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Abstract
JavaScript is the de facto language of the Web, but is no-
toriously error-prone to use. 65% of common bugs like
undefined/null variable usage are DOM-related. Besides
DOM, JS APIs are also expected to manipulate graphic
hardware and asynchronous I/O, which makes the condi-
tion even worse. Although WebIDL provides a formal con-
tract between JS developers and platform implementation,
its expressivity is too limited to support deep checking of
API misuses. We propose the eXtended WebIDL (xWIDL)
language and a modular API misuses checking framework
based on xWIDL. We discuss how to handle the data ex-
change between JS analyzer and SMT-based verifier. Finally,
we test our implementation in a case study manner and re-
port our findings on its efficiency and modularity.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords JavaScript, WebIDL, static analysis, interface
definition language, program verification, data-flow analysis

1. Motivation and Related Work
JavaScript (abbr. JS) is a very popular language used in Web,
but its users suffer greatly from unexpected bugs[1], mainly
due to its lack of a static, strong and powerful type system.
Previous work on JavaScript static analysis include WALA,
TAJS[3], SAFE[5], JSAI[8], Flow etc., but they didn’t ad-
dress checking of the platforms APIs, like browser DOM
APIs, Node.js APIs or third-party libraries. Handling them
properly is vital, since JavaScript, as a scripting language, is
meant to use APIs intensively.

To solve this, new TAJS[4] hardwired the DOM APIs
inside analyzer. However, this approach is unmaintainable
and unscalable: when an API changes, we have to update
the analyzer manually; plus that DOM is just one of many
platforms[9], it is impractical to keep track of everything.

To improve scalability, we advocate WebIDL[7]: an in-
terface definition language used in modern Web standards.
It is coarsely a collection of API names and their types.
SAFEWAPI[2] first took advantage of vanilla WebIDL to
check API misuses such as wrong number/type of argu-
ments. But this is not enough to tackle the complex beast
like WebGL applications: For example, when you call
gl.createBuffer(), the returned WebGLBuffer object is
implicitly registered in the context object gl, and some APIs
like gl.bindBuffer() takes this fact as pre-condition. Un-
fortunately, all these are written informally in standard since
vanilla WebIDL can’t express this.

Motivated by these problems, we did the following con-
tributions: 1) Propose the xWIDL language to extend We-
bIDL with semantic-level specification of platform APIs.
2) Propose a modular API checking framework and de-
sign a protocol for inter-module communication. 3) Imple-
ment xwidl-engine to enforce the protocol and check the
xWIDL specification using SMT-based verifier.

2. Approach
We first define our extension to WebIDL, next present the
protocol design, then discuss how to transform data of dif-
ferent representations between analyzer and verifier.

2.1 xWIDL Language
We extend WebIDL by adding five kinds of annotations,
which are inserted as comments in existing definitions:

• ghost: Modeling of hidden states
• requires: Pre-condition for an operation
• ensures: Post-condition for an operation
• effects: Imperative specification of operation effect
• callbacks: Specification of callback behavior

Here is an example snippet of xWIDL:
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callback Handler = void (DOMString);

dictionary Request { long length; };

interface Reader {

///- ghost attribute long reqs;

short add(Request? req, Handler cb);

///- requires req != null

/*/- ensures if req.length > 0

then ret == 1

else ret == 0 */

///- callbacks cb when (req.length > 0)

with "hello world"

///- effects { this.reqs++; }

}

First, ghost state reqs detects ordering violation bugs
between calls, and we use effects clause to update it. Second,
requires detects null parameter bug. Finally, ensures and
callbacks improve overall analyzing precision.

2.2 Client-Server Architecture and Protocol Design
Unlike the monolithic architecture of TAJS and SAFEWAPI,
we decouple the API checking logic (i.e. server) from ana-
lyzer (i.e. client) by defining a protocol. This architecture en-
joys high degree of modularity: the changes on client side
will never effect the server side and vice versa; Also, it is
highly reusable since existing analyzers can simply piggy-
back on our checker to start detecting API misuse.

The protocol is a standard query interface between the
client and server. It first defines a minimal set of common
language definitions, including primitive value and asser-
tion expression. It then describes the process of establishing
connection, bootstrapping session, exchanging queries, and
finishing. Format of query/reply is designed to capture the
essence of API calling/returning, while satisfying the basic
need of verifier and restriction of general analyzer.

2.3 Transformation of Data between Different
Representations

The key problem to protocol enforcement is how to ex-
change data (value) between two ends. In data-flow ana-
lyzer, symbol’s value is an element of abstract semantic do-
main lattice, and symbol x can be both bool and int at the
same time. Information is highly summarized this way, thus
improving the analyzer’s efficiency. However, in the SMT-
based verifier, a symbol is strongly-typed and its possible
value is defined in terms of logical constraints on it.

For example, calling the add method in snippet (2.1) re-
turns an integer to client, which must ultimately be trans-
formed into one of { Positive, Negative, Zero, ⊥, ⊤ }. How
to reflect the value constraints in verifier space into such an
abstract number? We introduce the idea of domain probing:
Apply a set of domain assertions {x > 0, x = 0, x < 0} on
variable to probe its possible ranges, then collect verification
results in a specific assertion context as an array of boolean
flags. If analyzer receives, for example, [true, false, false],
then it knows that x > 0∧x ̸= 0∧x ≥ 0, which means that
x̄ = Pos would be a good enough return value.

3. Preliminary Results
We implemented the design in Haskell, and used Dafny[6] as
verification backend. In xwidl-engine package, we devel-
oped protocol interpretation strategies and verification-unit
generation algorithms. While benefiting from many Dafny
language features, such as datatype and class abstraction,
we found it non-trivial to encode effectful statements in the
presence the framing restriction. The successful application
of Dafny confirms the correctness of our checking logic.

We conducted a study of 12 use cases by a simulated
client. The support for ordinary WebIDL features is com-
parable to SAFEWAPI. Besides, our requires-ensures-effects
specification triple and ghost state modeling are shown to
be effective. However, our simple implementation is slow:
a complex query could easily take up to seconds, and most
time is spent on running Dafny verification.

4. Conclusion and Future Work
In conclusion, we show that it is possible to check JavaScript
API misuses in a deep and modular way: Through annota-
tion and verification, we can reason about more misuses than
SAFEWAPI; We also show the possibility of decoupling API
checker from analyzer, thus enabling a more modular and
general framework than existing ones.

In the future, we plan to improve the support of infinite
lattice representation, instantiate xWIDL with a production-
level analyzer, and improve the efficiency of checker.
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