
Application of OOP Type Theory: State, Decidability, Integration

Jonathan Eifrig*t Scott Smith* Valery Trifonov’t Amy Zwaricot

Department of Computer Science, The Johns Hopkins University
{eifrig, Scott, trifonov, amy}@cs.jhu.edu

Abstract

Important strides toward developing expressive yet se-
mantically sound type systems for object-oriented pro-
gramming languages have recently been made by Cook,
Bruce, Mitchell, and others. This paper focusses on how
the theoretical work using F-bounded quantification
may be brought more into the realm of actual language
implementations while preserving rigorous soundness
properties. We simultaneously address three of the more
significant problems: adding a notion of global state,

proving type-checking is decidable, and integrating

the more widely implemented view that subclasses cor-
respond to subtypes with the F-bounded view.

1 Introduction

Developing expressive yet semantically sound type sys-
tems for object-oriented programming languages is a
well-known and difficult research problem. Many work-
able solutions are possible, but there has as of yet been
no universally accepted solution to the problem. To
frame the problem we desire a static type system that
preserves all of the classic features of (untyped) class-
based OOP, including treatment of two particularly dif-
ficult issues: binary methods and object subsumption.

Important strides toward solving this problem have
recently been made [8, 5, 2, 151. By using F-bounded
quantification, these researchers can capture the open-
ended nature of class definitions in the presence of in-
heritance: “self” refers not only to the current class
being defined, but also to any future extension of it by
subclassing. An important problem is to bring this work

*Partially supported by NSF grant CCR-9109070

tpartially supported by AFOSR grant F49620-93-1-0169

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyrfght notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
OOPSLA 94- lo/94 Portland, Ore on USA
CD 1994 ACM B O-89791-688-3194 0010..$3.50

more into the realm of sound language implementations;
that is the subject of this paper.

We address three problems. Nearly all previous se-
mantic work takes a functional view of objects; however,
state is of central importance to OOP and cannot be ig-
nored. Another problem is that an implementable lan-
guage requires decidable type checking. Some progress
has been made in this area for functional 00 languages
[3], but the problem is difficult and the most general
type systems may prove to be undecibible [16]. The final
problem we address is the integration of type systems
with different views of the type of “self.” We call the F-
bounded view of typing inheritance the open-self view,
and subtype-based inheritance found in languages such
as C++ the fixed-self view because the type of meth-
ods does not change upon inheritance. On the surface
the open-self interpretation appears to be superior since
it allows more class definitions to be successfully type-
checked. However, the fixed-self approach has the ad-
vantage of allowing all objects to be lifted up the inher-
itance hierarchy, a property that sometimes fails for the
open-self approach. Any object programmer knows this
object subsumption feature is very useful. There is then
a problem of how the advantages of both approaches
may be combined in one language.

This paper provides a solution to these three prob-
lems. We develop a provably sound interpretation of
an explicitly typed imperative object language, LOOP.

This language includes notation for explicitly typed
class definitions, subclassing, multiple inheritance, bi-
nary methods, protection of instance variables from out-
side access, dynamic creation of objects of a class, and
message send to “self” or other objects. Thus, the lan-
guage is similar on the surface to a “sugar free” version
of C++ or Object Pascal. The main improvement is
LOOP’S richer type system, which allows for typing of
class methods that take and return objects of an open-
ended “self-type.” Soundness of the type system and
decidability of type-checking are proved. We addition-
ally show how the fixed-self and open-self notions may
be combined, embedding fixed-self class definitions in
our open-self language as special cases.

16

Jum3 n::=OI 11 . . .

3ool3 b ::= true) false

Exp 3 e ::= v] n 1 b] pred(e) I succ(e>] iszero
] if e then e else e I fn 21 : r => e
1 e(e) I a 1 a.x 1 s.x:=e 1 e<-m 1 new e
1 class s : t super ui of ei

inst x:j : rJ = e3 meth mk : rk = ek

Typ 3 7 ::= t I Boo1 I Nat I r-4
I Obj (t>A4 / Class(t) (I;M)

] PreObjM] Self [t] (I;M)

I::= {x1:71,...,5,:7,)
Ad::= (ml:rl,...,m,:r,}

Figure 1: LOOP Syntax

The semantics of LOOP are defined by translation into
a typed imperative language, SOOP. We take a trans-
lational approach to semantics rather than the direct
approach because SOOP itself is a useful foundation for
various object coding ideas and is easier to understand
than the more complex object typing systems. Untyped
SOOP is the call-by-value lambda calculus extended with
records and references. The type system of SOOP in-

cludes records, subtyping, and F-bounded quantifica-
tion for the interpretation of inheritance. We give a col-
lection of type rules for SOOP and show the rules sound
with respect to an operational semantics: no run-time
type errors can occur.

To be clear, we do not address delegation-style OOP
here [15], nor do we consider having dynamic dispatch
based on type information known at run-time [II].

2 The LOOP Language

We begin our discussion by defining a representative
object-oriented programming language, LOOP (Little
Object-Oriented Programming language).

Identifiers of LOOP are divided into five sorts: w E
K rar are function parameters, s E K,,u are bound
class names, 21 E Ksuper are bound superclass names,

X E Kinst are instance variable names, and m E Km&
are method names. Furthermore, the metavariable a
will be used to range over K,,lf u ITsuper. Through-
out this paper, the “vector” notation Ai will be used
to indicate a comma-separated sequence of elements,

ranged over by the indicated index variable: u, of ei I??
ul of er,21, of e,.

The syntax of LOOP expressions and types is given in
Figure 1. Classes are created by extending a (possibly
empty) set of existing classes with additional instance

variables and methods. The expression

class s: t super u, of ei inst xj :r,! = e>

meth mk :rL = ez

extends the class(es) e, by adding the new instance vari-
ables and methods indicated. Within the body of the
class expression, the name s is bound and plays the role
of “self,” while the ui provide access to the parent class
definitions. Type information is explicitly given with
class definitions to facilitate type checking. t is the type
of “self”, and the ri and r: give the types of individual
instances and methods, respectively. Note that LOOP

does not provide for implicit inheritance of superclass
members; every method of a class must be explicitly
listed in its declaration. Thus, rnj : r = ui<-rnj denotes
that m3 is inherited from superclass ui. This serves to
resolve any ambiguities with multiple inheritance. The
current value of an instance variable is accessed by the
expression a. x, and updated by s .x : = e. Methods are
accessed by e<-m.

Terms of type Obj (t>A4 denote objects; the signa-
ture M specifies the “interface” of the object, listing the
names and types of the messages which the object rec-
ognizes. The type variable t is bound in Obj (t)M and
represents the type of “self” within the object’s inter-
face. Similarly, terms of type Class(t) (I; M) denote
classes; in particular, such terms generate (via the new
operation) objects of type Obj (t)M. PreObjM and
Self El (I; M) are used in type checking class expres-
sions, and will be discussed in detail in the presentation
of LOOP rules in Section 5. We make some syntactic
abbreviations to aid in program readability: let u = e’
in e stands for (fn 2, => e> (e’>, sequencing (er ; ez)
abbreviates (fn x => fn y => y) (er) (ez). We also
use e0 for the application of e to the “empty” object

new (class super inst meth) of type 1 “gf Obj (t>{}.
Before giving the semantics, we next discuss issues in-
volved in typing “self,” and in the process also give an
informal introduction to programming in LOOP.

3 Typing Self

The main complexity of typing object-oriented lan-
guages arises from the interplay of subtyping and in-
heritance. A first approximation to the typing of in-
heritance is the principle that inheritance is subtyping
and subclasses correspond to subtypes. This principle
is currently at the core of most of the commonly used
typed object-oriented programming languages, includ-
ing C++ and Object Pascal. However, problems arise
in the presence of methods that take and/or return ob-
jects of “self-type,” the type of the object containing

17

the method itself [8, 21.

There are two common views of how “self” should be
treated when typing a class expression. In one view,
its type is jixed and thus denotes an object of the cur-
rent class only. Alternatively, its type can be considered
open-ended, meaning it denotes an object created from
the current class or some future extension. As we shall
see, neither the fixed nor the open-ended view subsumes
the other, and the programmer may wish to have both
available and choose between the two.

To make this idea concrete, consider the example
LOOP program in Figure 2. We define a class Num,
with an instance variable value representing the value
of a number, and methods dec to decrease this value,
isZero to test whether it is zero, and diff to "destruc-
tively” compute the difference between self and an-
other Nun. Note that Num does not inherit from any
existing classes, as indicated by the empty super dec-
laration. The objects n and n’ are instances of Num,
created by the new operation. The class CNum extends
Num, adding the new variable cnt and method click,
and overriding Num’s isZero method. Within the body
of the new isZero implementation the inherited version
is accessed via number<-isZero.

What are the proper types to give to these classes
and objects? Let us denote by NumObj the type of Num

objects n and n ‘, Intuitively, their method dif f takes
a NumObj as argument, and its result is also a NumObj
Since the methods are the only visible features of an
object (cf. Section 2), NumObj should be

NumObj gf Obj(SelfType)

{dec: l+Nat, isZero: l-+Bool,

diff: SelfType-+SelfType)

The bound type variable Self Type refers to “the type of
the object itself” - and indeed by the rules of the LOOP

type system (formally presented in Section 5) if n is of
type NumObj then n<-diff is of type NumObj-+NumObj.

We now present the two views of typing “self” in
classes, first the open-ended view and then the fixed
view. All typings asserted are in fact provable in the
type system of LOOP, given in Section 5.

3.1 The open-ended-self typing

First, we consider what type the class expression Num

should be given in the open-ended view. In LOOP the
instance variables declared in a class definition are also
visible in the definitions of subclasses, hence the types
of these variables, along with the types of the methods,
define the type of a class expression. One possible type

let Num = class self : SelfType super

inst

value : Nat = 0

meth

dec : l-Nat =

fndummy: l=>

self.value:= pred(self.value),

isZero : l-+Bool =

fndummy: l=>

is-zero(self.value),

diff : i--h?- =

fn other : r =>

if self<-isZero then other

else if other<-isZero then self

else (

self<-deco;

other<-deco;

self<-diff(other))

in let n = new Num

in let n' = new Num

in let CNum = class self : SelfType

super
number of Num

inst

cnt : Nat = 0,

value : Nat = number.value

meth

click : l+Nat =

fndummy :l=>

self.cnt:= succ(self.cnt),

dec : l+Nat = number<-dec,

isZero : l+Bool =

fndummy :l=>

(self<-click(); number<-isZero(

diff : r+r = number<-diff

in let cn = new CNum

in let cn' = new CNum

. . .

Figure 2: Num and CNum Classes

18

to give Num in LOOP is 3.2 The fixed-self typing

This is not the only typing that may be given to the
example in LOOP. It is possible also to fif;z the type of
“self” to only contain fields of an object of the current
class. Taking this view, we can give the diff method
the type NumOb j -+NumOb j , and give the class expression
Num the type

FixNumClass “gf Class(SelfType)
({value: Nat);
(dec : l+Nat ,

isZero: l+Bool,
diff: NumObj+NumObj))

NumClass ‘gf Class(SelfType)
((value: Nat);
(dec: l+Nat, isZero: l+Bool,

diff: SelfType+SelfType))

(Note that under this typing, r in Figure 2 is Self Type.)
As alluded to at the beginning of this section, the
difficult question is the treatment of the type of the
binary method diff. Here we give it the type
Self Type+Self Type, but what exactly is Self Type?
The methods defined for Num objects may be inherited
in subsequent extensions of this class (subclasses), hence
the type system must ensure that these methods op-
erate properly even when applied to objects of these
subclasses. For this reason the object denoted by self
within the body of the class definition must be consid-
ered as generated by either the class being defined, or by
one of its descendants. Thus the type of self, referred
to via the type variable Self Type, is not known exactly
when type checking the class definition. All we know is
that self responds to the messages that may be sent
objects in any class extending Num objects, and these
may define additional methods. In LOOP we take this
open-ended view of SelfType: it is the type of ‘self” at
object creation time, and thus the object could contain
more methods via inheritance. According to the typing
rules of LOOP, the objects generated by this class via
new are of type NumOb j , as expected.

The subclass CNum can then be given the LOOP type

CNumClass “g’ Class(SelfType)
({value, cnt: Nat);
{click, dec: l-+Nat ,

isZero: l+Bool,
diff: SelfType+SelfType))

and the generated objects are then of type

CNumObj %f Obj (SelfType)
(click, dec: l-+Nat,

isZero: l+Bool,
diff: SelfType-+SelfType}

However, one consequence of this typing is the diff
method of CNum cannot be applied to an object of type
NumObj , because it does not have all the features of the
subclass and hence does not match the type of self.
Thus, we have chosen inheritance in favor of subtyping
in the open-ended case. We will consider this issue in
more detail below.

(Note that under this typing, r in Figure 2 is NumObj)
where the open-ended SelfType is never used. A Num
object generated using the FixNumClass typing for Num
has the type NumObj , the same as for NumClass.

The type of CNum must be

CFixNumClass ‘? Class (Self Type)
({value, cnt: Nat);
{click, dec: l+Nat,

isZero: l+Bool,
diff: NumObj+NumObj))

and the generated objects cn and cn’ are of type

CFixNumObj “gf Obj (SelfType)
{click, dec: l-+Nat,

isZero: l-+Bool,
diff: NumObj+NumObj)

Observe CFixNumObj is the same as NumObj except that
it has an extra click method; in particular the diff
methods have identical type. This means CFixNumObj
is a subtype of NumObj according to the type rules of
LOOP. In general, in the fixed-self view subclass objects
will always be subtypes of superclass objects, and so
inheritance is subtyping. Also, observe that this typing
would not allow diff to be overridden if the new diff
sent other a click message. The type of diff is fixed
at a point in the hierarchy. This is the first problem
with the fixed-self view: some forms of method override
are disallowed.

3.3 Inheritance vs subtyping

Consider the following two possible conclusions to the
example program:

(1) in (cn<-diff (cn’))<-clicko,

(2) in (cnc-diff (n>><-isZero

19

(1) is type-correct using the open-ended type for
self. In this case, dif f has type CNumObj +CNumObj ,
and cn) has type CNumOb j , so the application is sound
and the result is of type CNumObj and thus can respond
to a click message.

However, (1) will not typecheck using the fixed type
for self: there, dif f has type NumObj +NumObj and
cn’ has type CFixNumObj. Now, since CFixNumObj is a
subtype of NumObj (as mentioned above), cn’ also has
type NumObj, and hence cn<-diff (cn’> is well-typed.
Unfortunately, the result is of type NumObj , and thus
the click method of cn’ is lost.

In contrast, the opposite situation occurs in (2). Un-
der the open-ended typing of self, cn is of type CNumObj
so dif f has type CNumObj -+CNumObj. However, n is
only of type NumObj, not of type CNumObj, and thus
cn<-diff (n) is ill-typed. Clearly (2) type-checks in the
fixed-self view, since in this view inheritance is subtyp-
ing: the diff method of cn accepts arguments of type
NumOb j

3.4 Conclusions

What this example shows is that neither the pure fixed-
nor open-self typing scheme is completely adequate;
there is a tension between allowing more inheritance and
allowing more subtyping. We believe therefore it may
be best to let the programmer choose which scheme is
appropriate on a case-by-case basis. If a method only
t&es objects of the “self” type and is never overridden,
the fixed-self typing will always be adequate; the open-
ended typing can be used whenever no subsumption of
object types up the inheritance hierarchy is needed.

The fixed and open schemes are only two extreme
points of a continuum of options. It is possible to cre-
ate a class hierarchy that gives “self” initially an open-
ended type, but then at some point down the hierarchy
fixes it and keeps it fixed below that point. In the lower
portions of the hierarchy, objects may then be “lifted”
freely up the inheritance tree. In addition, a single class
type may contain multiple occurrences of “self-type”;
some can be fixed at this level while others remain open-
ended. In particular, it is possible to have positive oc-
currences of SelfType be open-ended and negative oc-
currences fixed, preserving some open-endedness and at
the same time conforming to the subclasses-generate-
subtypes principle.

The terms covariance and contravariance are some-
times used in the literature when discussing this topic
[ll]. The open-ended “self)l is a covariant view of
method argument types (upon subclassing they may be-
come objects with more methods), whereas the fixed-self

view is a contravatiant view (more precisely, an inuari-
ant view, the types do not change).

4 The SOOP Language

We define the meaning of LOOP programs in terms of
a lower-level “implementation” language SoOP (Seman-
tics for Object-Oriented Programming), a call-by-value
language which offers simple operations on records and
reference cells in addition to most of the standard PCF
constructs.

The syntax for SOOP values 2, E I/al, expressions e E
Exp, and types 8, r E Typ is presented below.

2, ::= x 1 n (6 1 Xx.e 1 (li=v,Il
e ::= v 1 e(e) 1 if e then e else e

1 is-zero (e) 1 succ (e) I pred (e)

1 C1,} 1 e.1 1 ref e 1 ! e I set (e, e)

8, 7 ::= Nat I Boo1 I t I T -> T’ 1 (li : ~~1

1 Q- Ref I ‘v’[t, < &I. T 1 pt. T

Here we let the metavariable z range over the countable
set of variables Var, 1 over a countable set of labels, n E
(0, 1, . . .} and b E {true, false}. The language includes
some PCF terms, record construction and selection, and
reference cells.

In addition to the basic types and type constructors
(including references) the type system of SOOP provides
polymorphic and recursive types. The metavariables t
and t, range over the countable set TVar of type vari-
ables. All labels of a record type must be distinct; two
record types are considered identical if they only differ
in the order of their label-type pairs. The type expres-
sion V[ti 5 e,]. r binds the type variables ti in each of
their upper bounds 19i as well as in the body r; this al-
lows a form of F-bounded polymorphism [5]. The type
variable t is bound in pt. r. By convention V and p have
lower precedence than the arrow. We use FTV(7) to
denote the set of free type variables of r.

The SOOP types are partially ordered by the subtyp-
ing relation 5, formalized by the system of rules in Fig-
ure 3. The subtyping system is an extension of the stan-
dard record subtyping [6] with recursive and F-bounded
polymorphic types. A constraint system C is a finite
map in TVar + Typ; in our proof rules for the subtyping
relation such functions serve as systems of assumptions
about the free type variables, mapping them to their re-
spective upper bounds. A type expression r is closed in
C ifFTV(r) C dam(C); C is consistent if C(t) is closed
in C for all t E dam(C). Note that the requirement for
consistency allows type variables to appear free in their
own bounds. The valid subtyping judgements are triples
written in the form C I- 7’ <_ 7” which for a consistent

20

(REFL)
-T is closed in C

CtT<T

(TRANS)
cl-r<7 c t 7’ 5 7”

c t r 2 7"

&AR)
t E dam(C)
c t t 5 c(t)

(FUN)

(RECORD)

c t 7; I 71 c t l-2 5 7-i
c t 71 -> 72 5 T; -> r;

C t rl < Ti for 1 5 i 5 m

T;+~ is closed in C for 1 I j 5 m’

C t {Ii : T,‘, l,+j : T~+Jl I Cli : 7-i)

(INST)
C t Ti 5 OOi

C t V[t; 5 ei]. 7 < 07
where o = [“/t,]

(FOLD)
pt. r is closed in C

c t [-/t]T 5 pt. 7

(UNFOLD)
pt. r is closed in C

c t pt. r 5 [““. T/t]7

Figure 3: Subtyping rules of SOOP.

C can be derived by the subtyping rules. Rule (INST)
makes a polymorphic type a subtype of the instances of
its body r when the types ri, replacing (by substitution
a) type variables t;, satisfy the subtyping relations spec-
ified by the constraints ti < 6Ji. The two rules (FOLD)
and (UNFOLD) establish the equivalence between a re-
cursive type and its unrolling with respect to subtyping.

Along with the standard proof rules for constants and
PCF primitives the type system of SOOP includes those
in Figure 4. In the typing rules, a type environment r

is a finite map in Var + Typ; it is closed in a constraint
system C if I’(z) is closed in C for each x E dom(I’).
The valid typing judgements derived by these rules are
of the form C; l? t e : r where C is consistent and P is
closed in C.

Due to space considerations the SOOP operational se-
mantics and type soundness proofs cannot be presented
in detail here; complete proofs may be found in [9]. Here
we must settle for a brief outline. We present semantics
of SOOP in the general framework of [lo, 141. The oper-
ational interpreter of the language is specified by binary
relations between SOOP terms in memory environments,
which represent the notion of computation.

A computation state (C, e) is a pair of a memory C E
Var + Val and an expression e. This represents the
complete state of the computation at any point in time.
The memory maps cell names to values assigned to these
cells. A single-step computation relation, -1, is then

(SUB)
C;l?te:: ct71-T’

C;r t e:+

(VA@
z E dam(r)
c;rta::ryz)

(Ass)
Cll[ti 5 Oil; rll[x : 7'1 t e : 7"

C; r F Xz. e : V[ti 5 Oil. 7’ -> 7”

(App)
c;rt el :7->7', C;rteez:7

C;Ptei(e2):7’

(RECORD)
c;rtm
- -

C;r I- (li=ei) : {li : 7i)

(SELECT)
C;lTte:CZ:7)

C;Pte.l:r

(REF)
C;Pte:r

C;Ptref e:r Ref

(DEREF)
C;I’te:rRef

C;Pt!e:r

(SET)
C;I’ t el : T Ref, C;l?te2:7

C;rtset(el, e2):7

Figure 4: Selected typing rules of SOOP.

defined on computation states, precisely capturing the
execution behavior of SOOP programs. The computation
relation t+* is the reflexive transitive closure of I+. A
closed computation state (C, e) is stuck if e $ Val and
there is no state (C’, e’) such that (C, e) I+ (2, e’); a
state gets stuck if ti* relates it to a stuck state. A state
(C, e) diverges if for every state (C’, e’), if (C, e) c)*
(C’, e’), then (2, e’) t-)1 (C”, e”) for some C” and e”.

Typing of computation states is defined as follows:
P t (C, e) : T if 0;P t e : T, and 0;I’ t C(z) : r, where
I’(s) = 7z Ref, for each 2 E dam(C).

Following [19] we establish soundness of the type sys-
tem of SOOP with respect to the computation relations
by proving that a subject reduction property holds for
this type system, and that the stuck states cannot be
given types. The first implies that the type of a compu-
tation state is preserved by the single-step computation
relation; together with the second this means that the
stuck states are unreachable from a typable initial state.

THEOREM 4.1 (SUBJECT REDUCTION) If
l? t (C, e) : r and (C, e) el (C’, e’), then there exists
I” such that P’ t (C’, e’) : r.

LEMMA 4.2 (STUCK STATES ARE NOT TYPABLE)
If P t (C, e) : r, then either e E Val, or there exists
a state (‘2, e’) such that (C, e) ~$1 (C’, e’).

21

THEOREM 4.3 (SOOP TYPE SOUNDNESS) If
l? t (C, e) : r, then either (C, e) diverges, or (C, e) c)’
(C’, U) and I” t (C’, w) : r for some l?.

In comparison with proofs of subject reduction for
the X-calculus [18] and ML-style polymorphic languages
[19], the proof for the SOOP type system is complicated
by the relatively rich subtyping relation. The only ana-
log of subtyping in the ML type system is that a term
with a polymorphic type scheme can also be assigned
each type produced by an instantiation of the type vari-
ables of the scheme. This allows a relatively straight-
forward proof of subject reduction for the P-conversion
rewriting rules. In contrast the instantiation of a poly-
morphic type in SOOP is only correct if the substituted
types satisfy certain subtyping relations; as a result the
typing derivation of the ,&contractum of a term e can
be constructed only after a significant transformation of
the typing derivation of e. Further problems arise from
the non-trivial subtyping on some basic SOOP types.

The type system of SOOP is powerful enough to al-
low for a type-correct translation of LOOP objects (and
more); yet it was deliberately weakened by omiting cer-
tain proof rules which would have notably complicated
the proof of its soundness, or the LOOP type checking al-
gorithm (Section 6). Examples are rules for distributing
quantifiers over type constructors, and the more sophis-
ticated subtyping relation on recursive types of [l].

5 LOOP Type Soundness

In this section we present the LOOP type system, and
show how LOOP terms and types may be given meaning
by translation into SOOP, the result being LOOP pro-
grams experience no “message not understood” errors
upon execution.

5.1 The LOOP Type System

The syntax of LOOP types was given in Figure 1
of Section 2. We take up the discussion of LOOP

types from that point. In addition to object and
class types Obj (t)M and Class(t) (I; M) discussed
previously, some additional forms of object and class
type are needed for bookkeeping purposes. The type
Self [tl (I;M) is the type of a class viewed from in-
side a class definition; there are in fact no terms of this
type, since this internal view cannot escape. The inter-
nal view given by Self [tl (1;M) exposes the instance
variables, allowing them to be read and set. PreObj M is
the view of what objects of the class will look like from
the outside; it is Self [tl (I; MI with the instance vari-
ables removed. In general, the “self-type” t may occur

We4 (Tkans)
Ch<r', 7' 5 7"

cl-717 c t 7 < 7"

t E dam(C)
(Hyp) c t t 5 c(t) (Fun)

c t 7-i < Tl) 72 I 7-4
c t 71 -+ 7i I r; -+ r;

(PreObj)
C I- M(m) 2 M’(m), Vm E dom(M’)

C t PreObjM < PreObjM’

(Fold)
C /- PreObj M[Obj (t> M/t] 5 Obj (t) M

I (Unfold)
c t Obj (t)M 5 PreObjM[Obj (t)M/t]

Figure 5: LOOP subtyping rules

free in PreObjM and Self [tl (I; M), and in the latter
expression t is not bound. Such free type variables are
bound by type constraints of the form t 2 PreObjM.

A type constraint system C consists of a sequence of
such type constraints; it may equivalently be viewed as
a mapping from type variables to their corresponding
bounds. Figure 5 axiomatizes the subtyping relation
between LOOP types. Object and pre-object types can
be compared via the rules (PreObj), (Fold), and (Un-
fold). Two object types are compared by first using
(Fold)/(Unfold) to unwind them, and then (PreObj) to
compare them componentwise. Thus PreObjM types in
fact have two purposes, one alluded to above for typing
classes, and another for bookkeeping purposes to allow
object types to be compared.

The object typing rules for LOOP are listed in Fig-
ure 6. Rules for functions, pred, succ and iszero are

standard and are omitted for brevity. The (Class) rule is
the most important rule. When type checking the bod-
ies of class members (instances in the third antecedent
of the rule, methods in the fourth), the final type of the
objects that incorporate these definitions is not known,
since the class currently being type-checked may have
been extended by inheritance. As discussed in Section
3, we thus want to view the “self-type” here as open-
ended and parametric. For this we introduce a new type
variable t as the “self-type;” all that is known about t is
that it must satisfy the constraint t 5 PreObjM, i.e. it
contains at least the methods M. The class name s can
be assumed to have type Self [tl (I; M). Recall that t
is not bound in this expression, so t occuring in M are
constrained by the bound t < PreObjM. This means
the self-references in M (and in I) are to the open-ended
“self.” A similar property holds for the superclass types.
The first antecedent forces the superclasses to have the
types asserted for them, and the second one requires the
class to be a parametric extension of each superclass.

22

(Sub)
C;r t e : 7, Cl-717’

(Self)
r(s) = Self [tl (1;M) (Mesg) C;I’ I- e : PreObjM

C;r t e : 7’ c;r t s : t C;r t ec-m : M(m)

(Vu)
u E d07qr)

(Super)
r(q = Self RI (I; MI (Inst) r(a) = SelfCtlU;M)

c;r t- 2, : r(g C;I’ I- u : PreObjM qr t- a.x : I(Z)

(Cond) C;r t el : Bool, e2 : 7, es : 7 C;I’ t e : Class(t) (I; M)
I’(s) = Self Ctl (I; Ml

(New)
C;r t if el then e2 else es : r C;I’ t new e : Obj (t) M

(Assn) c;r t e : W

c;r I- s.x:=e : I(X)

C;l? t ei : Class(ti) (I, ; Mz>

C’ k t 5 PreObjMi[t/ti] I” = (r, s : Self [tl (I; M), ui : (Self [ti] (I,; Mi))[t/ti])

cy t e; : I(xj) where C’ = (C, t 5 PreObjM)

C’;I” t ei : M(mk)
I(x) = L(x)[t/tJ, v’s E dOrn(li)

(Class)

C;I’ t class s : t super ui of ei inst xi : I(xj) = e[, meth mk : M(mk) = ei : Class(t) (I; M)

Figure 6: Selected LOOP Type Rules

Rules (Self) and (Super) type the uses of class and
superclass names in the class definition. Note the rules
are slightly different. (Self) gives the type t to the class
name s; this type variable is constrained within C by
t < PreObjM and thus s is also of type PreObj M. The
weaker type PreOb j M is not given to s in the rule as s
may be returned by a method; t is the open-ended %eIf”
that would be returned, not merely an object containing
the methods defined in this class alone. (New) is the
obvious rule for typing object creation. When a new
object is created, its instance variables are hidden, and
the “self-type” t becomes fixed.

5.2 Operational Semantics

The semantics of LOOP is defined via a translation of
LOOP terms into SOOP terms; this translation is given
in Figure 7. In many encodings of object-oriented lan-
guages [7, 131 an object is defined as a record formed
by taking a fixed point of a class function, a function
mapping records to records. This results in a recur-
sive record, and the methods of the object-fields of the
record-gain access to its “self” by unrolling the fixed
point expression. In purely functional languages this en-
coding produces good results, but the situation changes
with the introduct,ion of effects and call-by-value seman-
tics. The associated fixed point combinator is then only
well-defined on functionals, but as pointed out for in-
stance in [8], classes do not correspond to functionals.
Further complications arise if the language is to support
mutable instance variables belonging to objects-in the

straightforward implementations their allocation takes
place either “too early” (they are shared by all objects
of the class) or “too late” (new cells are being allocated
at each access to the object).

Several solutions with various limitations have been
proposed; the reader is referred to [12,4] and the discus-
sions in [9] for details. Our approach avoids these lim-
itations by defining a fixed point combinator in terms
of mutable cells in the spirit of Landin. A first approx-
imation to this is

Y, = xf.let r = ref null in (set (T, f(r)); ! T),

where null is some “dummy” initial value. The class
function f now maps a cell containing a record to a
record, and this cell will be assigned the value of the
fixed point (the object being created). This combina-
tor evaluates f(r) only once before “tying the knot” on

the object, therefore it can be applied to class functions
with side effects, in particular allocating mutable cells,
to obtain objects with the intuitively expected behav-
ior. Another advantage of this encoding is that “self”
may be used in instance variable initializations. This al-
lows for a form of method override in objects (not just
classes): a method stored in an instance variable (as a
function) may be overridden by setting the variable to
a different function.

However, this definition of Y, is lacking: the class
function f takes a reference cell as argument, and there
is no nontrivial subtyping on reference cells in SOOP.

This means inheritance from classes would not type-

23

check. More precisely, when a class function f is passed
a reference r to the future object, and f inherits features
from a superclass defined by f’, f must apply f’ to T
(since the “self” of the object must be shared between
inherited and new methods). However, since a reference
is not a subtype of any other reference type, either f and
f’ have the same type (false if f extends f’), or one of
f(r) and f’(r) must not be type-correct. In either case,
inheritance will not work.

There is not an inherent need for general references
here; the cell is set only once, and after that it is read-
only. So, the idea is to define a “cell accessor function”
of type 0 -> C. . .) that when applied will return the re-
sult in the cell. f then takes this cell accessor function
as argument, and will thus not have a Ref type argu-
ment. The following fixed-point combinator achieves
this effect.

Y,‘= Xf. let T = ref (Xx. Cl) in (set (T, f(Ax. (! r)(x)));! T)

where fl = (AZ. x(x))(Xx. x(x)) is a diverging computa-
tion. The initial value placed in the cell is AZ. R since
it has all function types and thus imposes no type con-
straint on the cell.

Let us now examine the encoding of Figure 7 more
carefully. For uniformity, we interpret classes as func-
tions from frozen records C) -> I.. .) to frozen records,
and objects as frozen records. These records in turn
have two fields, inst which is a record containing the in-
stance variables, and meth a record containing the meth-
ods. The new operation then applies Y,l to the class to
make an object. Note the instance variables are not
hidden in SOOP. We model instance variable hiding by
crippling the LOOP type system to not allow typing of
access to the instance variables of objects by removing
them from object types.

Each class function is a wrapper around the class
functions of its superclasses. Within its body, the func-
tion first applies its superclass functions to its own cell
accessor; the resulting record holds the instance vari-
ables and methods defined by the superclass whose
%elf” name has been bound to the subclass’s cell ac-
cessor. These inherited values are then available for use
in the body of methods and instances of the child class.

It is important to recognize the implications of this
inheritance mechanism. Each class function will be ap-
plied to several different kinds of cell accessors, one for
each of its subclasses. This fact has important conse-
quences in the LOOP type system, and motivates the
F-bounded polymorphism of SOOP.

The translation of LOOP types to SOOP types appears
in figure 7. Many of the properties of the type transla-
tion were sketched above. The most important feature

Terms:

[v]=v

[n]=n

[b] = b

[succ(e>] = succ ([e])

[pred(e)] = pred (Fe])

[iszero]I = iszero (I[e])

[if e then el else e2] = if [en then [el] else [e2]

[fn v : 7 => e 1 = AU. [e]

lhk2) n = [41([e2n)
[a] = a

I[a.x 1 = ! (a(Ct).inst.x)

6 s.z:=e] = set (s({>).inst.x, [[en)

[ec-m] = [e](C)).meth.m

[new e 1 = Yi([e])

[class s : t super ui of ei
inst z 3 : 3-: = e: meth mk : r[= eln

As. let ui = [eJJ(s) in

(Xx. Xy. x)(iinst = Cxj = ref I[+, meth = (mk = [$]I>)

Types:
[Boo1] = BOOI

I[Nat] = Nat

I[T-hT’ 1 = iTn -> [+I

[[t] = Cl -> Cmeth : t)

[PreObjM 1 = Cl -> (meth : [M])

[Obj (t> M 1 = Cl -> Cmeth : pt. [M]>

[Class(t) (I; Ml] = V[t 5 [M]].

Wl~ 0 -’ (Wl~ IPW)

Instance Variables and Methods:

[67) 1 = cxi : iTin Ref)

[imi:7,) 1 = Cm, : ITin>

Constraints:

[t I: PreObjM 1 = t 5 14

Hypotheses:

[v: T 1 = v : I[~]
[s: sdfCtl(I;M>] = S: {(([Ij,t))
[u : Self Ctl (I; M)]I = u : (([Ij, I[Mj))

Judgements:

where

((~1, TM)) “Gf I) -> Gnst : 71, meth : TM)

Figure 7: Translation of LOOP to SOOP

24

not discussed is how the open-ended “self-type” may be
represented by F-bounded quantification. Classes are
functions from frozen records to frozen records. The
open-endedness is found in the record passed as a pa-
rameter, for this may contain more methods than the
current class defines. So, we use F-bounded quantifi-
cation to specify that t is an arbitrary record with at
least the methods M. When t occurs free in M, this
will allow the methods to have open-ended notions of
“self-type.”

5.3 Type Soundness of LOOP

We now sketch how type soundness may be proven for
LOOP. Proofs are omitted for lack of space; see [9] for
complete proofs. The language studied there is an un-
typed version of LOOP and since the translation ignores
explicit type information, proofs are unchanged. The
translation of LOOP type expressions and judgements
into SOOP judgements appears in Figure 7.

The following Lemma shows the translation of each
LOOP rule is a derived rule of SOOP.

LEMMA 5.1 The translation of the conclusion of each
LOOP rule is provable in SOOP from the translations of
the antecedents of the rule.

From this, a simple induction argument allows us to
conclude the correctness of LOOP typing derivations.

THEOREM 5.2 (LOOP TYPING) If C;l? k e : r is prov-
able in LOOP, then [CJ;[l?n k I[e]l : [[rl is provable in
SOOP.

DEFINITION 5.3 A LOOP program e becomes stuck if
its corresponding SOOP translation [[en becomes stuck
upon computing.

In particular, note that a “message not understood”
error in LOOP corresponds to an attempt to access a
nonexistent field of a record in SOOP. Such attempts
lead to stuck SOOP computation states, and thus LOOP
programs that have such translations are considered er-
roneous under this definition. From Theorem 5.2 and
Theorem 4.3, the soundness of SOOP, we may conclude
that no type-correct LOOP programs may become stuck.

THEOREM 5.4 (SOUNDNESS OF LOOP TYPING)
Typable LOOP programs do not become stuck.

6 Decidability of LOOP Type Checking

We may establish the decidability of type-checking for
LOOP. This construction is carried out directly in the
LOOP type system, because SOOP type-checking is un-
decidable.

(HYP’)
c !- C(t) 5 T

Ck-t<r (fin)

(PreObj)
C t- M(m) 5 M’(m), Vm E dom(M’)

C k PreObjM 5 PreObjM’

(Fold’)
C t- PreObjM’ 5 PreObjM[Obj (t)M/t]

C l- PreObjM’ 5 Obj (t>M

(Unfold’)
C I- PreObjM[Obj (t>M/t] 5 T

Cl-Obj(t)MIr

Figure 8: Alternative axiomatization of LOOP subtyping

6.1 Decidability of LOOP Subtyping

The LOOP subtyping relation, axiomatized by the rules
listed in Figure 5, has a straightforward decision proce-
dure. To show this, we first introduce an alternative set
of LOOP subtyping rules, listed in Figure 8.

LEMMA 6.1 The set of rules in Figure 8 is equivalent to
those in Figure 5.

PROOF: Each alternate form of a rule is derivable
from its original version and rule (Reff). Conversely,
each original rule is derivable from its alternate form
and rule (nans). 0

Thus, both sets of rules define the same subtyping
relation. For the remainder of this section, we shall use
the alternate set of rules in Figure 8.

LEMMA 6.2 (HEAD FORMS) If C I- 71 5 r2 is provable,
then it has one of the following forms:

Cl-T<T
C k t < PreObjM
C t- t 5 Obj(t’)M

c k Tl+-r2 5 r;+r;
C k PreObjM 5 PreObjM’
C t PreObjM < Obj (t’>M’

C k Obj (t)M 5 PreObjM’
C I- Obj (t)M 5 Obj (t’)M’

PROOF: By induction on subtyping proofs. 0

LEMMA 6.3 If C I- r 5 7’ is provable with a single use of
(Tram) as the last rule in the proof, then it is provable
without using (Trans).

PROOF: By induction on the depth of proof trees.
If the final rule used in the proof is (nans), then the
judgement is proven from judgements C l- r < T”, C k

25

T” < r’, and (Trans), for some type 7”. The case r =
Obj (t)M, 7’ = Obj (t’)M’ will be shown to illustrate
the general proof technique.

If the proof of C I- Obj (t> M 5 Obj (t’) M’ has an in-
stance of (Y3ans) as its final proof step, the antecedents
of this rule have the form C t Obj (t)M 5 7” and C l-
T” 5 Obj (t’)M’. A simple induction argument shows
that 7” must be either Obj (t”)M” or PreObjM”. Con-
sidering each case:

(i) If 7-l’ is PreObjM”, then the antecedent judge-
ments must have been proven via rules (Unfold’)
and (Fold’), respectively. The antecedents of these
rules in turn must have been proven via rule (Pre-
Obj). Thus, for each m E dom(M’), we have
proofs of C k M(m)[Obj(t)M/t] 5 M”(m) and
C I- M”(m) < M’(m)[Obj(t’)M’/t’]. These can
be combined by rule (Trans); however, the result-
ing proofs are shorter than the original, and hence
these uses of (Trans) can be eliminated by induc-
tion. From these proofs we can construct a new
proof of C t Obj (t)M 5 Obj (t’>M’ by rules (Pre-

Obj), (Fold’) and (Unfold’).

(ii) 7” is Ob j (t”) M”. Then antecedents are proven via
the (Fold’) and (Unfold’) rules, and the proof pro-
ceeds in the same way as above. 0

A simple induction argument on proofs then proves:

THEOREM 6.4 (TRANSITIVITY ELIMINATION) IfC t- r
5 7’ is provable, then it is provable without the use of
(Trans).

Therefore, (Trans) may be eliminated from the sys-
tem of subtyping rules without changing the subtyping
relation axiomatized by the rules. Furthermore, the top-
level type constructors of the conclusions of the rules are
unique (ignoring rule (Red)); for every judgement C k
T < 7’ if r # 7’ there is at most one rule instance that
has this judgement as its conclusion.

DEFINITION 6.5 A canonical proof of judgement C t- r
5 r’ is a proof whose final rule is:

(i) (ReA), if r = 7’
(ii) not (TYans), if 7 # r’, and whose antecedents are

canonical proofs.

LEMMA 6.6 (CANONICAL SUBTYPING) If C l- r 5 r’
is provable, it has a unique canonical proof that does
not “loop” ; i.e., it does not contain a subproof with
conclusion C t 7 5 7’.

PROOF: If C k T 5 7’ is provable, then by Theo-
rem 6.4 it has a proof that does not use rule (Trans).

The proof then proceeds by induction on the length of
these (Dans)-free proofs.

If r = r’, then C I- r 5 r’ has a unique canoni-
cal proof via rule (Red). Otherwise, its final rule is
not (IYarrs), and this rule has antecedents with unique
canonical proofs by induction. This proof can be shown
to be unique by case analysis on the allowable subtyping
judgement forms of Lemma 6.2.

Obviously, such canonical proofs cannot have an an-
tecedent of C t T 5 r’, for the proof of this would yield
a different, shorter canonical proof of C t- r < T’. 0

DEFINITION 6.7 If r is a type and C a type constraint
system, S(r, C), the subterm closure of r and C, is the
least set of types such that:

{ii ‘,fS!t%) then C(t) E S(C) 11 1
(iii) if ri+rz: S(:, C), then {ri,r:] c S(r,C)
(iv) if PreObjME S(r,C), then M(m) E S(T,C)

for each m E dom(M)

(v) if Obj (t)ME S(T, C), then
PreObjM[Obj (t)M/t]E S(T, C).

LEMMA 6.8 For any type constraint system C:

(i) S(C(t), C) & S(t, C), for each t E dam(C).
(ii) S(7, C) U S(T’, C) C_ S(7--4, C).

(iii) S(M(m), C) C S(PreObjM, C), Vm E dm(M).
(iv) S(PreObjM[Obj (t>M/t], C) C_ S(Obj (t)M, C).

PROOF: By induction on the definition of S(r, C). •I

LEMMA 6.9 For any type r and type constraint system
C, S(7,C) is finite.

PROOF: The definition of S(r,C) can be viewed
as an algorithm for generating its elements. We may
extend the language of types to include a “marked”
equivalent of the Obj (t)M type, Obj (t)M, and change
the last case in the definition of S(r,C) to unroll
Obj (t)M to PreObjM[x(t)M/t]. Since the marked
type Obj (t) M is not unrolled, this defines a new set
S’(r, C) which can be shown to be finite by induction
on the size of r. Furthermore, S(r, C) is the image
of S’(r, C) under the “unmarking” operation. Thus,
S(r,C) must be finite as well. 0

LEMMA 6.10 Any proof of C t- r 5 r’ uses only an-
tecedents of the form C t ri < 72 where {ri, ~2) E
S(7, C) u S(T’, C).

PROOF: By induction on proofs, inspection of the
proof rules, and Lemma 6.8. 0

THEOREM 6.11 (DECIDABLE SUBTYPING) It is decid-
able whether or not any subtyping judgement C l- T 5
r’ has a proof.

26

PROOF: Lemma 6.6 implies a semi-decision procedure
for the subtyping relation; if C t- r 5 7’ is provable, the
procedure outlined will generate a proof of it. Other-
wise, for some antecedent judgement J, the procedure
loops, generating J again as a subgoal, by Lemmas 6.10
and 6.9. But by Lemma 6.6, J therefore has no canon-
ical proof. Thus, the original judgement must be un-
provable. 0

6.2 Minimal Types of LOOP terms

To make the type-checking system of LOOP practical,
we only require that the program contains type infor-
mation about each identifier, variable and method; the
system has to infer the rest in a type-correct program,
and reject type-incorrect ones. In some cases however a
term e can be proved to have more than one type (e.g.
using the (Sub) typing rule); therefore claiming to have
an inference system makes sense only if it is able to find
a typing for e from which all others follow, i.e. a type
which is smaller than all other possible types for e.

DEFINITION 6.12 (MINIMAL TYPES) 7 is a minimal
type for a LOOP term e in environment C; P if C; l? k e :
r and for each type r’, if C; I’ 1 e : r’, then C t r < 7’.

Proving the existence of a minimal type for every ty-
pable LOOP term is therefore a prerequisite to proving
the correctness of the type-checking algorithm. As it
turns out, computing the minimal type is non-trivial
only in the case of a conditional expression: the type r
of the result must be the least type larger than the (min-
imal) types ri and 72 of the terms in both branches, i.e.
it must be their least upper bound. Since the subtyping
relation is only defined with respect to a constraint sys-
tem C, so is the lub; it is a partial function on pairs of
type terms - some pairs (Nat and Bool, for instance)
have no common upper bound.

To prove that the lub exists whenever the types have
an upper bound, we first give an algorithm for comput-
ing it (Figure 9). For brevity it is presented in the form
of a nondeterministic system of rules which makes use
of the symmetry of the lub to define it as a function on
2-element sets of types (identity on types is considered
up to renaming of bound type variables). The ambigu-
ity is harmless because of the Church-Rosser property
exhibited by the system: if two rules can be applied, the
result is independent of the order of application (this sit-
uation only arises when each of the two types is either a
type variable or an object type). The additional param-
eters Sv and S,, are provided in order to guarantee the
termination of the algorithm (the argument follows in
the steps of the proof of termination of the algorithm for

subtype checking presented in Section 6.1). The compu-
tation fails if the arguments do not match the patterns
in any rule, or if a subgoal (invocation of LUB or GLB)
fails.

LEMMA 6.13 Given a constraint system C and two
types ri and 72, if ri Vc 72 = r, then r is a least upper
bound of ri and 72 with respect to C, and if ri VC 3-2

fails, then ri and rs have no upper bounds.

PROOF: We prove the following proposition about
the function LUB:

If LUB ({T~,Q}, Sv, S,) = 7, then 7
is a least upper bound of ri and 72; if
LUB ({71,72}, Sv, S,) fails, then for every r
such that C k ri < r and C t 72 5 r, for every
pair of proofs of these judgements there exist
types ri, ri and T’ such that { ri, ri} E Sv, and
C l- ri 5 r’ and C t ri < r’ are intermediate
steps of the respective proofs

(and simultaneously the analogous statement about
GLB). The proof proceeds by induction with respect to
the metric we used to demonstrate termination of these
algorithms. We illustrate the argument in the following
cases:
CASE r1 = t and r2 # t:

If {t,n) $ Sv and LUB ({C(t),n}, SC, S,,) = T,
then by inductive hypothesis C l- C(t) < r and C t
72 5 r; by an application of (Hyp’) from the former we
obtain C t- t 5 r, i.e. r is an upper bound of t and r2.
Suppose that 7’ is also their upper bound. The proof
of C I- t 5 7’ may not result from an application of
(Reff), since this implies that C k 72 5 t, which (by
Lemma 6.2) is only possible if 72 = t, contradicting our
assumption. Hence C k t 5 r’ is proved by an instance
of (Hyp’), and therefore we must have a proof of the
antecedent of this rule, namely C k C(t) 5 7’. But
then C l- r 5 r’ by the inductive hypothesis.

Consider the case when {t, 72) $ SV and
LUB ({C(t),Tz}, Sb, SA) has failed. Suppose t and
TZ have an upper bound r, and consider any two proofs
of their relations. By the same argument as above every
proof of C t t 5 r contains a proof of C t C(t) < T,

and by inductive hypothesis we have some ri, r. and r’
such that {ri, ri} E SL and the judgements C I- r{ 5 7’
and C k ri 5 T’ appear in the respective proofs of
C t- C(t) 5 r and C l- 7-s < 7. It now only remains to
be shown that the case of ri = t and ri = rs is impos-
sible (and therefore {ri, rJ} E Sv). Indeed, if it was, it
would mean that there is no pair of shortest proofs that
r is an upper bound or t and 72 - since every such pair
contains subproofs (at least one of them shorter) of the

27

71 vc72 = LUB ({71,72}, 0, 0)
where

LUB ({7-1,72}, Sv, SA) =
if q = ~2, then rr, else if {rr,r2} $! Sv, then

LUB ({C(tl,722), X,, s/d, ifq =t
LUB ({PreObjM[rr/t],r2}, SC, S,), if 71 = Obj (t)M
PreOb j M, if q = PreObjMr, r2 = PreObjM2

where &m(M) = dom(Mr) n dom(Mz)
and M(m) = LUB ({N(m),&(m)}, Sb, SA)

for all m E &m(M)
GLB ({T~,T;}, Sb, S,,)+LUB ({T:,T~}, SL, S,), if q = ~:+r:, ~2 = rl+ri

where SL = Sv U {{rr, 72))
and

GLB ((71,72}, sv, SA) =
if ~1 = ~2, then rr, else if {rr,7-2) $ S,,, then

4 if rr = t and C k t 5 7-2
GLB ({PreObjM[rr/t], rz}, Sv, Sk), if ~1 = Obj (t)M
PreObjM, if rr = PreObjMr, 72 = PreObjMz

where &m(M) = dom(Mr) U dom(Mz),
M(m) = Ml(m) for all m E dom(Mr) \ dom(Mz),
M(m) = M2(m) for all m E dom(M2) \ dom(Mr),

and M(m) = GLB ({Ml(m),Mz(m)), SV, %I
for all m E dom(Ml) n dom(M2)

LUB ({~i,~i}, Sv, SA)-+GLB ({T~,T[}, Sv, Si), if rr = ri+ri’, rz = ri+rl
where Sk = Sr\ U {{rr, ~2))

Type CC, r; v) = r(v), if z1 E dam(r)
Type (c, r; n) = Nat
Type(C, r; b)=B001

Type (C, r; b(e)) = Nat, if Type (C, I?; e) = Nat, d E {sucqpred}
Type (C, r; is-zero(e)) = Bool, if Type (C, r; e) = Nat

Type (C, r; if e then er else es) = Type (C, I?; er) VC Type (C, I?; e2), if Type (C, r; e) = Boo1
Type (C, I?; fn Y : r => e) = r+Type (C, (r, v : 7); e)

Type (C, r; e(e’)) = r, if Type (C, r; e) = T/---H- and C k Type (C, J?; e’) < 7’

Type (C, F; S) = t, if r+) = Self Ctl U;M)
Type (C, r; u) = PreObjM, if r(zl) = Self Ctl U;M)

Type (C, I?; a.~) = I(X), if rya) = Self Ctl (I; MI
Type (C, r; s.s:=e) = I(X), if I’(s) = Self Ctl (I;M) and C I- Type (C, I?; e) 5 I(z)

Type (C, r; sc-m) = M(m), if C(Type (C, I?; s)) = PreObjM
Type (C, I?; e<-m) = M(m), if Type (C, r; e) = PreObj M

Type (C, I?; new e) = Obj 0) M, if Type (C, I?; e) = Class(t) (I; Ml

Type (C, r; class s : t super ui of e; inst Xj : ri =ei meth mk : r[=el,l)

= Class(t) (I; M), where I = Cs,I, M = C-1

if Type (C, I?; ei) = Class(&) (Ii; Md,

C’ k Type (Cl, I?; e:) 5 T;, C’ I- Type (C’, P; e’J 5 $,

C’ I- t 5 PreObjMi[t/t,], and I(x) = I%(x)[t/ti] ‘dx E dom(l,)
where C’ = (C, t < PreObjM)

I? = (I?, s : Self [tl (I;M), ui : (Self [&I (I,; M,))[t/tJ)

Figure 9: Algorithms for computing the lub of two types and for type-checking LOOP terms

28

same fact about some 7’ - and hence no (finite) proofs
exist.

In the remaining case of {t, r2} E Sv the statement
follows trivially (for T; = t, ~4 = 772, and r’ = r).

CASE ri = PreObjMi and 72 = PreObjMz:
By Lemma 6.2 an upper bound of these may only be

an object or a pre-object type; but since proving that
a pre-object type is a subtype of an object type is only
possible via the (Fold’) rule, we may focus on upper
bounds in pre-object form.

It is easy to see that PreObjM (as defined in the cor-
responding rule of Figure 9), when it exists, is an upper
bound of ri and ~2. Since any upper bound must de-
fine the fields in dam(M), and the types of these fields
are upper bounds of those of MI and MS (so that the
antecedents of the only applicable rule (PreObj) are sat-
isfied), it immediately follows (again by (PreObj) and
inductive hypothesis) that any upper bound is a super-
type of PreObjM. Conversely, if one of the subgoals
LUB ({Ml(m), Mz(m)}, SL, S,) fails, the second part
of the proposition follows by an argument similar to the
one given in the previous case.

The statement of the Lemma is a corollary of this
proposition and the definition of ri VC ~2. 0

We are now ready to present a type-checking algo-
rithm for LOOP (Figure 9) in the form of a function
Type (C, P; e) which produces the minimal type of the
term e in environment C; r, if it exists, and is undefined
otherwise.

THEOREM 6.14 (DECIDABLE TYPE CHECKING)
The LOOP typing judgement C; I t- e : r is prov-
able if and only if Type (C, l?; e) is defined, and
C i- Type (C, I’; e) 5 7.

PROOF: By structural induction on LOOP terms.
Because of the lack of non-trivial subtyping on class
types, there exists at most one type for each class term
(all type information for a class is explicit in the syntax);
the algorithm only verifies that the class expression is
type correct. As an example we present the proof in the
case of a conditional expression.

Let e = if e’ then ei else e2. An inspection
of the typing rules (Figure 6) shows that the only
way to prove C;r k e : r is by an application of
(Cond) (followed possibly by applications of (Sub)).
Hence the antecedents of (Cond) must also be provable,
and by the inductive hypothesis Type (C, l?; ei) and
Type (C, P; e2) produce minimal types ri and 7-2 of ei
and e2 respectively. Therefore the type in the conclu-
sion of (Cond) is an upper bound of 71 and ~2, and by
Lemma 6.13 it is a supertype of 71 VC r2.

The converse part (correctness of the inferred type)
follows trivially. 0

Termination of the algorithm follows similarly by in-
duction on the structure of LOOP terms, and by ter-
mination of the algorithms for subtype checking and
computing least upper bounds.

7 Discussion

We have shown here how the ideas of [5] used to model
typed functional OOP can be applied to LOOP, a state-
based OOP language with decidable type-checking. We
also explored the deficiencies that arise from the fact
that subtyping is not inheritance, and showed how fixed-
self typings may thus sometimes be preferable. The
problem of OOP typing cannot be said to be completely
solved, however. As the example in Section 3 illustrates,
there is a battle being fought between inheritance and
subtyping, and in LOOP the programmer is forced to
take sides by taking a fixed or open view of self. What
would be desirable is a solution that did not force this
decision on the programmer.

Ghelli presents another solution to the fixed/open
“self” problem that always preserves subtyping between
subclass and superclass objects, but at the expense of
requiring redefinition of a method whenever the type
changes, and doing dynamic dispatching based on the
type information at run-time [ll]. See [8] for more dis-
cussion of how the open-ended view of “self” relates to
other approaches in the literature.

Bruce and van Gent [4] have defined an imperative
OOP language, TOIL, which is an imperative extension
of TOOPL [2] (a decidability proof for type-checking of
another variant of TOOPL is presented in [3]). TOIL
and LOOP are closely related, since both are based on
F-bounded quantification; here we outline some differ-
ences. We interpret LOOP via translation to SooP,
while TOIL is given semantics directly. The TOIL sub-
typing rules do not allow for folding and unfolding of
object types, and this means the fixed-self typings will
not be possible in TOIL. On the other hand LOOP does
not have the subtyping rule for objects types of TOIL
(adopted in a restricted form from the system of [l]),
so there are programs using open-ended “self-type” ty-
pable in TOIL but not in LOOP; however the TOIL
rule disallows negative occurrences of “self-type” in the
supertype, which limits its applicability to infrequent
cases. In LOOP the initial value of an instance variable
may refer to “self,” and if a function is stored in an in-
stance variable, this allows a form of method override in
objects. TOIL on the other hand has a nil object, which
is of every object type, but responds to every message

29

with an error. LOOP provides for multiple inheritance
and nested class definitions; TOIL does not.

There are several important language issues which are
not addressed here. LOOP is monomorphic, even though
it is translated to a polymorphic language. It would not
be difficult to lift the F-bounded polymorphism of SOOP
into LOOP (though preserving decidable type-checking
may be more difficult). This extension could be desir-
able for programming: as it stands, only the “self-type”
can be open-ended, but it may also be necessary to al-
low a method to take as parameter an open-ended object
from some other hierarchy. Classes are not fully “first-
class citizens”: we cannot write a function that takes
an arbitrary class as argument and returns a class with
some methods added. To achieve this, some notion of
extensible record would need to be added to SOOP [17].

References

PI

PI

PI

141

PI

PI

PI

R. Amadio and L. Cardelli. Subtyping recursive
types. In Conference Record of the Eighteenth An-

nual ACM Symposium on Principles of Program-

ming Languages, 1991.

K. Bruce. Safe type checking in a statically-typed
object-oriented programming language. In Confer-

ence Record of the Twentieth Annual ACM Sym-

posium on Principles of Programming Languages,

pages 285-298, 1993.

K. B. Bruce, J. Crabtree, T. P. Murtagh, R. van
Gent, A. Dimock, and R. Muller. Safe and decid-
able type checking in an object-oriented language.
In OOPSLA ‘99 Conference Proceedings, 1993.

Kim B. Bruce and Robert van Gent. TOIL: A
new type-safe object-oriented imperative language.
Technical report, Williams College, 1993.

P. Canning, W. Cook, W. Hill, J. Mitchell, and
W. Olthoff. F-bounded polymorphism for object-
oriented programming. In Proceedings of the Con-

ference on Functional Programming Languages and
Computer Architecture, pages 273-280, 1989.

L. Cardelli. A semantics of multiple inheritance.
In Semantics of Data Types, volume 173 of Lecture

notes in Computer Science, pages 51-67. Springer-
Verlag, 1984.

W. Cook and J. Palsberg. A denotational semantics
of inheritance and its correctness. In OOPSLA ‘89

Proceedings, pages 433-443, 1989.

PI

191

PO1

1111

P21

[I31

[I41

[I51

[I61

[I71

[I81

[I91

William R. Cook, Walter L. Hill, and Peter S. Can-
ning. Inheritance is not subtyping. In Confer-

ence Record of the Seventeenth Annual ACM Sym-
posium on Principles of Programming Languages.
ACM Press, 1990.

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico.
An interpretation of typed OOP in a language with
state. Lisp and Symbolic Computation, 1995. To
appear.

M. Felleisen and R. Hieb. The revised report on the
syntactic theories of sequential control and state.
Theoretical Computer Science, 102:235-271, 1992.

Giorgio Ghelli. A static type system for message
passing. In Proc. OOPSLA, pages 129-145, 1991.

A. V. Hense. Wrapper semantics of an object-
oriented programming language with state. In Pro-

ceedings of the International Conference on Theo-

retical Aspects of Computer Software, volume 526
of Lecture notes in Computer Science, pages 54%
567. Springer-Verlag, 1991.

Samuel N. Kamin and Uday S. Reddy. Two Seman-

tic Models of Object-Oriented Languages, chap-
ter 13, pages 464-495. MIT Press, 1994.

I. A. Mason and C. L. Talcott. Equivalence in func-
tional languages with effects. Journal of Functional

Programming, 1:287-327, 1991.

J. Mitchell. Towards a typed foundation for
method specialization and inheritance. In Confer-

ence Record of the Seventeenth Annual ACM Sym-

posium on Principles of Programming Languages,

1990.

B. Pierce. Bounded quantification is undecidable.
In Conference Record of the Nineteenth Annual
ACM Symposium on Principles of Programming

Languages, pages 305-315, 1992.

Didier Rkmy. Type inference for records in a natu-
ral extension of ML. In Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects Of Object-

Oriented Programming. Types, Semantics and Lan-

guage Design. MIT Press, 1993.

J.P. Seldin. A sequent calculus for type assignment.
Journal of Symbolic Logic, 42:11-28, 1977.

A. Wright and M. Felleisen. A syntactic approach
to type soundness. Technical Report TR91-160,
Rice University Department of Computer Science,
1991. To appear in Information and Computation.

30

