively (all arguments validated together)) inter-

actively (the user gets feedback after each), or implicitly

(based on the user’s preferences, the operation, or the

context). The appropriate interface depends on the ap-

plication, but what can be done cleanly depends on the

underlying layer’s creation style.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 185

Pragmafic Issue

J

Aqument Validation

t-

Interactive validation.

Error Handling Error value;
Responsibility for errors.

Composite Objects Top-down creation;
Outside-in event handling

and Communication Responsibility for event loop;
Responsibility for cleanup.

Group and Compound Single setup / cleanup for

Operations a group operation.

Figure 1: Five Pragmatic Issues and Exampl Conflicts

The declarative style is common in command interfaces.

It greatly simplifies the module’s interface and can sim-

plify validation if the arguments interact. The problem

of the declarative style of argument validation is that

even if only the first argument of several is invalid, the

user only finds out after specifying all arguments. In a

link-nodes operation this would mean that if the first

node is locked, or the user does not have permission to

modify, the user still has to specify both endpoints be-

fore any feedback is provided. To avoid this frustration,

modern interfaces tend to validate arguments interac-

tively.

Interactive validation requires the interface to know

more about the semantics of the underlying application

in order to provide feedback and validate input real-

time. This requires quite close coupling and a much

larger surface area of each of the two subsystems. For

example, to allow independent argument selection and

validation, the semantics layer must export separate

argument validation functions. Form-based interfaces

which present defaults and do immediate validation re-

quire the above separate validation functions, plus sep-

arate functions that access the default value of each ar-

gument.

Conflicts I

Callee Expects:

Declarative validation.

Non-local jump (throw);
Responsibility for errors.

Bottom-up creation;
Inside-out event handling.

Responsibility for event loop;
ITo do cleanup / notification.

IEach element encapsulates
lown setup / cleanup. 4

We tried to combine an interactive user interface (that

expected argument-validation functions and default-

value accessors) with a declarative subsystem (which

provided a single function for each command, and en-

capsulated the validation and creation). To provide val-

idation functions and default-value accessors we repeat-

edly copied and adapted internal very low level function-

ality. Not only did this require us to open up reusable

modules and trace internal functions a number of levels

deep to find the validation functions, but the functions

usually required complete recoding to be useful.

Why the recoding. 7 The internal validation functions

were generally optimized for a single sequence of val-

idation and creation steps. They expected arguments

which had already been parsed, massaged, or combined

so they could be tested together. And, because they as-

sumed an information flow sequence, internal functions

sometimes had side effects that were unacceptable in our

context (e.g. starting a database transaction, setting a

default value, or creat.ing an object).

So, the mismatch between the argument validation

styles of the interface and the underlying system forced

us to repeatedly break encapsulation, painstakingly an-

186 ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

alyze the assumed context of low-level functionality, di-

vide up the validation steps into separate functions, and

then generalize the validation functions so they do not

presume a fixed context.

The argument validation issue identifies tradeoffs in the

amount of coupling between layers. Narrow coupling

via declarative interfaces is easier to provide and un-

derstand, but is too constraining in many domains.

Direct-manipulation-style interfaces provide early se-

mantic feedback, but multiply many times the num-

ber of lower layer functions which have to be exported

and connected to a matching upper layer. Direct-

manipulation interfaces are powerful in part because of

the amount of semantic information they have available.

However, especially in domains that require tight cou-

pling, it is unlikely that two independently developed

layers will match.

The goals of plug-compatibility and

domain-appropriateness conflict. If we can categorize

different application domains’ needs, we may be able

to resolve this tension by classifying needs and specify-

ing domain-specific frameworks for components which

agree not just in the basic semantics, but in the amount

of coupling between layers.

4.2 Error Handling

Error handling is an inherently multi-layer activity. It

involves detecting resource failures and incorrect val-

ues, identifying the type of problem, and either pass-

ing the problem up (with some cleanup if appropri-

ate), or handling the problem. Error handling is not

a rare event if one includes recovering from multi-user

resource-contention problems.

Each subsystem made independent assumptions about

the validity of its arguments, the errors it expected, er-

ror actions, and the error values it would pass back up,

We ran into the following problems.

1.

2.

Passing the buck. For example, a window manager

could not find a shared resource (e.g. a font), and

returned NIL, expecting that the enclosing cre-

ator would test for NIL, and recover. The UIMS

expected the window manager to “do something

reasonable”. The result was a crash with the un-

informative message of “read error in ..“.

Not passing the buck. Sometimes the higher layer

knew how to handle an error, but wasn’t given the

chance. For example, a lower layer decided to allo-

cate a default color whenever a color wasn’t speci-

fied. Our application did not want that default

color, but had no control. The error-handling

occurred within the body of an internal func-

tion in the platform. In order for the application

to have control, the error would have had to be

passed up, or an error-handler method exported.

If the method were available, the offending class

could be subclassed to redefine the error-handling

method.

3

Error-Handling requires recovering from problems at

any level in the system. Recovery may include clean-

up of inconsistent data and releasing resources, undoing

partial operations, as well as communicating the error

value up to the user or to a higher error handler. Thus,

Incompatible conventions. Cross-layer communi-

cation requires a common protocol. Each layer

may handle or propagate errors, but if two lay-

ers do not share the same conventions then errors

may fall between the cracks. If a layer expects er-

ror values but calls methods that do error throws,

then there’s a conflict. To force a fit, all higher-

layer methods would have to be modified to pro-

vide appropriate catches, and do whatever is the

expected cleanup on error throws.

October 21-25, 1990 ECOOWOOPSLA ‘90 Proceedings 187

it requires shared understanding of the side effects of

actions, division of responsibilities, and of course con-

ventions suck. as whether to look for error values or er-

ror throws. The developer expects each layer to “do the

right thing”. If the layers’ expectations do not match,

the result is missed signals, and misguided operations

that compound rather than fix or communicate the er-

rors.

4.3 Composite Object Hand ling

Composite c’bjects are structured objel cts whose ele-

ments are other objects. Examples are browsers, menus,

multi-window presenters, and hypertext nodes and their

links. The choice in designing composites is direction

of control - should the component be ruled bottom-up

or top-down’? A conflict occurs if an element tries to

exercise bottom-up control in a top-down composite, or

conversely, if an element expects but fails to get instruc-

tions. This conflict commonly manifests itself in two

issues: (a) creation style and (b) event-handling style.

Creation style

There are two separate philosophies on creating com-

posites based on how much control the caller has of

component types and component attributes.

The declarative (outside-in) style lets the developer

specify a set of abstract choices, (e.g. (create-node

: type repl:y :reply-to message-75)). The compos-

ite is created in an encapsulated form, with component

values based on the abstract choices. Attributes not

in the composite’s interface cannot be specified without

breaking encapsulation and redefining the entire creator

function. This outside-in style is generally associated

with outside-in control of component attributes such as

size, colors, behaviors. Top-down control makes possible

uniformity by decree, rather than by each component

separately specifying the same choices.

The top-down style makes inside-out control difficult.

Common requests such as these become cumbersome:

“make this button’s size be based on its label”, or “make

this browser large enough to handle the number of el-

ements”. This is solved by an interactive (inside-out)

style of component-creation, which exports creators for

each of the elements, and builds the composite once the

elements have been constructed. So, a browser can be

easily laid out based on the widths of its elements, and

its length can be based on the number of elements. Since

the elements are created first, it makes it more difficult

to specify common attributes among components (such

as colors, fonts).

A hybrid control style (of bottom-up hints and top-down

control) is possible, and we wound up using that for

creation. However, such bi-directional information flow

requires even tighter coupling between subsystems; it

required redesign of both layers.

Event-handling style

Event handling refers to the system’s actions in response

to mouse, keyboard, or inter-process-communication

events. Incompatibilities occur if events are incorrectly

intercepted or dropped, if the set of events are not the

appropriate ones, or if the application cannot set aside

a software interrupt.

Order of handling of events is a classic difference be-

tween window systems. It occurred between our win-

dow library and our UIMS, and it occurs between X11

and Andrew [12]. We describe the Andrew/X11 conflict,

since it is more broadly known. In X11, the innermost

presenter which knows how to handle the event gets it,

and the outermost only sees the event if it is passed

188 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

through. In Andrew, the outermost presenter (view)

has the responsibility of intercepting events, giving the

child the input focus, and controlling the key bindings

and menus in effect at each point.

Thus, in Andrew, it is easy to make a window insen-

sitive to mouse events or to provide a common set of

commands. However, an Andrew subwindow cannot re-

define its parent’s event actions. In X11, it is simple to

provide specialized functionality as a replacement of the

default.

In general, a philosophy that the enclosing object is in

charge of its components it leads to a style of object

creation and event handling which makes it simple to

specify common behaviors and attributes. However, it

is more difficult to describe composite objects whose

attributes (shape, behavior) are dynamically calculated

from their contents. Each style is appropriate in differ-

ent contexts, but they do not combine easily.

4.4 Control and Communication

As Hartson points out in his article User-Interface Man-

agement Control and Communication [6], an ideal sepa-

ration between components at runtime is hard to define

and even harder to achieve. The problems of “Who’s

in charge?“, “Am I just a messenger or does the buck

stop with me?” and ‘LH~~ do I coordinate?” are gen-

eral ones between layers, although they’re much more

visible in the user interface layer.

Let us look at control. User interface functions can be

called by the application (internal control) or the in-

terface can call the application when the user gives a

command. The first is used by interface toolkits and

the second by the more powerful UIMSes, since it lets

the interface handle scheduling and sequencing. The ap-

plication is structured as a set of objects and methods

(callbacks) that are called by the interface.

Besides agreeing on who is in control, layers must agree

on the granularity of communication - when construct-

ing objects, validating input, and reporting interesting

internals changes to higher layers. Again, let us look at

the UIMS interface to the application. Semantic feed-

back is important to users, but it requires tight semantic

coupling. For example, direct manipulation interfaces

may require application feedback at each refresh, in or-

der to indicate whether the object under the mouse is

a valid argument. As shown by Szekely [19], this test

may require semantic computation, and the computa-

tion may be dynamic - choosing one argument may

constrain subsequent choices.

A common problem of platform layers was not know-

ing when to pass the buck, and when to do setup and

cleanup actions. For example, link deletion must notify

all affected objects - the collections and each endpoint

node. A link may be deleted by link-delete messages

to three types of objects: a collection, either node, or

the link itself. Since messages are associated with ob-

jects, it is difficult to implement an encapsulated delete

operation associated with some object, yet, have the no-

tification take into account the context in which the

command originated (e.g. don’t notify the node whose

death triggered the link-delete in the first place.) The

simple solution of a link-delete message in each class

duplicates the core delete operations, but can provide

context-sensitive locking, error-handling and notifica-

tion.

Another example involves two roles played by a class.

The class color is useful by itself, but it may also be

an ancestor of class approximate-color. CLOS does not

provide clean mechanisms to specify that some of color’s

initialization actions (e.g. calculating default values)

are not to be done when the method is called via the

subclass’s call-next-method. One strategy would have

been to redesign the UIMS to separate XX-abstract and

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 189

XX-concrett classes. We did not want to do this -

especially not in the window system and UIMS layers,

where many classes were useful in two roles. With over

100 classes i:n the two layers, we did not want the extra

conceptual complexity of duplicate classes and methods.

Composite operation problems were due to (a) multi-

ple method combinations among inter-related objects

and (b) multiple roles played by methods and classes.

Without knclwing how a class will be used, or how meth-

ods will be combined, it is difficult to separate out the

code to be done only if one is the concrete class, or the

primary method. As shown repeatedly, the more shared

understanding there is between provider and client, the

simpler the communication, but the less generality in

directions other than the ones for which flexibility was

explicitly provided. Very flexible interfaces would re-

quire more decomposition, and as a result more cogni-

tive complexity - more terminology; more classes, argu-

ments, and defaults; and more complex control flow.

4.5 Grclup and Compound Operations

Group operations such as “delete these five items”,

“move text and links within this region” posed prob-

lems. The Izroblems were those of inefficient or redun-

dant actions;, extra error possibilities, and of complex

undo actions in case of error. These problems were

caused by encapsulation at the wrong level, but the

“right” level was not possible to foresee.

As an example, consider a simple operation to delete

nodes Nl ar.d N2 from a collection. Our platform pro-

vided a “delete-node” operation. Thus, it should have

been trivial to implement “delete-nodes” as a loop call-

ing the exported operation “delete-node”. From a hy-

pertext object model perspective, that is correct. How-

ever, this ignores side effects. Let us examine a sim-

ple encapsulated implementation of “delete-node”. The

steps are to:

1. open a transaction to the database,

2. re-cache and lock a group of objects: node, node’s

links, the neighboring nodes (other end-points of

the links), and the enclosing collection.

3. delete the node, links and link-anchor information

from the adjacent nodes,

4. save the changes to the database,

5. commit the transaction, unlocking the objects,

6. notify the presenters of the nodes, and notify the

collection.

There are multiple problems with repeating this for each

node to be deleted.

1. The side effects of locking the collection, locking

the neighboring nodes (N3 and N4), and notifying

the presenters of the nodes and collection are done

after each node.

2. The collection and neighbor nodes are unlocked

after each element is deleted. This increases the

likelihood that at some point one of the objects

won’t be available.

3. If the user’s intent is to do all or none of the ac-

tions, then this approach fails, since some of the

side effects (to the user interface and to the other

users’ processes) occur immediately after each el-

ement’s operation.

We ran into this problem in many different guises -

implementing a move-link-endpoint as a combination of

delete-link-endpoint and insert-link-endpoint; creating a

composite presenter (via an add-element operation that

re-checked sizes and colors of siblings and parent); re-

trieving links within a range of text (given a primitive

that only fetches one link at a character position).

190 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

One could say that it was poor design of the platform to

not provide these group operations. We do not believe

this to be true. Composites may be defined at many

different application levels, each of which requires com-

bining or deferring some shared operations. A platform

should not be expected to provide hooks for clean im-

plementations of all possible specialized composite op-

erations - its goal must be a good set of fundamental

operations. There must be some composites which fall

outside of its realm, else the platform would have to be

infinitely complex.

The general problem is that group operations miss op-

portunities for “parallelism” in validation, modifying

shared data structures (such as collections, link anchor

tables) and postponing and combining clean-up actions

(such as notifying interested parties). By not doing val-

idation and locking up front, clean-up is complicated,

since operations (including side effects) on some ele-

ments are completed by the time an error is found.

5 Conclusions and Implications

This paper shows that a broader view of reuse is re-

quired to successfully integrate multiple class hierar-

chies. Using examples from our experiences integrating

subsystems comprising 200+ classes and 40,000 source

lines into a hypertext platform, we showed that:

l Independently sensible architectural decisions can

lead to fundamental conflicts among complemen-

tary reusable components.

l These pragmatic decisions are pervasive yet ne-

glected by object-oriented methodology.

l Software descriptions should include not only the

semantics but also the global pragmatic decisions

of the subsystem’s architecture, since these deci-

sions must be compatible across subsystems.

. Five of these decisions include: argument valida-

tion; error handling; composite object handling;

control and communication; and group and com-

pound operations.

An important point is that the differences among mod-

ules were not flaws. They represented choices of what

would be the simplest, most useful, and most efficient

architecture. In each subsystem the decisions were

based on the target application domain and user in-

terface, the designer’s design methodology and personal

style, low-level issues such as language capabilities, and

the features and speeds of even lower layers (database,

operating system).

Different semantic choices on these issues (e.g. direct

manipulation interfaces versus form-based interfaces,

event-handling and dialogue styles) each fit a need in

different application domains. Thus, these choices will

not go away, and diverse solutions will continue to ex-

ist. We need to learn to manage them by (a) classifying

them into families, (b) understanding the interactions

among the dimensions, and (c) matching application

needs to appropriate pragmatic dimensions. This article

provides a beginning terminology and classification, but

we need more analysis of other systems and application

domains.

A general issue which permeates these conflicts is

“Who’s in charge?” and the related question of “How

do components coordinate?“. In information-flow areas

such as event-handling, error-handling, or cleanup, de-

velopers wishfully expect a reusable component or class

to be able to act in two roles - as a decision-maker who

provides reasonable behavior, and as a sub-part that

propagates values and errors, but does not take charge.

As we have seen, this does not work. We should acknowl-

edge that components do serve in these two roles, and

provide mechanisms to express the differences: First,

programmers must be able to declare which code serves

which role. Second, at integration time, they must be

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 191

able to indicate the role they need a component to fit.

Only this way will we get components that can be suc-

cessfully used as either messenger or decision-maker lay-

ers.

We believe that plug-compatibility of multiple indepen-

dent components is possible, but requires support for

the global issues in reuse. It will require that devel-

opers of reusable components consider and explicitly

document components’ pragmatics as well as main-line

semantics. This will allow families of architecturally

compatible subsystems to develop, each appropriate for

some set of problem domains. Eventually application

developers will be able to describe their domain’s re-

quirements s,long pragmatic decisions, and select an ap-

propriate family of plug-compatible subsystems.

Acknowledgements

Valuable dscussions with Robin Jeffries, Nancy

Kendzierski, Jarrett Rosenberg and Glenn Trewitt have

encouraged ithis work and helped clarify my understand-

ing of the issues. I also thank my fellow Hoopertext

and object-oriented platform developers in HP Labs’

Software and Systems Laboratory, without whom there

would not be software to analyze. The developers in-

cluded Mike Creech, Cathy Fletcher, Dennis Freeze,

Warren Harris, Shari Jackson, Bob Leichner, Andreas

Paepcke anl. Jarrett Rosenberg.

References

PI

PI

PI

WI

[51

PI

[71

PI

D. G. Bobrow, L. DeMichiel, R. P. Gabriel,

G. Kiczales, D. Moon, and S. Keene. The Com-

mon Lisp Object System specification: Chapters 1

and 2. Technical Report 88-002R, X3J13 standards

committee document, 1988.

J. Conklin. Hypertext: An Introduction and Sur-

vey. IEEE Computer, September 1987.

B. J. Cox. Object- Oriented Programming: An

Evolutionary Approach. Addison-Wesley, Reading,

Mass., 1986.

A. Goldberg. Smalltalk-80: The Interactive Pro-

gramming Environment. Addison Wesley, 1984.

W. Harris. Xenon user’s guide. Internal STL-TM-

88-02, Hewlett-Packard, May 1988.

R. Hartson. User-interface management control

and communication. IEEE Software, 6(1):62-70,

January 1989.

F. Hopgood, D. Duce, E. Fielding, K. Robinson,

and A. Wiliams, editors. Methodology of Win-

dow Managment. Eurographic Seminars. Springer-

Verlag, April 1986. Proceedings of an Alvey Work-

shop on Window Management, Abingdon, UK,

April 1985.

S. L. Jackson. Hypertext for computer conferenc-

ing. Master’s thesis, Massachusetts Institute of

Technology, June 1989.

[9] R. E. Johnson and B. Foote. Designing reusable

classes. Journal of Object-Oriented Programming,

June 1988.

[lo] S. E. Keene. Object-Oriented Programming in

Common Lisp. Add ison-Wesley Publishing Com-

pany, 1989.

192 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990

[l I] A. Paepcke. PCLOS: A Flexible Implementation of

CLOS Persistence. In S. Gjessing and K. Nygaard,

editors, Proceedings of the European Conference on

Object-Oriented Programming, pages 374-389. Lec-

ture Notes in Computer Science, Springer Verlag,

1988.

[la] A. Palay. The Andrew Toolkit - an overview. In

Proceedings of the Winter 1988 USENIX, 1988.

[13] M. B. Rosson and E. Gold. Problem-solution map-

ping in object-oriented design. In Proceedings of

the Conference on Object-Oriented Programming

Systems, Languages and Applications, pages 7-10.

ACM, 1989.

[14] R. Scheifler and J. Gettys. The X Window system.

Technical Report MIT LCS Memo LCS-TM-368,

MIT, 1986. .

[15] A. Snyder. The essence of objects. Technical

Report STL-89-25, Hewlett-Packard, September

1989.

[16] A. Snyder. Inheritance in object-oriented pro-

gramming languages. Technical Report STL-89-34,

Hewlett-Packard, November 1989.

[17] G. L. Steele Jr. Common Lisp: The Language.

Digital Press, 1984.

[18] B. Stroustrup. An overview of C++. SIGPLAN

Notices, 21(10):7-18, October 1986.

[19] P. Szekely. Modular implementation of presenters.

In Proceedings of SIGCHI+GI’87, pages 235-240,

March 1987.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 193

