
Semantic Software Engineering Tools

Alexander Paar 
Universität Karlsruhe 
Am Fasanengarten 5 

76128 Karlsruhe, Germany 
+49 – 700 – 2539 7227 
AlexPaar@ieee.org

ABSTRACT 
Recently, the paradigm of software engineering has shifted 
significantly to service orientation based on Web services. Web 
Services Description Language interface specifications provide 
sufficient information to physically access a service. However, 
these interface descriptions are semantically bleak. This work 
introduces a number of tools, which were developed to augment 
strict syntactic service descriptions with semantic information in 
order to elucidate the meaning of processed data and provided 
functionality. Semantic Web technologies such as DAML+OIL 
were supplemented with natural language support for usability 
improvements both at design- and at runtime. 

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques – 
object-oriented programming, program editors, standards, 
structured programming, top-down programming. 

General Terms 
Documentation, Design, Languages. 

Keywords 
Semantic software engineering, automatic service lookup and 
integration, C#, WSDL, DAML+OIL. 

1. INTRODUCTION 
During the nineties, object orientation of software source code 
made possible component orientation of applications. Lately, 
novel component oriented runtime environments have paved the 
way for service oriented infrastructures. Since there may be a 
considerable number of service providers, which offer very 
similar functionality, it tends to be difficult to choose the most 
appropriate service and to guess the appropriate operations by 
interpreting syntactic operation names as provided by state of the 
art Web service interface descriptions. We used Semantic Web 
technologies like DAML+OIL [1] for constructing ontologies, 
which present the meaning of processed data and provided 
functionality. These ontologies were used to annotate both 
syntactic Web service descriptions as well as object oriented C# 
source code. This demonstration introduces the set of tools that 
was developed in order to implement the idea of semantic 
software engineering. Web Services Description Language [2] 
documents were annotated with semantic information using a 

WSDL annotator. A Microsoft Visual Studio [3] add-in was 
developed in order to annotate C# source code based on a set of 
DAML ontologies. The Microsoft SOAP toolkit [4, 5] was 
extended to preserve semantic annotations when C# proxy classes 
are automatically created from WSDL files as well as when 
annotated Web service descriptions are automatically generated 
from annotated C# source code. Annotated Web services may be 
invoked in a declarative manner both at design- as well as at 
runtime. Declarative service requests that are embedded with 
common C# source code are resolved by a Visual Studio add-in. 
A programmer may even dictate such requests using natural 
language input. A service activator was developed in order to 
handle declarative requests issued at runtime. 

2. ANNOTATION TOOLS 
2.1 DAML Annotator 
Ontologies representing real-life knowledge may become very 
extensive. Hence, it is often difficult to look up particular entities. 
A DAML Annotator was developed to supplement DAML 
descriptions with natural language information as follows. 
<geography:california rdf:ID="california"> 
<rdfs:phrasing>California|The Golden State 
</rdfs:phrasing></geography:california> 

The above example shows phrasings for a DAML instance that 
presents California. Such phrasings are accepted as input for 
service invocation tools introduced in section 3. Multilingual 
phrasings could further improve user experience. Future database 
servers will support such features by introducing full-text queries 
for synonyms. As a result, a DAML+OIL entity would have to 
provide only a minimal set of phrasings. The actual vocabulary 
would be provided by database servers. 

2.2 WSDL Annotator 
A WSDL Annotator was developed in order to augment syntactic 
interface definitions as provided by WSDL files with semantic 
meanings. WSDL port types refer to message definitions in the 
messages section. Each port operation’s function signature 
comprises one input- and one output message. Such a message 
consists of certain XML types. Using the WSDL Annotator, 
parameters of Web method signatures may unambiguously be 
declared as representing particular ontological entities (e.g. an 
input string may be defined as the name of a US state). 
Ontological annotations in semantic SWSDL files are incorporated 
as XML tags. SWSDL files may then be referenced by UDDI [6] 
registries. 

 

 

 

Copyright is held by the author/owner(s). 
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA. 
ACM 1-58113-751-6/03/0010. 

90



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Visual Studio Annotation Add-In 
Instead of subsequently enriching existing WSDL descriptions, 
one may provide semantic type information during programming 
time, too. The code snippet below shows how declarative 
programming techniques were employed to annotate C# source 
code. The Visual Studio Annotation Add-In supports roundtrip 
engineering. SWSDL documents are automatically generated 
from annotated program source code. C# proxy classes are 
automatically generated from SWSDL files. 
public 
[DAMLAnnotation("DemographyOntology#Population")] 
int GetPopulation 
([DAMLAnnotation("GeographyOntology#Country")] 
string strCountry) { // function body } 

Annotated C# Web methods may not only be called with fully 
qualified DAML identifiers but also with natural language 
phrasings. During compilation, DAMLAnnotation attributes 
are expanded to code that checks DAML repositories in order to 
find the canonical DAML ID of a particular instance, which can 
be processed by the function implementation.SERVICE 
INVOCATION TOOLS 

2.4 Visual Studio Add-In 
Annotated Web services that are described by SWSDL interface 
specifications may be invoked in a declarative manner. The 
following lines of code depict how such statements may be 
embedded with normal C# source code. The novel C# keyword 
ontology was introduced in order to permit the use of types in 
a DAML namespace, such that, one does not have to qualify the 
use of a type in that namespace 

ontology "GeographyOntology","DemographyOntology"; 
p = Invoke(#population?, #state="California"); 

Declarative statements may contain natural language phrasings as 
introduced in section 2.1. The above service call is dynamically 
resolved at runtime. It is not bound to a particular WSDL 
interface description. In especially, it could be resolved to a 
number of Web services whose parameter namings are totally 
different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Service Activator 
A Service Activator was developed as a front-end application for 
annotated Web services. It may be used to validate and test source 
code that contains declarative statements. Similar requests may 
return different results depending on the user’s current location. A 
Context Server loads location related ontologies into client 
applications via TCP/IP remoting techniques. These location 
aware ontologies are then used to translate natural language input 
into fully qualified DAML entities. 

3. REFERENCES 
[1] Defense Advanced Research Projects Agency, The DARPA 

Agent Markup Language, http://www.daml.org 

[2] World Wide Web Consortium, Web Services Description 
Language (WSDL) 1.1, http://www.w3.org/TR/wsdl 

[3] Microsoft Corporation, Microsoft Visual Studio, 
http://msdn.microsoft.com/vstudio 

[4] World Wide Web Consortium, Simple Object Access 
Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP 

[5] Microsoft Corporation, Microsoft SOAP Toolkit 3.0, 
http://msdn.microsoft.com/soap 

[6] Oasis Technical Committee, Universal Description, 
Discovery and Integration of Web Services, 
http://www.uddi.org

Figure 1. Annotation tools. 

WSDL Annotator 

Visual Studio 
 Add-In 

SWSDL 
documents 

DAML 
ontologies 

C# source 
code 

WSDL 
documents 

DAML 
ontologies 

DAML Annotator Visual Studio 
 Add-In 

C# source 
code 

Figure 2. Invocation tools. 

SWSDL 
documents 

Visual Studio 
 Add-In 

DAML 
ontologies 

Natural 
language 

input 

Service 
Activator 

C# source 
code 

DAML 
entities 

Context 
ontology 

91




