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Abstract 

Important strides toward developing expressive yet se- 
mantically sound type systems for object-oriented pro- 
gramming languages have recently been made by Cook, 
Bruce, Mitchell, and others. This paper focusses on how 
the theoretical work using F-bounded quantification 
may be brought more into the realm of actual language 
implementations while preserving rigorous soundness 
properties. We simultaneously address three of the more 
significant problems: adding a notion of global state, 

proving type-checking is decidable, and integrating 

the more widely implemented view that subclasses cor- 
respond to subtypes with the F-bounded view. 

1 Introduction 

Developing expressive yet semantically sound type sys- 
tems for object-oriented programming languages is a 
well-known and difficult research problem. Many work- 
able solutions are possible, but there has as of yet been 
no universally accepted solution to the problem. To 
frame the problem we desire a static type system that 
preserves all of the classic features of (untyped) class- 
based OOP, including treatment of two particularly dif- 
ficult issues: binary methods and object subsumption. 

Important strides toward solving this problem have 
recently been made [8, 5, 2, 151. By using F-bounded 
quantification, these researchers can capture the open- 
ended nature of class definitions in the presence of in- 
heritance: “self” refers not only to the current class 
being defined, but also to any future extension of it by 
subclassing. An important problem is to bring this work 
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more into the realm of sound language implementations; 
that is the subject of this paper. 

We address three problems. Nearly all previous se- 
mantic work takes a functional view of objects; however, 
state is of central importance to OOP and cannot be ig- 
nored. Another problem is that an implementable lan- 
guage requires decidable type checking. Some progress 
has been made in this area for functional 00 languages 
[3], but the problem is difficult and the most general 
type systems may prove to be undecibible [16]. The final 
problem we address is the integration of type systems 
with different views of the type of “self.” We call the F- 
bounded view of typing inheritance the open-self view, 
and subtype-based inheritance found in languages such 
as C++ the fixed-self view because the type of meth- 
ods does not change upon inheritance. On the surface 
the open-self interpretation appears to be superior since 
it allows more class definitions to be successfully type- 
checked. However, the fixed-self approach has the ad- 
vantage of allowing all objects to be lifted up the inher- 
itance hierarchy, a property that sometimes fails for the 
open-self approach. Any object programmer knows this 
object subsumption feature is very useful. There is then 
a problem of how the advantages of both approaches 
may be combined in one language. 

This paper provides a solution to these three prob- 
lems. We develop a provably sound interpretation of 
an explicitly typed imperative object language, LOOP. 

This language includes notation for explicitly typed 
class definitions, subclassing, multiple inheritance, bi- 
nary methods, protection of instance variables from out- 
side access, dynamic creation of objects of a class, and 
message send to “self” or other objects. Thus, the lan- 
guage is similar on the surface to a “sugar free” version 
of C++ or Object Pascal. The main improvement is 
LOOP’S richer type system, which allows for typing of 
class methods that take and return objects of an open- 
ended “self-type.” Soundness of the type system and 
decidability of type-checking are proved. We addition- 
ally show how the fixed-self and open-self notions may 
be combined, embedding fixed-self class definitions in 
our open-self language as special cases. 
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Jum3 n::=OI 11 . . . 

3ool3 b ::= true ) false 

Exp 3 e ::= v ] n 1 b ] pred(e) I succ(e> ] iszero 
] if e then e else e I fn 21 : r => e 
1 e(e) I a 1 a.x 1 s.x:=e 1 e<-m 1 new e 
1 class s : t super ui of ei 

inst x:j : rJ = e3 meth mk : rk = ek 

Typ 3 7 ::= t I Boo1 I Nat I r-4 
I Obj (t>A4 / Class(t) (I;M) 

] PreObjM ] Self [t] (I;M) 

I::= {x1:71,...,5,:7,) 
Ad::= (ml:rl,...,m,:r,} 

Figure 1: LOOP Syntax 

The semantics of LOOP are defined by translation into 
a typed imperative language, SOOP. We take a trans- 
lational approach to semantics rather than the direct 
approach because SOOP itself is a useful foundation for 
various object coding ideas and is easier to understand 
than the more complex object typing systems. Untyped 
SOOP is the call-by-value lambda calculus extended with 
records and references. The type system of SOOP in- 

cludes records, subtyping, and F-bounded quantifica- 
tion for the interpretation of inheritance. We give a col- 
lection of type rules for SOOP and show the rules sound 
with respect to an operational semantics: no run-time 
type errors can occur. 

To be clear, we do not address delegation-style OOP 
here [15], nor do we consider having dynamic dispatch 
based on type information known at run-time [II]. 

2 The LOOP Language 

We begin our discussion by defining a representative 
object-oriented programming language, LOOP (Little 
Object-Oriented Programming language). 

Identifiers of LOOP are divided into five sorts: w E 
K rar are function parameters, s E K,,u are bound 
class names, 21 E Ksuper are bound superclass names, 

X E Kinst are instance variable names, and m E Km& 
are method names. Furthermore, the metavariable a 
will be used to range over K,,lf u ITsuper. Through- 
out this paper, the “vector” notation Ai will be used 
to indicate a comma-separated sequence of elements, 

ranged over by the indicated index variable: u, of ei I?? 
ul of er, . ...21, of e,. 

The syntax of LOOP expressions and types is given in 
Figure 1. Classes are created by extending a (possibly 
empty) set of existing classes with additional instance 

variables and methods. The expression 

class s: t super u, of ei inst xj :r,! = e> 

meth mk :rL = ez 

extends the class(es) e, by adding the new instance vari- 
ables and methods indicated. Within the body of the 
class expression, the name s is bound and plays the role 
of “self,” while the ui provide access to the parent class 
definitions. Type information is explicitly given with 
class definitions to facilitate type checking. t is the type 
of “self”, and the ri and r: give the types of individual 
instances and methods, respectively. Note that LOOP 

does not provide for implicit inheritance of superclass 
members; every method of a class must be explicitly 
listed in its declaration. Thus, rnj : r = ui<-rnj denotes 
that m3 is inherited from superclass ui. This serves to 
resolve any ambiguities with multiple inheritance. The 
current value of an instance variable is accessed by the 
expression a. x, and updated by s .x : = e. Methods are 
accessed by e<-m. 

Terms of type Obj (t>A4 denote objects; the signa- 
ture M specifies the “interface” of the object, listing the 
names and types of the messages which the object rec- 
ognizes. The type variable t is bound in Obj (t)M and 
represents the type of “self” within the object’s inter- 
face. Similarly, terms of type Class(t) (I; M) denote 
classes; in particular, such terms generate (via the new 
operation) objects of type Obj (t)M. PreObjM and 
Self El (I; M) are used in type checking class expres- 
sions, and will be discussed in detail in the presentation 
of LOOP rules in Section 5. We make some syntactic 
abbreviations to aid in program readability: let u = e’ 
in e stands for (fn 2, => e> (e’>, sequencing (er ; ez) 
abbreviates (fn x => fn y => y) (er) (ez). We also 
use e0 for the application of e to the “empty” object 

new (class super inst meth) of type 1 “gf Obj (t>{}. 
Before giving the semantics, we next discuss issues in- 
volved in typing “self,” and in the process also give an 
informal introduction to programming in LOOP. 

3 Typing Self 

The main complexity of typing object-oriented lan- 
guages arises from the interplay of subtyping and in- 
heritance. A first approximation to the typing of in- 
heritance is the principle that inheritance is subtyping 
and subclasses correspond to subtypes. This principle 
is currently at the core of most of the commonly used 
typed object-oriented programming languages, includ- 
ing C++ and Object Pascal. However, problems arise 
in the presence of methods that take and/or return ob- 
jects of “self-type,” the type of the object containing 
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the method itself [8, 21. 

There are two common views of how “self” should be 
treated when typing a class expression. In one view, 
its type is jixed and thus denotes an object of the cur- 
rent class only. Alternatively, its type can be considered 
open-ended, meaning it denotes an object created from 
the current class or some future extension. As we shall 
see, neither the fixed nor the open-ended view subsumes 
the other, and the programmer may wish to have both 
available and choose between the two. 

To make this idea concrete, consider the example 
LOOP program in Figure 2. We define a class Num, 
with an instance variable value representing the value 
of a number, and methods dec to decrease this value, 
isZero to test whether it is zero, and diff to "destruc- 
tively” compute the difference between self and an- 
other Nun. Note that Num does not inherit from any 
existing classes, as indicated by the empty super dec- 
laration. The objects n and n’ are instances of Num, 
created by the new operation. The class CNum extends 
Num, adding the new variable cnt and method click, 
and overriding Num’s isZero method. Within the body 
of the new isZero implementation the inherited version 
is accessed via number<-isZero. 

What are the proper types to give to these classes 
and objects? Let us denote by NumObj the type of Num 

objects n and n ‘, Intuitively, their method dif f takes 
a NumObj as argument, and its result is also a NumObj 
Since the methods are the only visible features of an 
object (cf. Section 2), NumObj should be 

NumObj gf Obj(SelfType) 

{dec: l+Nat, isZero: l-+Bool, 

diff: SelfType-+SelfType) 

The bound type variable Self Type refers to “the type of 
the object itself” - and indeed by the rules of the LOOP 

type system (formally presented in Section 5) if n is of 
type NumObj then n<-diff is of type NumObj-+NumObj. 

We now present the two views of typing “self” in 
classes, first the open-ended view and then the fixed 
view. All typings asserted are in fact provable in the 
type system of LOOP, given in Section 5. 

3.1 The open-ended-self typing 

First, we consider what type the class expression Num 

should be given in the open-ended view. In LOOP the 
instance variables declared in a class definition are also 
visible in the definitions of subclasses, hence the types 
of these variables, along with the types of the methods, 
define the type of a class expression. One possible type 

let Num = class self : SelfType super 

inst 

value : Nat = 0 

meth 

dec : l-Nat = 

fndummy: l=> 

self.value:= pred(self.value), 

isZero : l-+Bool = 

fndummy: l=> 

is-zero(self.value), 

diff : i--h?- = 

fn other : r => 

if self<-isZero then other 

else if other<-isZero then self 

else ( 

self<-deco; 

other<-deco; 

self<-diff(other)) 

in let n = new Num 

in let n' = new Num 

in let CNum = class self : SelfType 

super 
number of Num 

inst 

cnt : Nat = 0, 

value : Nat = number.value 

meth 

click : l+Nat = 

fndummy :l=> 

self.cnt:= succ(self.cnt), 

dec : l+Nat = number<-dec, 

isZero : l+Bool = 

fndummy :l=> 

(self<-click(); number<-isZero( 

diff : r+r = number<-diff 

in let cn = new CNum 

in let cn' = new CNum 

. . . 

Figure 2: Num and CNum Classes 
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to give Num in LOOP is 3.2 The fixed-self typing 

This is not the only typing that may be given to the 
example in LOOP. It is possible also to fif;z the type of 
“self” to only contain fields of an object of the current 
class. Taking this view, we can give the diff method 
the type NumOb j -+NumOb j , and give the class expression 
Num the type 

FixNumClass “gf Class(SelfType) 
({value: Nat); 
(dec : l+Nat , 

isZero: l+Bool, 
diff: NumObj+NumObj)) 

NumClass ‘gf Class(SelfType) 
((value: Nat); 
(dec: l+Nat, isZero: l+Bool, 

diff: SelfType+SelfType)) 

(Note that under this typing, r in Figure 2 is Self Type.) 
As alluded to at the beginning of this section, the 
difficult question is the treatment of the type of the 
binary method diff. Here we give it the type 
Self Type+Self Type, but what exactly is Self Type? 
The methods defined for Num objects may be inherited 
in subsequent extensions of this class (subclasses), hence 
the type system must ensure that these methods op- 
erate properly even when applied to objects of these 
subclasses. For this reason the object denoted by self 
within the body of the class definition must be consid- 
ered as generated by either the class being defined, or by 
one of its descendants. Thus the type of self, referred 
to via the type variable Self Type, is not known exactly 
when type checking the class definition. All we know is 
that self responds to the messages that may be sent 
objects in any class extending Num objects, and these 
may define additional methods. In LOOP we take this 
open-ended view of SelfType: it is the type of ‘self” at 
object creation time, and thus the object could contain 
more methods via inheritance. According to the typing 
rules of LOOP, the objects generated by this class via 
new are of type NumOb j , as expected. 

The subclass CNum can then be given the LOOP type 

CNumClass “g’ Class(SelfType) 
({value, cnt: Nat); 
{click, dec: l-+Nat , 

isZero: l+Bool, 
diff: SelfType+SelfType)) 

and the generated objects are then of type 

CNumObj %f Obj (SelfType) 
(click, dec: l-+Nat, 

isZero: l+Bool, 
diff: SelfType-+SelfType} 

However, one consequence of this typing is the diff 
method of CNum cannot be applied to an object of type 
NumObj , because it does not have all the features of the 
subclass and hence does not match the type of self. 
Thus, we have chosen inheritance in favor of subtyping 
in the open-ended case. We will consider this issue in 
more detail below. 

(Note that under this typing, r in Figure 2 is NumObj) 
where the open-ended SelfType is never used. A Num 
object generated using the FixNumClass typing for Num 
has the type NumObj , the same as for NumClass. 

The type of CNum must be 

CFixNumClass ‘? Class (Self Type) 
({value, cnt: Nat); 
{click, dec: l+Nat, 

isZero: l+Bool, 
diff: NumObj+NumObj)) 

and the generated objects cn and cn’ are of type 

CFixNumObj “gf Obj (SelfType) 
{click, dec: l-+Nat, 

isZero: l-+Bool, 
diff: NumObj+NumObj) 

Observe CFixNumObj is the same as NumObj except that 
it has an extra click method; in particular the diff 
methods have identical type. This means CFixNumObj 
is a subtype of NumObj according to the type rules of 
LOOP. In general, in the fixed-self view subclass objects 
will always be subtypes of superclass objects, and so 
inheritance is subtyping. Also, observe that this typing 
would not allow diff to be overridden if the new diff 
sent other a click message. The type of diff is fixed 
at a point in the hierarchy. This is the first problem 
with the fixed-self view: some forms of method override 
are disallowed. 

3.3 Inheritance vs subtyping 

Consider the following two possible conclusions to the 
example program: 

(1) in (cn<-diff (cn’))<-clicko, 

(2) in (cnc-diff (n>><-isZero 
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(1) is type-correct using the open-ended type for 
self. In this case, dif f has type CNumObj +CNumObj , 
and cn ) has type CNumOb j , so the application is sound 
and the result is of type CNumObj and thus can respond 
to a click message. 

However, (1) will not typecheck using the fixed type 
for self: there, dif f has type NumObj +NumObj and 
cn’ has type CFixNumObj. Now, since CFixNumObj is a 
subtype of NumObj (as mentioned above), cn’ also has 
type NumObj, and hence cn<-diff (cn’> is well-typed. 
Unfortunately, the result is of type NumObj , and thus 
the click method of cn’ is lost. 

In contrast, the opposite situation occurs in (2). Un- 
der the open-ended typing of self, cn is of type CNumObj 
so dif f has type CNumObj -+CNumObj. However, n is 
only of type NumObj, not of type CNumObj, and thus 
cn<-diff (n) is ill-typed. Clearly (2) type-checks in the 
fixed-self view, since in this view inheritance is subtyp- 
ing: the diff method of cn accepts arguments of type 
NumOb j 

3.4 Conclusions 

What this example shows is that neither the pure fixed- 
nor open-self typing scheme is completely adequate; 
there is a tension between allowing more inheritance and 
allowing more subtyping. We believe therefore it may 
be best to let the programmer choose which scheme is 
appropriate on a case-by-case basis. If a method only 
t&es objects of the “self” type and is never overridden, 
the fixed-self typing will always be adequate; the open- 
ended typing can be used whenever no subsumption of 
object types up the inheritance hierarchy is needed. 

The fixed and open schemes are only two extreme 
points of a continuum of options. It is possible to cre- 
ate a class hierarchy that gives “self” initially an open- 
ended type, but then at some point down the hierarchy 
fixes it and keeps it fixed below that point. In the lower 
portions of the hierarchy, objects may then be “lifted” 
freely up the inheritance tree. In addition, a single class 
type may contain multiple occurrences of “self-type”; 
some can be fixed at this level while others remain open- 
ended. In particular, it is possible to have positive oc- 
currences of SelfType be open-ended and negative oc- 
currences fixed, preserving some open-endedness and at 
the same time conforming to the subclasses-generate- 
subtypes principle. 

The terms covariance and contravariance are some- 
times used in the literature when discussing this topic 
[ll]. The open-ended “self)l is a covariant view of 
method argument types (upon subclassing they may be- 
come objects with more methods), whereas the fixed-self 

view is a contravatiant view (more precisely, an inuari- 
ant view, the types do not change). 

4 The SOOP Language 

We define the meaning of LOOP programs in terms of 
a lower-level “implementation” language SoOP (Seman- 
tics for Object-Oriented Programming), a call-by-value 
language which offers simple operations on records and 
reference cells in addition to most of the standard PCF 
constructs. 

The syntax for SOOP values 2, E I/al, expressions e E 
Exp, and types 8, r E Typ is presented below. 

2, ::= x 1 n ( 6 1 Xx.e 1 (li=v,Il 
e ::= v 1 e(e) 1 if e then e else e 

1 is-zero (e) 1 succ (e) I pred (e) 

1 C1,} 1 e.1 1 ref e 1 ! e I set (e, e) 

8, 7 ::= Nat I Boo1 I t I T -> T’ 1 (li : ~~1 

1 Q- Ref I ‘v’[t, < &I. T 1 pt. T 

Here we let the metavariable z range over the countable 
set of variables Var, 1 over a countable set of labels, n E 
(0, 1, . . .} and b E {true, false}. The language includes 
some PCF terms, record construction and selection, and 
reference cells. 

In addition to the basic types and type constructors 
(including references) the type system of SOOP provides 
polymorphic and recursive types. The metavariables t 
and t, range over the countable set TVar of type vari- 
ables. All labels of a record type must be distinct; two 
record types are considered identical if they only differ 
in the order of their label-type pairs. The type expres- 
sion V[ti 5 e,]. r binds the type variables ti in each of 
their upper bounds 19i as well as in the body r; this al- 
lows a form of F-bounded polymorphism [5]. The type 
variable t is bound in pt. r. By convention V and p have 
lower precedence than the arrow. We use FTV(7) to 
denote the set of free type variables of r. 

The SOOP types are partially ordered by the subtyp- 
ing relation 5, formalized by the system of rules in Fig- 
ure 3. The subtyping system is an extension of the stan- 
dard record subtyping [6] with recursive and F-bounded 
polymorphic types. A constraint system C is a finite 
map in TVar + Typ; in our proof rules for the subtyping 
relation such functions serve as systems of assumptions 
about the free type variables, mapping them to their re- 
spective upper bounds. A type expression r is closed in 
C ifFTV(r) C dam(C); C is consistent if C(t) is closed 
in C for all t E dam(C). Note that the requirement for 
consistency allows type variables to appear free in their 
own bounds. The valid subtyping judgements are triples 
written in the form C I- 7’ <_ 7” which for a consistent 
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(REFL) 
-T is closed in C 

CtT<T 

(TRANS) 
cl-r<7 c t 7’ 5 7” 

c t r 2 7" 

&AR) 
t E dam(C) 
c t t 5 c(t) 

(FUN) 

(RECORD) 

c t 7; I 71 c t l-2 5 7-i 
c t 71 -> 72 5 T; -> r; 

C t rl < Ti for 1 5 i 5 m 

T;+~ is closed in C for 1 I j 5 m’ 

C t {Ii : T,‘, l,+j : T~+Jl I Cli : 7-i) 

(INST) 
C t Ti 5 OOi 

C t V[t; 5 ei]. 7 < 07 
where o = [“/t,] 

(FOLD) 
pt. r is closed in C 

c t [-/t]T 5 pt. 7 

(UNFOLD) 
pt. r is closed in C 

c t pt. r 5 [““. T/t]7 

Figure 3: Subtyping rules of SOOP. 

C can be derived by the subtyping rules. Rule (INST) 
makes a polymorphic type a subtype of the instances of 
its body r when the types ri, replacing (by substitution 
a) type variables t;, satisfy the subtyping relations spec- 
ified by the constraints ti < 6Ji. The two rules (FOLD) 
and (UNFOLD) establish the equivalence between a re- 
cursive type and its unrolling with respect to subtyping. 

Along with the standard proof rules for constants and 
PCF primitives the type system of SOOP includes those 
in Figure 4. In the typing rules, a type environment r 

is a finite map in Var + Typ; it is closed in a constraint 
system C if I’(z) is closed in C for each x E dom(I’). 
The valid typing judgements derived by these rules are 
of the form C; l? t e : r where C is consistent and P is 
closed in C. 

Due to space considerations the SOOP operational se- 
mantics and type soundness proofs cannot be presented 
in detail here; complete proofs may be found in [9]. Here 
we must settle for a brief outline. We present semantics 
of SOOP in the general framework of [lo, 141. The oper- 
ational interpreter of the language is specified by binary 
relations between SOOP terms in memory environments, 
which represent the notion of computation. 

A computation state (C, e) is a pair of a memory C E 
Var + Val and an expression e. This represents the 
complete state of the computation at any point in time. 
The memory maps cell names to values assigned to these 
cells. A single-step computation relation, -1, is then 

(SUB) 
C;l?te:: ct71-T’ 

C;r t e:+ 

(VA@ 
z E dam(r) 
c;rta::ryz) 

(Ass) 
Cll[ ti 5 Oil; rll[x : 7'1 t e : 7" 

C; r F Xz. e : V[ti 5 Oil. 7’ -> 7” 

( App) 
c;rt el :7->7', C;rteez:7 

C;Ptei(e2):7’ 

(RECORD) 
c;rtm 
- - 

C;r I- (li=ei) : {li : 7i) 

(SELECT) 
C;lTte:CZ:7) 

C;Pte.l:r 

(REF) 
C;Pte:r 

C;Ptref e:r Ref 

(DEREF) 
C;I’te:rRef 

C;Pt!e:r 

(SET) 
C;I’ t el : T Ref, C;l?te2:7 

C;rtset(el, e2):7 

Figure 4: Selected typing rules of SOOP. 

defined on computation states, precisely capturing the 
execution behavior of SOOP programs. The computation 
relation t+* is the reflexive transitive closure of I+. A 
closed computation state (C, e) is stuck if e $ Val and 
there is no state (C’, e’) such that (C, e) I+ (2, e’); a 
state gets stuck if ti* relates it to a stuck state. A state 
(C, e) diverges if for every state (C’, e’), if (C, e) c)* 
(C’, e’), then (2, e’) t-)1 (C”, e”) for some C” and e”. 

Typing of computation states is defined as follows: 
P t (C, e) : T if 0;P t e : T, and 0;I’ t C(z) : r, where 
I’(s) = 7z Ref, for each 2 E dam(C). 

Following [19] we establish soundness of the type sys- 
tem of SOOP with respect to the computation relations 
by proving that a subject reduction property holds for 
this type system, and that the stuck states cannot be 
given types. The first implies that the type of a compu- 
tation state is preserved by the single-step computation 
relation; together with the second this means that the 
stuck states are unreachable from a typable initial state. 

THEOREM 4.1 (SUBJECT REDUCTION) If 
l? t (C, e) : r and (C, e) el (C’, e’), then there exists 
I” such that P’ t (C’, e’) : r. 

LEMMA 4.2 (STUCK STATES ARE NOT TYPABLE) 
If P t (C, e) : r, then either e E Val, or there exists 
a state (‘2, e’) such that (C, e) ~$1 (C’, e’). 
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THEOREM 4.3 (SOOP TYPE SOUNDNESS) If 
l? t (C, e) : r, then either (C, e) diverges, or (C, e) c)’ 
(C’, U) and I” t (C’, w) : r for some l?. 

In comparison with proofs of subject reduction for 
the X-calculus [18] and ML-style polymorphic languages 
[19], the proof for the SOOP type system is complicated 
by the relatively rich subtyping relation. The only ana- 
log of subtyping in the ML type system is that a term 
with a polymorphic type scheme can also be assigned 
each type produced by an instantiation of the type vari- 
ables of the scheme. This allows a relatively straight- 
forward proof of subject reduction for the P-conversion 
rewriting rules. In contrast the instantiation of a poly- 
morphic type in SOOP is only correct if the substituted 
types satisfy certain subtyping relations; as a result the 
typing derivation of the ,&contractum of a term e can 
be constructed only after a significant transformation of 
the typing derivation of e. Further problems arise from 
the non-trivial subtyping on some basic SOOP types. 

The type system of SOOP is powerful enough to al- 
low for a type-correct translation of LOOP objects (and 
more); yet it was deliberately weakened by omiting cer- 
tain proof rules which would have notably complicated 
the proof of its soundness, or the LOOP type checking al- 
gorithm (Section 6). Examples are rules for distributing 
quantifiers over type constructors, and the more sophis- 
ticated subtyping relation on recursive types of [l]. 

5 LOOP Type Soundness 

In this section we present the LOOP type system, and 
show how LOOP terms and types may be given meaning 
by translation into SOOP, the result being LOOP pro- 
grams experience no “message not understood” errors 
upon execution. 

5.1 The LOOP Type System 

The syntax of LOOP types was given in Figure 1 
of Section 2. We take up the discussion of LOOP 

types from that point. In addition to object and 
class types Obj (t)M and Class(t) (I; M) discussed 
previously, some additional forms of object and class 
type are needed for bookkeeping purposes. The type 
Self [tl (I;M) is the type of a class viewed from in- 
side a class definition; there are in fact no terms of this 
type, since this internal view cannot escape. The inter- 
nal view given by Self [tl (1;M) exposes the instance 
variables, allowing them to be read and set. PreObj M is 
the view of what objects of the class will look like from 
the outside; it is Self [tl (I; MI with the instance vari- 
ables removed. In general, the “self-type” t may occur 

We4 (Tkans) 
Ch<r', 7' 5 7" 

cl-717 c t 7 < 7" 

t E dam(C) 
(Hyp) c t t 5 c(t) (Fun) 

c t 7-i < Tl) 72 I 7-4 
c t 71 -+ 7i I r; -+ r; 

(PreObj) 
C I- M(m) 2 M’(m), Vm E dom(M’) 

C t PreObjM < PreObjM’ 

(Fold) 
C /- PreObj M[Obj (t> M/t] 5 Obj (t) M 

I (Unfold) 
c t Obj (t)M 5 PreObjM[Obj (t)M/t] 

Figure 5: LOOP subtyping rules 

free in PreObjM and Self [tl (I; M), and in the latter 
expression t is not bound. Such free type variables are 
bound by type constraints of the form t 2 PreObjM. 

A type constraint system C consists of a sequence of 
such type constraints; it may equivalently be viewed as 
a mapping from type variables to their corresponding 
bounds. Figure 5 axiomatizes the subtyping relation 
between LOOP types. Object and pre-object types can 
be compared via the rules (PreObj), (Fold), and (Un- 
fold). Two object types are compared by first using 
(Fold)/( Unfold) to unwind them, and then (PreObj) to 
compare them componentwise. Thus PreObjM types in 
fact have two purposes, one alluded to above for typing 
classes, and another for bookkeeping purposes to allow 
object types to be compared. 

The object typing rules for LOOP are listed in Fig- 
ure 6. Rules for functions, pred, succ and iszero are 

standard and are omitted for brevity. The (Class) rule is 
the most important rule. When type checking the bod- 
ies of class members (instances in the third antecedent 
of the rule, methods in the fourth), the final type of the 
objects that incorporate these definitions is not known, 
since the class currently being type-checked may have 
been extended by inheritance. As discussed in Section 
3, we thus want to view the “self-type” here as open- 
ended and parametric. For this we introduce a new type 
variable t as the “self-type;” all that is known about t is 
that it must satisfy the constraint t 5 PreObjM, i.e. it 
contains at least the methods M. The class name s can 
be assumed to have type Self [tl (I; M). Recall that t 
is not bound in this expression, so t occuring in M are 
constrained by the bound t < PreObjM. This means 
the self-references in M (and in I) are to the open-ended 
“self.” A similar property holds for the superclass types. 
The first antecedent forces the superclasses to have the 
types asserted for them, and the second one requires the 
class to be a parametric extension of each superclass. 
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(Sub) 
C;r t e : 7, Cl-717’ 

(Self) 
r(s) = Self [tl (1;M) (Mesg) C;I’ I- e : PreObjM 

C;r t e : 7’ c;r t s : t C;r t ec-m : M(m) 

(Vu) 
u E d07qr) 

(Super) 
r(q = Self RI (I; MI (Inst) r(a) = SelfCtlU;M) 

c;r t- 2, : r(g C;I’ I- u : PreObjM qr t- a.x : I(Z) 

(Cond) C;r t el : Bool, e2 : 7, es : 7 C;I’ t e : Class(t) (I; M) 
I’(s) = Self Ctl (I; Ml 

(New) 
C;r t if el then e2 else es : r C;I’ t new e : Obj (t) M 

(Assn) c;r t e : W 

c;r I- s.x:=e : I(X) 

C;l? t ei : Class(ti) (I, ; Mz> 

C’ k t 5 PreObjMi[t/ti] I” = (r, s : Self [tl (I; M), ui : (Self [ti] (I,; Mi))[t/ti]) 

cy t e; : I(xj) where C’ = (C, t 5 PreObjM) 

C’;I” t ei : M(mk) 
I(x) = L(x)[t/tJ, v’s E dOrn(li) 

(Class) 

C;I’ t class s : t super ui of ei inst xi : I(xj) = e[, meth mk : M(mk) = ei : Class(t) (I; M) 

Figure 6: Selected LOOP Type Rules 

Rules (Self) and (Super) type the uses of class and 
superclass names in the class definition. Note the rules 
are slightly different. (Self) gives the type t to the class 
name s; this type variable is constrained within C by 
t < PreObjM and thus s is also of type PreObj M. The 
weaker type PreOb j M is not given to s in the rule as s 
may be returned by a method; t is the open-ended %eIf” 
that would be returned, not merely an object containing 
the methods defined in this class alone. (New) is the 
obvious rule for typing object creation. When a new 
object is created, its instance variables are hidden, and 
the “self-type” t becomes fixed. 

5.2 Operational Semantics 

The semantics of LOOP is defined via a translation of 
LOOP terms into SOOP terms; this translation is given 
in Figure 7. In many encodings of object-oriented lan- 
guages [7, 131 an object is defined as a record formed 
by taking a fixed point of a class function, a function 
mapping records to records. This results in a recur- 
sive record, and the methods of the object-fields of the 
record-gain access to its “self” by unrolling the fixed 
point expression. In purely functional languages this en- 
coding produces good results, but the situation changes 
with the introduct,ion of effects and call-by-value seman- 
tics. The associated fixed point combinator is then only 
well-defined on functionals, but as pointed out for in- 
stance in [8], classes do not correspond to functionals. 
Further complications arise if the language is to support 
mutable instance variables belonging to objects-in the 

straightforward implementations their allocation takes 
place either “too early” (they are shared by all objects 
of the class) or “too late” (new cells are being allocated 
at each access to the object). 

Several solutions with various limitations have been 
proposed; the reader is referred to [12,4] and the discus- 
sions in [9] for details. Our approach avoids these lim- 
itations by defining a fixed point combinator in terms 
of mutable cells in the spirit of Landin. A first approx- 
imation to this is 

Y, = xf.let r = ref null in (set (T, f(r)); ! T), 

where null is some “dummy” initial value. The class 
function f now maps a cell containing a record to a 
record, and this cell will be assigned the value of the 
fixed point (the object being created). This combina- 
tor evaluates f(r) only once before “tying the knot” on 

the object, therefore it can be applied to class functions 
with side effects, in particular allocating mutable cells, 
to obtain objects with the intuitively expected behav- 
ior. Another advantage of this encoding is that “self” 
may be used in instance variable initializations. This al- 
lows for a form of method override in objects (not just 
classes): a method stored in an instance variable (as a 
function) may be overridden by setting the variable to 
a different function. 

However, this definition of Y, is lacking: the class 
function f takes a reference cell as argument, and there 
is no nontrivial subtyping on reference cells in SOOP. 

This means inheritance from classes would not type- 
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check. More precisely, when a class function f is passed 
a reference r to the future object, and f inherits features 
from a superclass defined by f’, f must apply f’ to T 
(since the “self” of the object must be shared between 
inherited and new methods). However, since a reference 
is not a subtype of any other reference type, either f and 
f’ have the same type (false if f extends f’), or one of 
f(r) and f’(r) must not be type-correct. In either case, 
inheritance will not work. 

There is not an inherent need for general references 
here; the cell is set only once, and after that it is read- 
only. So, the idea is to define a “cell accessor function” 
of type 0 -> C. . .) that when applied will return the re- 
sult in the cell. f then takes this cell accessor function 
as argument, and will thus not have a Ref type argu- 
ment. The following fixed-point combinator achieves 
this effect. 

Y,‘= Xf. let T = ref (Xx. Cl) in (set (T, f(Ax. (! r)(x)));! T) 

where fl = (AZ. x(x))(Xx. x(x)) is a diverging computa- 
tion. The initial value placed in the cell is AZ. R since 
it has all function types and thus imposes no type con- 
straint on the cell. 

Let us now examine the encoding of Figure 7 more 
carefully. For uniformity, we interpret classes as func- 
tions from frozen records C) -> I.. .) to frozen records, 
and objects as frozen records. These records in turn 
have two fields, inst which is a record containing the in- 
stance variables, and meth a record containing the meth- 
ods. The new operation then applies Y,l to the class to 
make an object. Note the instance variables are not 
hidden in SOOP. We model instance variable hiding by 
crippling the LOOP type system to not allow typing of 
access to the instance variables of objects by removing 
them from object types. 

Each class function is a wrapper around the class 
functions of its superclasses. Within its body, the func- 
tion first applies its superclass functions to its own cell 
accessor; the resulting record holds the instance vari- 
ables and methods defined by the superclass whose 
%elf” name has been bound to the subclass’s cell ac- 
cessor. These inherited values are then available for use 
in the body of methods and instances of the child class. 

It is important to recognize the implications of this 
inheritance mechanism. Each class function will be ap- 
plied to several different kinds of cell accessors, one for 
each of its subclasses. This fact has important conse- 
quences in the LOOP type system, and motivates the 
F-bounded polymorphism of SOOP. 

The translation of LOOP types to SOOP types appears 
in figure 7. Many of the properties of the type transla- 
tion were sketched above. The most important feature 

Terms: 

[v]=v 

[n]=n 

[b] = b 

[ succ(e> ] = succ ([e]) 

[pred(e) ] = pred (Fe]) 

[ iszero ]I = iszero (I[e]) 

[if e then el else e2] = if [en then [el] else [e2] 

[ fn v : 7 => e 1 = AU. [e] 

lhk2) n = [41([e2n) 
[a] = a 

I[ a.x 1 = ! (a(Ct).inst.x) 

6 s.z:=e ] = set (s({>).inst.x, [[en) 

[ ec-m ] = [e](C)).meth.m 

[new e 1 = Yi([e]) 

[ class s : t super ui of ei 
inst z 3 : 3-: = e: meth mk : r[ = eln 

As. let ui = [eJJ(s) in 

(Xx. Xy. x)(iinst = Cxj = ref I[+, meth = (mk = [$]I>) 

Types: 
[ Boo1 ] = BOOI 

I[ Nat ] = Nat 

I[ T-hT’ 1 = iTn -> [+I 

[[ t ] = Cl -> Cmeth : t) 

[ PreObjM 1 = Cl -> (meth : [M]) 

[ Obj (t> M 1 = Cl -> Cmeth : pt. [M]> 

[ Class(t) (I; Ml ] = V[t 5 [M]]. 

Wl~ 0 -’ (Wl~ IPW) 

Instance Variables and Methods: 

[ 67) 1 = cxi : iTin Ref) 

[ imi:7,) 1 = Cm, : ITin> 

Constraints: 

[ t I: PreObjM 1 = t 5 14 

Hypotheses: 

[v: T 1 = v : I[~] 
[s: sdfCtl(I;M>] = S: {(([Ij,t)) 
[ u : Self Ctl (I; M) ]I = u : (([Ij, I[Mj)) 

Judgements: 

where 

((~1, TM)) “Gf I) -> Gnst : 71, meth : TM) 

Figure 7: Translation of LOOP to SOOP 
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not discussed is how the open-ended “self-type” may be 
represented by F-bounded quantification. Classes are 
functions from frozen records to frozen records. The 
open-endedness is found in the record passed as a pa- 
rameter, for this may contain more methods than the 
current class defines. So, we use F-bounded quantifi- 
cation to specify that t is an arbitrary record with at 
least the methods M. When t occurs free in M, this 
will allow the methods to have open-ended notions of 
“self-type.” 

5.3 Type Soundness of LOOP 

We now sketch how type soundness may be proven for 
LOOP. Proofs are omitted for lack of space; see [9] for 
complete proofs. The language studied there is an un- 
typed version of LOOP and since the translation ignores 
explicit type information, proofs are unchanged. The 
translation of LOOP type expressions and judgements 
into SOOP judgements appears in Figure 7. 

The following Lemma shows the translation of each 
LOOP rule is a derived rule of SOOP. 

LEMMA 5.1 The translation of the conclusion of each 
LOOP rule is provable in SOOP from the translations of 
the antecedents of the rule. 

From this, a simple induction argument allows us to 
conclude the correctness of LOOP typing derivations. 

THEOREM 5.2 (LOOP TYPING) If C;l? k e : r is prov- 
able in LOOP, then [CJ;[l?n k I[e]l : [[rl is provable in 
SOOP. 

DEFINITION 5.3 A LOOP program e becomes stuck if 
its corresponding SOOP translation [[en becomes stuck 
upon computing. 

In particular, note that a “message not understood” 
error in LOOP corresponds to an attempt to access a 
nonexistent field of a record in SOOP. Such attempts 
lead to stuck SOOP computation states, and thus LOOP 
programs that have such translations are considered er- 
roneous under this definition. From Theorem 5.2 and 
Theorem 4.3, the soundness of SOOP, we may conclude 
that no type-correct LOOP programs may become stuck. 

THEOREM 5.4 (SOUNDNESS OF LOOP TYPING) 
Typable LOOP programs do not become stuck. 

6 Decidability of LOOP Type Checking 

We may establish the decidability of type-checking for 
LOOP. This construction is carried out directly in the 
LOOP type system, because SOOP type-checking is un- 
decidable. 

(HYP’) 
c !- C(t) 5 T 

Ck-t<r (fin) 

(PreObj) 
C t- M(m) 5 M’(m), Vm E dom(M’) 

C k PreObjM 5 PreObjM’ 

(Fold’) 
C t- PreObjM’ 5 PreObjM[Obj (t)M/t] 

C l- PreObjM’ 5 Obj (t>M 

(Unfold’) 
C I- PreObjM[Obj (t>M/t] 5 T 

Cl-Obj(t)MIr 

Figure 8: Alternative axiomatization of LOOP subtyping 

6.1 Decidability of LOOP Subtyping 

The LOOP subtyping relation, axiomatized by the rules 
listed in Figure 5, has a straightforward decision proce- 
dure. To show this, we first introduce an alternative set 
of LOOP subtyping rules, listed in Figure 8. 

LEMMA 6.1 The set of rules in Figure 8 is equivalent to 
those in Figure 5. 

PROOF: Each alternate form of a rule is derivable 
from its original version and rule (Reff). Conversely, 
each original rule is derivable from its alternate form 
and rule (nans). 0 

Thus, both sets of rules define the same subtyping 
relation. For the remainder of this section, we shall use 
the alternate set of rules in Figure 8. 

LEMMA 6.2 (HEAD FORMS) If C I- 71 5 r2 is provable, 
then it has one of the following forms: 

Cl-T<T 
C k t < PreObjM 
C t- t 5 Obj(t’)M 

c k Tl+-r2 5 r;+r; 
C k PreObjM 5 PreObjM’ 
C t PreObjM < Obj (t’>M’ 

C k Obj (t)M 5 PreObjM’ 
C I- Obj (t)M 5 Obj (t’)M’ 

PROOF: By induction on subtyping proofs. 0 

LEMMA 6.3 If C I- r 5 7’ is provable with a single use of 
(Tram) as the last rule in the proof, then it is provable 
without using (Trans). 

PROOF: By induction on the depth of proof trees. 
If the final rule used in the proof is (nans), then the 
judgement is proven from judgements C l- r < T”, C k 
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T” < r’, and (Trans), for some type 7”. The case r = 
Obj (t)M, 7’ = Obj (t’)M’ will be shown to illustrate 
the general proof technique. 

If the proof of C I- Obj (t> M 5 Obj (t’) M’ has an in- 
stance of (Y3ans) as its final proof step, the antecedents 
of this rule have the form C t Obj (t)M 5 7” and C l- 
T” 5 Obj (t’)M’. A simple induction argument shows 
that 7” must be either Obj (t”)M” or PreObjM”. Con- 
sidering each case: 

(i) If 7-l’ is PreObjM”, then the antecedent judge- 
ments must have been proven via rules (Unfold’) 
and (Fold’), respectively. The antecedents of these 
rules in turn must have been proven via rule (Pre- 
Obj). Thus, for each m E dom(M’), we have 
proofs of C k M(m)[Obj(t)M/t] 5 M”(m) and 
C I- M”(m) < M’(m)[Obj(t’)M’/t’]. These can 
be combined by rule (Trans); however, the result- 
ing proofs are shorter than the original, and hence 
these uses of (Trans) can be eliminated by induc- 
tion. From these proofs we can construct a new 
proof of C t Obj (t)M 5 Obj (t’>M’ by rules (Pre- 

Obj), (Fold’) and (Unfold’). 

(ii) 7” is Ob j (t”) M”. Then antecedents are proven via 
the (Fold’) and (Unfold’) rules, and the proof pro- 
ceeds in the same way as above. 0 

A simple induction argument on proofs then proves: 

THEOREM 6.4 (TRANSITIVITY ELIMINATION) IfC t- r 
5 7’ is provable, then it is provable without the use of 
(Trans). 

Therefore, (Trans) may be eliminated from the sys- 
tem of subtyping rules without changing the subtyping 
relation axiomatized by the rules. Furthermore, the top- 
level type constructors of the conclusions of the rules are 
unique (ignoring rule (Red)); for every judgement C k 
T < 7’ if r # 7’ there is at most one rule instance that 
has this judgement as its conclusion. 

DEFINITION 6.5 A canonical proof of judgement C t- r 
5 r’ is a proof whose final rule is: 

(i) (ReA), if r = 7’ 
(ii) not ( TYans), if 7 # r’, and whose antecedents are 

canonical proofs. 

LEMMA 6.6 (CANONICAL SUBTYPING) If C l- r 5 r’ 
is provable, it has a unique canonical proof that does 
not “loop” ; i.e., it does not contain a subproof with 
conclusion C t 7 5 7’. 

PROOF: If C k T 5 7’ is provable, then by Theo- 
rem 6.4 it has a proof that does not use rule (Trans). 

The proof then proceeds by induction on the length of 
these (Dans)-free proofs. 

If r = r’, then C I- r 5 r’ has a unique canoni- 
cal proof via rule (Red). Otherwise, its final rule is 
not (IYarrs), and this rule has antecedents with unique 
canonical proofs by induction. This proof can be shown 
to be unique by case analysis on the allowable subtyping 
judgement forms of Lemma 6.2. 

Obviously, such canonical proofs cannot have an an- 
tecedent of C t T 5 r’, for the proof of this would yield 
a different, shorter canonical proof of C t- r < T’. 0 

DEFINITION 6.7 If r is a type and C a type constraint 
system, S(r, C), the subterm closure of r and C, is the 
least set of types such that: 

{ii ‘,fS!t%) then C(t) E S( C) 11 1 
(iii) if ri+rz: S(:, C), then {ri,r:] c S(r,C) 
(iv) if PreObjME S(r,C), then M(m) E S(T,C) 

for each m E dom( M) 

(v) if Obj (t)ME S(T, C), then 
PreObjM[Obj (t)M/t]E S(T, C). 

LEMMA 6.8 For any type constraint system C: 

(i) S(C(t), C) & S(t, C), for each t E dam(C). 
(ii) S(7, C) U S(T’, C) C_ S(7--4, C). 

(iii) S(M(m), C) C S(PreObjM, C), Vm E dm(M). 
(iv) S(PreObjM[Obj (t>M/t], C) C_ S(Obj (t)M, C). 

PROOF: By induction on the definition of S(r, C). •I 

LEMMA 6.9 For any type r and type constraint system 
C, S(7,C) is finite. 

PROOF: The definition of S(r,C) can be viewed 
as an algorithm for generating its elements. We may 
extend the language of types to include a “marked” 
equivalent of the Obj (t)M type, Obj (t)M, and change 
the last case in the definition of S(r,C) to unroll 
Obj (t)M to PreObjM[x(t)M/t]. Since the marked 
type Obj (t) M is not unrolled, this defines a new set 
S’(r, C) which can be shown to be finite by induction 
on the size of r. Furthermore, S(r, C) is the image 
of S’(r, C) under the “unmarking” operation. Thus, 
S(r,C) must be finite as well. 0 

LEMMA 6.10 Any proof of C t- r 5 r’ uses only an- 
tecedents of the form C t ri < 72 where {ri, ~2) E 
S(7, C) u S(T’, C). 

PROOF: By induction on proofs, inspection of the 
proof rules, and Lemma 6.8. 0 

THEOREM 6.11 (DECIDABLE SUBTYPING) It is decid- 
able whether or not any subtyping judgement C l- T 5 
r’ has a proof. 
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PROOF: Lemma 6.6 implies a semi-decision procedure 
for the subtyping relation; if C t- r 5 7’ is provable, the 
procedure outlined will generate a proof of it. Other- 
wise, for some antecedent judgement J, the procedure 
loops, generating J again as a subgoal, by Lemmas 6.10 
and 6.9. But by Lemma 6.6, J therefore has no canon- 
ical proof. Thus, the original judgement must be un- 
provable. 0 

6.2 Minimal Types of LOOP terms 

To make the type-checking system of LOOP practical, 
we only require that the program contains type infor- 
mation about each identifier, variable and method; the 
system has to infer the rest in a type-correct program, 
and reject type-incorrect ones. In some cases however a 
term e can be proved to have more than one type (e.g. 
using the (Sub) typing rule); therefore claiming to have 
an inference system makes sense only if it is able to find 
a typing for e from which all others follow, i.e. a type 
which is smaller than all other possible types for e. 

DEFINITION 6.12 (MINIMAL TYPES) 7 is a minimal 
type for a LOOP term e in environment C; P if C; l? k e : 
r and for each type r’, if C; I’ 1 e : r’, then C t r < 7’. 

Proving the existence of a minimal type for every ty- 
pable LOOP term is therefore a prerequisite to proving 
the correctness of the type-checking algorithm. As it 
turns out, computing the minimal type is non-trivial 
only in the case of a conditional expression: the type r 
of the result must be the least type larger than the (min- 
imal) types ri and 72 of the terms in both branches, i.e. 
it must be their least upper bound. Since the subtyping 
relation is only defined with respect to a constraint sys- 
tem C, so is the lub; it is a partial function on pairs of 
type terms - some pairs (Nat and Bool, for instance) 
have no common upper bound. 

To prove that the lub exists whenever the types have 
an upper bound, we first give an algorithm for comput- 
ing it (Figure 9). For brevity it is presented in the form 
of a nondeterministic system of rules which makes use 
of the symmetry of the lub to define it as a function on 
2-element sets of types (identity on types is considered 
up to renaming of bound type variables). The ambigu- 
ity is harmless because of the Church-Rosser property 
exhibited by the system: if two rules can be applied, the 
result is independent of the order of application (this sit- 
uation only arises when each of the two types is either a 
type variable or an object type). The additional param- 
eters Sv and S,, are provided in order to guarantee the 
termination of the algorithm (the argument follows in 
the steps of the proof of termination of the algorithm for 

subtype checking presented in Section 6.1). The compu- 
tation fails if the arguments do not match the patterns 
in any rule, or if a subgoal (invocation of LUB or GLB) 
fails. 

LEMMA 6.13 Given a constraint system C and two 
types ri and 72, if ri Vc 72 = r, then r is a least upper 
bound of ri and 72 with respect to C, and if ri VC 3-2 

fails, then ri and rs have no upper bounds. 

PROOF: We prove the following proposition about 
the function LUB: 

If LUB ({T~,Q}, Sv, S,) = 7, then 7 
is a least upper bound of ri and 72; if 
LUB ({71,72}, Sv, S,) fails, then for every r 
such that C k ri < r and C t 72 5 r, for every 
pair of proofs of these judgements there exist 
types ri, ri and T’ such that { ri, ri} E Sv, and 
C l- ri 5 r’ and C t ri < r’ are intermediate 
steps of the respective proofs 

(and simultaneously the analogous statement about 
GLB). The proof proceeds by induction with respect to 
the metric we used to demonstrate termination of these 
algorithms. We illustrate the argument in the following 
cases: 
CASE r1 = t and r2 # t: 

If {t,n) $ Sv and LUB ({C(t),n}, SC, S,,) = T, 
then by inductive hypothesis C l- C(t) < r and C t 
72 5 r; by an application of (Hyp’) from the former we 
obtain C t- t 5 r, i.e. r is an upper bound of t and r2. 
Suppose that 7’ is also their upper bound. The proof 
of C I- t 5 7’ may not result from an application of 
(Reff), since this implies that C k 72 5 t, which (by 
Lemma 6.2) is only possible if 72 = t, contradicting our 
assumption. Hence C k t 5 r’ is proved by an instance 
of (Hyp’), and therefore we must have a proof of the 
antecedent of this rule, namely C k C(t) 5 7’. But 
then C l- r 5 r’ by the inductive hypothesis. 

Consider the case when {t, 72) $ SV and 
LUB ({C(t),Tz}, Sb, SA) has failed. Suppose t and 
TZ have an upper bound r, and consider any two proofs 
of their relations. By the same argument as above every 
proof of C t t 5 r contains a proof of C t C(t) < T, 

and by inductive hypothesis we have some ri, r. and r’ 
such that {ri, ri} E SL and the judgements C I- r{ 5 7’ 
and C k ri 5 T’ appear in the respective proofs of 
C t- C(t) 5 r and C l- 7-s < 7. It now only remains to 
be shown that the case of ri = t and ri = rs is impos- 
sible (and therefore {ri, rJ} E Sv). Indeed, if it was, it 
would mean that there is no pair of shortest proofs that 
r is an upper bound or t and 72 - since every such pair 
contains subproofs (at least one of them shorter) of the 
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71 vc72 = LUB ({71,72}, 0, 0) 
where 

LUB ({7-1,72}, Sv, SA) = 
if q = ~2, then rr, else if {rr,r2} $! Sv, then 

LUB ({C(tl,722), X,, s/d, ifq =t 
LUB ({PreObjM[rr/t],r2}, SC, S,), if 71 = Obj (t)M 
PreOb j M, if q = PreObjMr, r2 = PreObjM2 

where &m(M) = dom(Mr) n dom(Mz) 
and M(m) = LUB ({N(m),&(m)}, Sb, SA) 

for all m E &m(M) 
GLB ({T~,T;}, Sb, S,,)+LUB ({T:,T~}, SL, S,), if q = ~:+r:, ~2 = rl+ri 

where SL = Sv U {{rr, 72)) 
and 

GLB ((71,72}, sv, SA) = 
if ~1 = ~2, then rr, else if {rr,7-2) $ S,,, then 

4 if rr = t and C k t 5 7-2 
GLB ({PreObjM[rr/t], rz}, Sv, Sk), if ~1 = Obj (t)M 
PreObjM, if rr = PreObjMr, 72 = PreObjMz 

where &m(M) = dom(Mr) U dom(Mz), 
M(m) = Ml(m) for all m E dom(Mr) \ dom(Mz), 
M(m) = M2(m) for all m E dom(M2) \ dom(Mr), 

and M(m) = GLB ({Ml(m),Mz(m)), SV, %I 
for all m E dom(Ml) n dom(M2) 

LUB ({~i,~i}, Sv, SA)-+GLB ({T~,T[}, Sv, Si), if rr = ri+ri’, rz = ri+rl 
where Sk = Sr\ U {{rr, ~2)) 

Type CC, r; v) = r(v), if z1 E dam(r) 
Type (c, r; n) = Nat 
Type(C, r; b)=B001 

Type (C, r; b(e)) = Nat, if Type (C, I?; e) = Nat, d E {sucqpred} 
Type (C, r; is-zero(e)) = Bool, if Type (C, r; e) = Nat 

Type (C, r; if e then er else es) = Type (C, I?; er) VC Type (C, I?; e2), if Type (C, r; e) = Boo1 
Type (C, I?; fn Y : r => e) = r+Type (C, (r, v : 7); e) 

Type (C, r; e(e’)) = r, if Type (C, r; e) = T/---H- and C k Type (C, J?; e’) < 7’ 

Type (C, F; S) = t, if r+) = Self Ctl U;M) 
Type (C, r; u) = PreObjM, if r(zl) = Self Ctl U;M) 

Type (C, I?; a.~) = I(X), if rya) = Self Ctl (I; MI 
Type (C, r; s.s:=e) = I(X), if I’(s) = Self Ctl (I;M) and C I- Type (C, I?; e) 5 I(z) 

Type (C, r; sc-m) = M(m), if C(Type (C, I?; s)) = PreObjM 
Type (C, I?; e<-m) = M(m), if Type (C, r; e) = PreObj M 

Type (C, I?; new e) = Obj 0) M, if Type (C, I?; e) = Class(t) (I; Ml 

Type (C, r; class s : t super ui of e; inst Xj : ri =ei meth mk : r[ =el,l) 

= Class(t) (I; M), where I = Cs,I, M = C-1 

if Type (C, I?; ei) = Class(&) (Ii; Md, 

C’ k Type (Cl, I?; e:) 5 T;, C’ I- Type (C’, P; e’J 5 $, 

C’ I- t 5 PreObjMi[t/t,], and I(x) = I%(x)[t/ti] ‘dx E dom(l,) 
where C’ = (C, t < PreObjM) 

I? = (I?, s : Self [tl (I;M), ui : (Self [&I (I,; M,))[t/tJ) 

Figure 9: Algorithms for computing the lub of two types and for type-checking LOOP terms 
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same fact about some 7’ - and hence no (finite) proofs 
exist. 

In the remaining case of {t, r2} E Sv the statement 
follows trivially (for T; = t, ~4 = 772, and r’ = r). 

CASE ri = PreObjMi and 72 = PreObjMz: 
By Lemma 6.2 an upper bound of these may only be 

an object or a pre-object type; but since proving that 
a pre-object type is a subtype of an object type is only 
possible via the (Fold’) rule, we may focus on upper 
bounds in pre-object form. 

It is easy to see that PreObjM (as defined in the cor- 
responding rule of Figure 9), when it exists, is an upper 
bound of ri and ~2. Since any upper bound must de- 
fine the fields in dam(M), and the types of these fields 
are upper bounds of those of MI and MS (so that the 
antecedents of the only applicable rule (PreObj) are sat- 
isfied), it immediately follows (again by (PreObj) and 
inductive hypothesis) that any upper bound is a super- 
type of PreObjM. Conversely, if one of the subgoals 
LUB ({Ml(m), Mz(m)}, SL, S,) fails, the second part 
of the proposition follows by an argument similar to the 
one given in the previous case. 

The statement of the Lemma is a corollary of this 
proposition and the definition of ri VC ~2. 0 

We are now ready to present a type-checking algo- 
rithm for LOOP (Figure 9) in the form of a function 
Type (C, P; e) which produces the minimal type of the 
term e in environment C; r, if it exists, and is undefined 
otherwise. 

THEOREM 6.14 (DECIDABLE TYPE CHECKING) 
The LOOP typing judgement C; I t- e : r is prov- 
able if and only if Type (C, l?; e) is defined, and 
C i- Type (C, I’; e) 5 7. 

PROOF: By structural induction on LOOP terms. 
Because of the lack of non-trivial subtyping on class 
types, there exists at most one type for each class term 
(all type information for a class is explicit in the syntax); 
the algorithm only verifies that the class expression is 
type correct. As an example we present the proof in the 
case of a conditional expression. 

Let e = if e’ then ei else e2. An inspection 
of the typing rules (Figure 6) shows that the only 
way to prove C;r k e : r is by an application of 
(Cond) (followed possibly by applications of (Sub)). 
Hence the antecedents of (Cond) must also be provable, 
and by the inductive hypothesis Type (C, l?; ei) and 
Type (C, P; e2) produce minimal types ri and 7-2 of ei 
and e2 respectively. Therefore the type in the conclu- 
sion of (Cond) is an upper bound of 71 and ~2, and by 
Lemma 6.13 it is a supertype of 71 VC r2. 

The converse part (correctness of the inferred type) 
follows trivially. 0 

Termination of the algorithm follows similarly by in- 
duction on the structure of LOOP terms, and by ter- 
mination of the algorithms for subtype checking and 
computing least upper bounds. 

7 Discussion 

We have shown here how the ideas of [5] used to model 
typed functional OOP can be applied to LOOP, a state- 
based OOP language with decidable type-checking. We 
also explored the deficiencies that arise from the fact 
that subtyping is not inheritance, and showed how fixed- 
self typings may thus sometimes be preferable. The 
problem of OOP typing cannot be said to be completely 
solved, however. As the example in Section 3 illustrates, 
there is a battle being fought between inheritance and 
subtyping, and in LOOP the programmer is forced to 
take sides by taking a fixed or open view of self. What 
would be desirable is a solution that did not force this 
decision on the programmer. 

Ghelli presents another solution to the fixed/open 
“self” problem that always preserves subtyping between 
subclass and superclass objects, but at the expense of 
requiring redefinition of a method whenever the type 
changes, and doing dynamic dispatching based on the 
type information at run-time [ll]. See [8] for more dis- 
cussion of how the open-ended view of “self” relates to 
other approaches in the literature. 

Bruce and van Gent [4] have defined an imperative 
OOP language, TOIL, which is an imperative extension 
of TOOPL [2] (a decidability proof for type-checking of 
another variant of TOOPL is presented in [3]). TOIL 
and LOOP are closely related, since both are based on 
F-bounded quantification; here we outline some differ- 
ences. We interpret LOOP via translation to SooP, 
while TOIL is given semantics directly. The TOIL sub- 
typing rules do not allow for folding and unfolding of 
object types, and this means the fixed-self typings will 
not be possible in TOIL. On the other hand LOOP does 
not have the subtyping rule for objects types of TOIL 
(adopted in a restricted form from the system of [l]), 
so there are programs using open-ended “self-type” ty- 
pable in TOIL but not in LOOP; however the TOIL 
rule disallows negative occurrences of “self-type” in the 
supertype, which limits its applicability to infrequent 
cases. In LOOP the initial value of an instance variable 
may refer to “self,” and if a function is stored in an in- 
stance variable, this allows a form of method override in 
objects. TOIL on the other hand has a nil object, which 
is of every object type, but responds to every message 
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with an error. LOOP provides for multiple inheritance 
and nested class definitions; TOIL does not. 

There are several important language issues which are 
not addressed here. LOOP is monomorphic, even though 
it is translated to a polymorphic language. It would not 
be difficult to lift the F-bounded polymorphism of SOOP 
into LOOP (though preserving decidable type-checking 
may be more difficult). This extension could be desir- 
able for programming: as it stands, only the “self-type” 
can be open-ended, but it may also be necessary to al- 
low a method to take as parameter an open-ended object 
from some other hierarchy. Classes are not fully “first- 
class citizens”: we cannot write a function that takes 
an arbitrary class as argument and returns a class with 
some methods added. To achieve this, some notion of 
extensible record would need to be added to SOOP [17]. 
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