
Compiling Away the Meta-Level in 

Object-Oriented Concurrent Reflective Languages 

Using Partial Evaluation 

Hidehiko Masuhara* Satoshi Matsuokat Kenichi Asai Akinori Yonezawa 
Department of Information Science, University of Tokyo 

tDepartment of Information Engineering, University of Tokyo 
7-3-l Hongo, Bunkyo-ku, Tokyo, 113, Japan 

E-mail: { masuharu, matsu, asai, yonezawa} 0is.s. u-tokyo. ac.jp 

Abstract 

Meta-level programmability is beneficial for par- 
allel/distributed object-oriented computing to im- 
prove performance, etc. The major problem, how- 
ever, is interpretation overhead due to meta-circular 
interpretation. To solve this problem, we propose a 
compilation framework for object-oriented concur- 
rent reflective languages using partial evaluation. 
Since traditional partial evaluators do not allow us 
to directly deal with meta-circular interpreters writ- 
ten with concurrent objects, we devised techniques 
such as pre-/post-processing, a new proposed pre- 
action extension to partial evaluation in order to 
handle side-effects, etc. Benchmarks of a proto- 
type compiler for our language ABCL/R3 indicate 
that (1) the meta-level interpretation is essentially 
‘compiled away,’ and (2) meta-level optimizations 
in a parallel application, running on a Fujitsu MPP 
APlOOO, exhibits only lo-30% overhead compared 
to the hand-crafted source-level optimization in a 
non-reflective language. 

1 Introduction 

In parallel/distributed object-oriented applications, 

meta-level programming, such as load balancing, 
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data allocation, scheduling, etc., is greatly benefi- 

cial. Language ext,ensions that provide modular ab- 

stractions for such meta-level programming are also 

useful. Ability to provide meta-level programmabil- 

ity and language extensibility is achieved via Open 
Implementation languages, or more traditionally, 

reflective languages [5, 12, 14, 171. Thanks to the 

success of CLOS Metaobject Protocol (MOP)[12], 

reflective languages are now regarded as practical 

tools rather than mere philosophical toys. 

The two foremost requirements in reflective lan- 

guages are good programmability and eficiency. 

The former is obvious for a variety of reasons, rang- 

ing from reducing the cost of meta-level program- 

ming to increasing safety. The latter is also impor- 

tant, since one of the primary purpose of meta-level 

programming is performance improvement. Let 

us analyze the two major approaches to language 

design in this regard, meta-level (reflective) inter- 
preters and customizable compilers: 

Meta-level (Reflective) Interpreters: The 

traditional approach in reflective languages is to 

construct a meta-level interpreter, and provide 

reification/reflection interfaces. This approach 

gives the programmer a clear and concise execu- 

tion model of the language, helping him to ob- 

tain the confidence that his meta-level program- 

ming ‘correctly’ implements his intentions. Fur- 

thermore, object-oriented factorization of inter- 

preters into meta-objects to form a meta-level 

class framework as pioneered in CLOS-MOP, al- 
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low modular and incremental programming and 

scope control. Almost all successful reflective 

languages to date have adopted this design. 

Unfortunately, the major problem of this ap- 

proach is efficiency. The overhead of run-time 

interpretation, if implemented naively, easily be- 

comes a factor of 10 up to 1000 over opti- 

mized, directly compiled execution. Such per- 

formance penalty is unacceptable especially in 

parallel/distributed applications. Past solutions 

to the problem fall into three inter-related cate- 

gories: 

Some parts of the meta-system are not sub- 

ject to meta-level modification via reifica- 

tion. For example, in the reflective language 

Open C++[5], only message passing, object 

creation, and instance variable accesses can 

be reified. This not only restricts user pro- 

grammability, but also makes the language 

model unclear, in that much of the meta-level 

functionalities are hidden inside ‘black-boxes,’ 

and the programmer may not obtain a clear 

view of how his meta-level programming and 

the black boxes will interact. 

The system embodies a set of ad-hoc opti- 

mizations transparent to the user. For exam- 

ple, our previous work ABCL/R2[14] assumes 

that most objects will not be customized, and 

thus could be mostly compiled, and switched 

to general interpreted execution upon user 

customization. Its effectiveness is limited to, 

however, cases when optimization is possible, 

and interpretation overhead heavily impacts 

the overall performance otherwise. 

Applications where algorithmic performance 

improvement overcomes the cost of interpre- 

tation are looked for, as was experimented 

with AL-l/D[lG]. Although a sound ap- 

proach, this restricts the application of open 

implementation technology, as it is unlikely 

that such dramatic algorithmic improvements 

are always possible. (For more detailed dis- 

cussion, see Section 5.) 

Although most reflective languages integrate all 

the above approaches, none runs efficiently under 

all circumstances. 

Customizable (Open) Compilers: Opening-up 

the internal structure of a compiler to user mod- 

ifications is another way to allow meta-level pro- 

gramming and language customization. Because 

customization is done at compile-time, there is 

no run-time overhead of meta-level interpreta- 

tion. Several researchers have observed that pro- 

viding object-oriented interface to the compiler 

(in the spirit of Metaobject Protocol) lessens the 

customizations effort[l3, IS]. 

Despite such efforts, programmability of this ap- 

proach cannot be regarded as good at present. It 

is often not obvious to the programmer whether 

his compiler customization correctly captures his 

intended meta-level functionality. This is due to 

several reasons, including (1) since the size of a 

typical compiler is enormous, it is difficult for 

the user to grasp its structure even with object- 

oriented techniques, (2) because of the way com- 

pilation works, it is difficult to localize or to 

properly propagate the changes made, and (3) 

the programmer has to constantly distinguish the 

values handled in his customization as being ei- 

ther compile-time or run-time valuesr. 

We have developed a new compilation framework 

where we can enjoy the fruit of both approaches 

in object-oriented concurrent reflective languages. 

In our framework, the meta-level of the language 

is exposed to the programmer as a pzlre meta- 

circular interpreter organized in an object-oriented 

way, as is with traditional approaches. Then, 

the interpretation overhead is effectively eliminated 

by the compiler, i.e., the meta-level interpreter is 

‘compiled away.’ Our compilation framework is 

based on partial evaluation[2], or more specifically, 

is a non-trivial realization of the first Futamura 

projection[7]. Of course, simple application of con- 

ventional partial evaluation technology does not 

work. The techniques we have developed are as fol- 

lows: 

‘This is similar in principle to Lisp macros, but much more 
complicated to handle. 
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0 Pre-processing that converts object-oriented 

meta-circular evaluator definitions into continu- 
ation passing style (CPS) functions, so that they 

become applicable to partial evaluation. 

l An extension to partial evaluation called preuc- 
tions, which preserves the order and the number 

of I/O side effects. 

l Multiple compiled methods for dynamic modifi- 

cation of the meta-level. 

l Proper treatment of assignment side-effects. 

l Post-processing that further optimizes the par- 

tially evaluated programs before passing it on to 

the back-end compiler. 

We have developed a prototype compiler for 

an object-oriented concurrent reflective language 

ABCL/RS according to our compilation framework. 

Preliminary benchmarks show that: (1) interpre- 

tation overhead is effectively eliminated, i.e., the 

programs compiled by our compiler exhibit almost 

identical performance to the ones compiled by non- 

reflective compilers, and is more than 100 times 

faster compared to interpreter execution; and (2) 

parallel applications on a massively parallel proces- 

sor Fujitsu APlOOO optimized via meta-level pro- 

gramming adds only small overhead compared to 

hand-crafted source-level optimizations, and runs 

faster than non-optimized base-level programs com- 

piled by a non-reflective compiler. This facilitates 

creation of a portable, meta-level class framework 

for optimization and language extensions. 

The rest of this paper is organized as follows. Sec- 

tion 2 gives a simple example of an ABCL/RS pro- 

gram, and an overview of our compilation frame- 

work. Section 3 describes the techniques of our 

compilation framework in detail. Section 4 shows 

results of our preliminary benchmarks. Section 5 

discusses related work, and Section 6 concludes the 

paper. 

2 Compiling Away the Meta- 
Level: an Overview 

2.1 A Simple Compilation Example in 

ABCL/RS 

We give an overview of our compilation frame- 

work with a simple meta-level programming exam- 

ple shown in Figure 1. The base-level program 

is a fragment of a client-server system where the 

server assigns a worker object to a client object 

according to the estimated cost of processing the 

clients’ request. The meta-level embodies a sim- 

ple tracing system over some variable references. A 

method request (the program @ in the figure) of 

the object server asks each worker object the esti- 

mated cost and returns the best one to the object 

client2. Here, we customize the meta-level inter- 

preter of the base-level algorithm so that when vari- 

ables worker2 and client are referenced, the ref- 

erence events are reported to the object *console* 

by messages notify. 

In .4BCL/R3, the default meta-circular inter- 

preter is defined as methods of the primary eval- 

uator object prim-eval (the program @ in the 

figure). The above customization is achieved by 

defining a new evaluator object wat ch-eval to over- 

ride the method eval-var that defines the behavior 

of variable references (the program @ in the fig- 

ure). The method sends a notification to the object 

*console* if the name of the referenced variable 

matches worker2 or client. The execution of all 

the other expressions are delegated to the object 

prim-eval. 

Since the customization changes the semantics 

of the language from the original ABCL/RS, a 

naive implementation has to execute the compiled 

base-level program under the customized meta- 

interpreter, instead of directly executing the base- 

level program. This execution is more than lOO- 

times slower as we show in Section 4.1. However, 

since the names of variables that are introspected 

can be statically determined, it would be enough 

2The source program is written in ABCL/R3, based 
on the parallel object-oriented language ABCL/f[23]. A 
message send is written as a method invocation form: 
((method) (target-object) (arguments). . .I. 
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(defmethod watch-eval eval-var (var env 

” notificatiort, and then reference the wriable 

(defmethod prim-eval eval (exp env) 

((var-ref? exp) (eval-var exp env)) 
((const? exp) (eval-const exp env)) 

(defmethod prim-eval eval-var (var env) 
(lookup var env)) 

(defmethod primeval eval-const (const env) 

(defmethod prim-eval eval-if 
Cured then else env) 

CT (notify *console* 
console' 

'worker2 env) meta-level 

base-level 

Figure 1: A Meta-Level Programming Example in ABCL/R3 

(defmethod server request 
(client worker1 worker2) 

(let ( (t313 (estimate workerl))) 
(notify *console* ‘worker2) .. notification 
(let ((t314 (estimate worker;))) 

(not if y *console* ’ client) ;; notijication 
(if (> t313 t314) 

(start-job client : with workerl) 
(progn ;; notification 

(notify *console* ‘worker2) 
(start-job client :with worker2))))) 

Notifications of underlined variables are inlined into the 

base-level program. 

> 

Figure 2: Code Generated by Our Compiler 

to insert notification code into specific variable ac- 

cesses in the base-level program3. In fact, our com- 

piler generates exactly such an efficient program 

(shown in Figure 2) by ‘compiling away’ all the un- 

necessary interpretation. 

As mentioned earlier, our compiler is mainly 

based on partial evaluation[lO] to eliminate meta- 

3By all means, having the programmer do so manually 
throughout the entire program would be quite cumbersome. 

level interpretation. The readers should note that 

traditional inlining optimization techniques such as 

the ones in Self[4] would have replicated almost the 

entire interpreter code, instead of the notification 

code. Thus, partial evaluation is a quite essential 

part of the compilation process. However, simply 

applying traditional partial evaluation techniques 

is insufficient. In the rest of this section, we present 

the basic idea of compiling reflective programs using 

partial evaluation, and the problems when applied 

to concurrent objects. 

2.2 Compiling Reflective Programs Us- 

ing Partial Evaluation 

A partial evaluator PE is a function that takes a 

program P and specification s (partial information 

on P’s input), and returns a specialized program 

P, (called the residual program). For brevity, we 

assume that P takes two arguments, and the speci- 

fication is given as the first argument. For program 

P and value z as its first argument, we denote a spe- 

cialized version of P as P, = PE (P, z). The special- 
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ized program satisfies the condition P(x, y) = PZ(y) 

whenever P(x, y) has an answer. 

Now we model a reflective system; let I be a de- 

fault meta-level interpreter that takes a base-level 

program B and run-time data D as arguments. 

Since the system is reflective, the user can execute 

B not only under the original interpreter I, but also 

under a modified interpreter 1’.4 

Under the interpreter 1, B can be “directly exe- 

cuted” by B(D), since I(B,D) = B(D). Once the 

interpreter is modified to be I’, however, previ- 

ous reflective systems execute B by “interpretation” 

I’(B, D), which is significantly slower. Now, given 

a partial evaluator, we partially evaluate I’ with re- 

spect to B, yielding 1b; i.e., IL = PE(I’, B). If 

we can expect that the partial evaluator is powerful 

enough to execute all ‘interpretations’ in I’ at par- 

tial evaluation time, 1; will be almost the same as B 
except that the effect of modifications on I’ are em- 

bedded and other parts of the interpreter are ‘com- 

piled away.’ Consequently, the execution of IL(D) 

will have the same result as that of I’(B,D), being 

as fast as that of B(D), or even faster if modifica- 

tion on I’ was made to improve performance. 

2.3 Problems in existing Partial Evalu- 
ation Techniques when Applied to 

Concurrent Objects 

Unfortunately, the above scheme is an ideal case. In 

practice, existing partial evaluation techniques do 

not allow us to directly deal with the meta-circular 

interpreters written in concurrent object-oriented 

languages. Here we explain the underlying prob- 

lems and our proposed solutions. 

Concurrent meta-system. 

As the previous studies show[l$, 17, 241, it is 

natural to design the meta-system of concur- 

rent object-oriented languages with concurrent 

objects. However, it is difficult to eliminate the 

meta-level interpretation by partially evaluating 

4Here, we assume that the definition of I’ is statically 
known. ABCL/R3 does allow dynamic modification of the 
meta-interpreters to some extent. It is not achieved by partial 
evaluation, but by multiple compiled methods as explained 
in Section 3.2.3. 

the entire meta-system, because of the concur- 

rency and indeterminacy of concurrent objects. 

To the best of our knowledge, partial evaluation 

studies that deal with meta-circular interpreters 

assume functional languages. 

Solution: The meta-system of ABCL/RS is de- 

signed with concurrent objects, and converted 

into CPS (continuation passing style) functions 

before partial evaluation. The partial evaluator 

specializes the converted functions for each base- 

level method; i.e., only the body of method ex- 

ecution is the target of partial evaluation. This 

means that we could lose the opportunity to spe- 

cialize some interactions among objects, but al- 

lows the application of most existing partial eval- 

uation techniques. 

Side-effect in programs. There are two types of 

side-effects in concurrent object-oriented lan- 

guages, (1) interaction among objects (e.g., mes- 

sage passing and synchronization) and (2) assign- 

ment to instance variables of an object. Simple 

partial evaluators cannot correctly translate pro- 

grams with such side-effects. Operations with 

side-effects would be duplicated, disappear, or 

may appear in different order to the original pro- 

gram. 

Solution: For (l), we propose a partial evalu- 

ation mechanism called preaction for preserving 

the characteristics of object interactions. With 

this mechanism, the number and the order of 

operations in the interaction are preserved af- 

ter partial evaluation. As for (2), we convert 

the meta-interpreter into store passing style, so 

that assignment can be represented without us- 

ing side-effects at the meta-level. Store oper- 

ations in the residual program are eventually 

converted into variable update forms by post- 

processing. 

Dynamic modification of the Meta-system. 

Most reflective systems allow dynamic alteration 

of the meta-system. If the meta-interpreter def- 

inition admits this flexibility, the partial evalu- 

ator can not eliminate the interpretation as we 

expected in Section 2.2, because we cannot stat- 

ically determine what program is actually being 
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executed at partial evaluation time. 

Solution: Our approach is to employ code ver- 

sioning; i.e., statically generate multiple compiled 
methods for a single base-level method for all 

possible meta-interpreter definitions used at run- 

time. In ABCL/RS, we design the language so 

that modifications made to the meta-interpreter 

is achieved by introducing new evaluator objects; 

as a result, the meta-interpreter definitions which 

could be used at run-time are easily determined 

at compile-time. 

3 Our Compilation Scheme 

We have developed a prototype compiler for the 

ABCL/RS system. To implement the above solu- 

tions, we divide the compilation into four phases 

(Figure 3) each of which performs the following: @ 

pre-processing: the evaluator object definitions (in- 

cluding user defined ones) are converted into a set 

of CPS functions to be partially evaluated; @ par- 

tial evaluation: the converted functions are special- 

ized with respect to each base-level method, yield- 

ing a set of residual programs; @ post-processing: 
the residual programs are optimized into an effi- 

cient ABCL/f program[23]; and @ back-end com- 
pilation: the generated program is compiled into 

an executable code by the ABCL/f compiler. The 

following sections describe each step in detail. 

3.1 Pre-Processing: Conversion from 
Evaluator Objects into Composed 

CPS Functions 

In ABCL/RS, the evaluator objects which ‘inter- 

pret’ the base-level methods are defined in direct 
style (i.e., directly returns the results of a method 

call to the caller), and uses delegation for incremen- 

tal customization. Due to certain technical reasons, 

the partial evaluator expects programs to be in CPS 

( i.e., passes on the result to the continuation)5. 

In addition, dynamic delegation cannot be well- 

handled by the partial evaluator, because of loss 

5There are more elaborate partial evaluation techniques 
that allow direct-style interpreters, but we did not employ it 
for simplicity. 

(a) Evaluator methods before conversion 
... A method of class verbose-eval 117 
(defmethod verbose-eval eval (exp env) 

(print exp) 
(delegate)) ; delegation to the next evaluator 

... A method of class prim-eval 11, 
(defme~~h&prim;evaljeval (exp env) 

. . . . . . . . . . call to the head of delegation , 

(b) Converted CPS functions 
(defun verbose-eval-eval (exp env w) 

(print exp) 
(prim-evai-eval exp env cant)) 

(defun prim-eval-eval (exp env m) 
. . . (verbose-eval-eval . ..> . ..> 

Figure 4: Pre-process on Evaluator Methods 

of static information. To solve such problems, the 

object definitions are converted as follows in the 

pre-processing phase: 

1. When compiling a base-level method, a set of 

evaluator objects that execute the method is 

firstly determined via static analysis. 

2. Each evaluator method is converted into a func- 

tion with a unique name. 

3. Functions are converted into CPS. 

4. Delegation forms are statically resolved and in- 

lined; each delegation form is substituted with 

calls to the delegatee’s function. 

Figure 4 shows an example of pre-processing of an 

evaluator object verbose-eval, which prints each 

expression given to it, and then delegates the ex- 

pression to the primary evaluator prim-eval for 

execution. The methods shown in Figure 4(a) are 

converted into functions shown in Figure 4(b). 

3.2 Partially Evaluating Meta-Level 
Code 

Next, the pre-processed meta-level program is spe- 

cialized with respect to each base-level method us- 

ing a partial evaluator. We have constructed an 

online partial evaluator for ABCL/R3 by incorpo- 

rating our proposed techniques below, in addition 

to the existing ones[lO, 20, 251 such as graph repre- 

sentation of symbolic values and arity raising. 
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ICdefclass or 
default evaluator object 

lm-eval 0 
(defmethod-prim-eval ehal (exp env) . ..I) 
(defmethod prim-eval eval-var (var env) 

(lookup var env)) 
(defmethod prim-eval eval-const (const env) 
const) 

defined evaluator object 
meta-level class library) 

nverted evaluator 
(exp env contj . ..I) 

-var (var env cant) 

user programs 

-var (var env cant) . ..) 
(defun prim-eval-const (const env cant) 

(funcall cant const)) 

Figure 3: Compilation Phases of ABCL/RS 

3.2.1 Handling Side-Effects (1): Object In- 

teractions (1) Disappearance 

Base-level concurrent object-oriented programs in- 

volve I/O operations such as message passing, syn- 

chronization among objects, etc., that are differ- 

ent from side-effects caused by assignments. (Here- 

after, we will refer to these side-effects as the I/O 
type side-e$ects, as opposed to the side-effects by 

assignments.) It might seem that such operations 

could be merely treated as function calls that are 

executed at run-time (i.e., not subject to unfold- 

ing during partial evaluation) by simply extending 

a partial evaluator for functional language8. How- 

ever, such a partial evaluator may move or duplicate 

operations during its execution, and as a result, I/O 

operations may be eliminated or duplicated, or may 

appear in a different order to the original one in the 

residual program( Figure 5). 

(* 5 (progn (send a :foo) 2)) -10 
(2) Wrong Ordering 

(let ((x (send a :first))) 
(cons (send a : second) x>> 

=+= (cons (send a :second) (send a :first)) 
(3) Duplication 

(let ((x (send a :foo>>) (cons x x>> 
& (cons (send a :foo) (send a :foo)) 

Figure 5: Examples that I/O side-effects are not 

properly preserved 

number and the order of I/O operations in partial 

evaluation[2]. A preaction of a symbolic value can 

be regarded as a history of I/O operations that 

should be performed before the use of the value. 

For example, the value of a form: 

To solve this problem, we have devised a tech- 

nique called preaction, which properly preserves the 
(progn (send x :hello) 123) 

“Some partial evaluators for imperative languages are re- 
ported to be capable of handling side-effects[l, 3, 15). How- 
ever, whether they will be effective for our purpose (i.e., 
whether meta-interpreters are eliminated) is unknown at this 
time. 

is 123, but the action (send x : hello) should be 

performed before the value is returned. In our par- 

tial evaluator, such a value is represented as: 

(((send x : hello)))l23 
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The partial evaluation rules for ABCL/RS ex- 

tended with preactions is shown in Figure 6. 

Roughly speaking, the preactions in the arguments 

of an operator are copied to the ones of their results. 

Our partial evaluator uses a graph (DAG) struc- 

ture to represent symbolic values, in order to pre- 

serve the number of I/O operations[2]. When a 

certain value is used by multiple expressions, it is 

shared in the graph structure during partial evalua- 

tion. At the final phase of the partial evaluation, the 

shared nodes in the graph are converted to let-forms 

so that the sharing could be expressed as references 

to the let-bound variables in the let-body7. 

An example partial evaluation with preactions 

proceeds as follows: 

PE[(* 5 (progn (send a :foo) 2111~ 

= wply(*~ 7W5b, 
pE[(progn (send a :foo) 211~) 

= apply(*, 5, (((send a : fool ))q 

= (((send a : foo)))apply(*, 5,~) 

= (((send a :foo)))10 

The final line represents an expression: 

(progn (send a :foo) 10) 

which properly preserves the I/O operations in the 

original program. 

3.2.2 Handling Side-Effects (2): Instance 

Variable Assignment 

Because ABCL/RS is an object-oriented language, 

there are assignment operations to instance vari- 

ables in base-level programs. In usual meta-circular 

interpreters, an assignment operation in the base- 

level program is represented as a destructive op- 

eration (e.g., rplacd of Lisp), which is one of the 

most difficult issues in partial evaluation. Rather 

than improving the partial evaluator to this prob- 

lem, we avoid this difficulty by (1) designing the 

meta-level to interpret base-level assignment opera- 

tions without using side-effects, and (2) reconstruct- 

ing assignments after the partial evaluation through 

post-processing. 

‘This conversion is similar to a technique called lambda- 

lifting. 

The meta-interpreter ‘shown’ to the user for re- 

flective programming is in direct style, in which the 

environment is represented as an association list. 

During pre-processing, the definition is converted 

into store passing style in addition to CPS conver- 

sion, so that an assignment operation at the base- 

level is represented as copying of an environment 

list at the meta-level. The resulting evaluator func- 

tions processed by the partial evaluator takes three 

arguments: an expression, an environment, and a 

continuation, which is a function that takes two ar- 

guments: a result and an updated environment. 

The problem of store passing style is that an 

assignment operation in the base-level program is 

translated into a creation of a new variable in the 

residual code of partial evaluation, and the origi- 

nal variable is not updated at all. To resolve this, 

we insert functions that explicitly update instance 

variables at the end of method execution, and then 

reconstruct the actual assignment (i.e., setf) forms 

during post-processing. In the compiled program, 

execution of assignment operations might be de- 

layed until the end of a method, but this is not 

a problem for .4BCL/R3 since the order of assign- 

ment operations within a method cannot be ob- 

served from other objects. For example, suppose 

a class account has a method withdraw defined as 

follows: 

... class definition ,I, 

(defclass account (> (current 0)) 
... method definition J,, 
(defmethod account withdraw (amount) 

.. if the request is too much, 
‘iif (< cur rent amount) 
0 . do nothing. 
(progn I otherwise, update the account. 

(setf current (- current amount)) 
amount>)> 

When the compiler partially evaluates the default 

meta-interpreter eval with the method withdraw, 

the expression show in Figure 7 is passed on to the 

partial evaluator by the pre-processor. 

Function eval interprets the assignment opera- 

tion in the expression as copying of the environment 

value. At the end of the method, the continuation, 

which has a function call update-state, is invoked. 

The call to the function update-state is a pseudo- 

assignment form to the variable current, and will 
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PE : Exp -+ Env + Sval’ 

Swat = Preaction x Sval 
Sval = Const + Pair + . . . + Top 

PE [con]p = 0 const( con) 

P&[var]p = (0)p( var) 

PE[(send el ea)]P = 641 . A2 - c)) top(c) 

where c = (send s1 s2), (lAi))vi = p&[ei]p 

PE[(+ el e2>]p = case P?lelb,~~Ue2b) of 

(((A1))cOnst(nl), (A2))const(n2)) : NA1 ’ A2))const(nl + 122) 
(uMsl, ((AZ)),,) : HA1 +wop((+ Sl sz)) 

Pl[(progn el . ..e.>]p = GA1 “‘An))s, 

where (lAi))si = P&[eiJJp (i= l,...,n) 

PE[(if ep e, e,>]P = case P&[e,np of 

EAPn const( true) : ((Ap)) PE[e,]p 

((Ap))const(false) : ((Ap)bX[e,]p 
0,~~ : P ((AP))top((if sp PE[[e,]p P&[e,]p)) 

The expressions inside (( )) indicate the preaction of each expression. 

Figure 6: Extended Partial Evaluation Rules of ABCL/RS (abridged) 

teval ) (if (< current amount) ; expcpresszon 
0 
(progn 

(setf current (- current amount)) 
amount > > 

(list (cons ‘current current) ; env. 
(cons ’ amount amount) > 

#’ (lambda (result env> ; continuation 
(update-state 

‘current (lookup ‘current env)) 
result) > 

:Note that variables current and amount are regarded as 

‘unknown’ by the partial evaluator.) 

Figure 7: Expression to be Passed onto the Partial 

Evaluator 

be replaced with a setf form via post-processing. 

The code yielded by the partial evaluator is shown 

in Figure 8. 

The residual code contains function calls to 

update-state as well as obvious redundancies such 

as unnecessary variable references. They are also 

resolved via post-processing (see Section 3.3). 

(if~~(<~curFent amount) 
(progn 
(update-state ‘current current) 

$0, 
(update-state ‘current (- current amount) > 
amount) > 

(Some redundancies, which will be removed in the post- 

orocessine ohase. are alreadv removed here for the claritv.) 

Figure 8: Residual code yielded by the partial eval- 

uator 

3.2.3 Dynamic Modification of Meta-Level 

Many reflective systems can alter its meta-level at 

run-time. This feature is useful to describe “dy- 

namic” behavior of a system, by changing the in- 

terpretation of a base-level program according to a 

run-time condition. This flexibility, however, pre- 

vents the partial evaluator from eliminating inter- 

pretation because static information of the target 

program (i.e., the meta-interpreter) virtually dimin- 

ishes. 

Our solution is to apply partial evaluation as if 
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the meta-level were statically fixed, and support dy- 

namic modifications to the meta-interpreter outside 

of the partial evaluation framework. Firstly we have 

restricted ABCL/RS so that a base-level object is 

allowed to choose its meta-interpreter only at its 

creation-time’. Experience in reflective program- 

ming shows that this is only a slight restriction, 

as almost all meta-level objects determine their 

meta-level interpreters at its creation. For a sin- 

gle method of a base-level object and definitions of 

meta-interpreters (specified by classes of evaluator 

objects), multiple compiled methods are generated 

for each interpreter. On creating an object, appro- 

priate compiled method is selected according to the 

specified interpreter. 

Let us describe this mechanism more formally. 

For brevity, assume there is no delegation used 

among evaluator objects; i.e., the definition of an 

interpreter is virtually a single function. Let meta- 

interpreter definitions be El,. . . , Em, and methods 

of a base-level class be Ml,. . . , M,. The compiler 

generates a list of method tables for the class. The 

i’th element of the list is a method table that has 

compiled methods based on Ei; the j’th entry of the 

table has the compiled code based on PE(&, n/r,). 
When an object is created with a specification of 

the Ic’th meta-interpreter, the k’th method table is 

installed as its method table. 

3.3 Post-processing 

Residual programs from the partial evaluator, like 

the one shown in Section 3.2.2, is not itself runnable. 

Moreover, they may have redundancies that could 

be harmful to the optimizations of the back-end 

compiler. Residual programs are converted and 

optimized into ABCL/f programs in the post- 

processing phase, including: 

Removing redundancies: Redundancies in the 

residual code, such as unnecessary let-bindings, 

unused variable references, nested progn forms, 

etc., are removed. 

Reconstructing assignments: A function call to 

update-state (cf. Section 3.2.2) is converted to 

‘Replacement of the meta-interpreter after object’s cre- 
ation could be possible with more elaborate run-time support. 

a setf form, which is an assignment form in 

ABCL/f. 

Adding a method interface: The residual code 

is converted into a method definition of ABCL/f 

so that it has the same method interface as the 

original one. 

The residual code shown in Section 3.2.2 is con- 

verted into the following ABCL/f method. We 

can observe that all ‘interpretations’ are effectively 

compiled away, i.e., a program identical to the orig- 

inal one is generated in this case. 

(defmethod account withdraw (amount) 
(if (< current amount) 
0 
(progn &.:2.,;y;rent (- current amount)) 

4 Performance Measurements 

4.1 Basic Performance: Interpretation 

Overhead 

We have performed preliminary benchmarks using a 

prototype ABCL/R3 compiler based on our frame- 

work. The first benchmarks compare the sequen- 

tial execution speed of the the interpreter and our 

compiler to illustrate the effectiveness of ‘compiling 

away’ the unnecessary interpretation. Sequential 

benchmark programs (Boyer and n-Queens prob- 

lem) are written in ABCL/R3 without using par- 

allel constructs, nor reflective operations (although 

side-effects are employed). The programs are exe- 

cuted in three styles: (CL) compiled without the 

meta-level and directly executed, (INT) executed 

by a CPS interpreter for ABCL/R3, and (PE) the 

meta-level is effectively ‘compiled away’ using our 

compiler. Programs are executed on a workstation 

(SUN Sparcstation 10: SuperSparc 50MHz, 128MB 

memory) with two Common Lisp compilers (Al- 

legro CL 4.1 and CMU CL 17e) as the back-end 

compilerg. 

‘For this benchmark, we used Common Lisp compilers, in- 
stead of the ABCL/j compiler as the back-end compiler for 
the following reason. The current ABCL/j compiler does not 
support function closures, which is necessary for execution of 
the interpreter in (INT). In order to do a fair comparison, we 
judged that we should employ the same back-end compiler. 
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CL PE INT PE INT 

Boyer 2.06 2.02 2349 0.99 1143 

1.62 1.71 269 1.058 166 

g-Queens 0.043 0.050 390 1.16 9073 
0.191 0.190 34.6 0.999 182 

lo-Queens 1.19 1.14 9363 0.965 7901 

4.45 4.19 1011 0.940 227 

Elapsed time(sec.) Relative speed 

Top and bottom numbers in each row correspond to 

the execution on Allegro CL and CMU CL, respectively. 

Columns in relative speed show elapsed time relative to 

the CL case. 

Table 1: Performance Comparison between Com- 

piled and Interpreted Executions 

From Table 1, we can observe that (1) our com- 

pilation scheme exhibits equivalent performance to 

traditional (i.e., non-reflective) compilers, and (2) 

compared to naive interpretation, our compilation 

scheme improves performance more than 100-foldlO. 

4.2 Overhead of Meta-Level Program- 

ming in Parallel Applications 

The next benchmark is to measure the overhead 

caused by meta-level programming in parallel appli- 

cations. We compare the executions in three ways. 

(Original) The original program without meta-level 

optimizations is directly compiled by the ABCL/f 

compiler, and executed on Fujitsu APlOOO, a mas- 

sively parallel processors with 64 Spare-based nodes 

and very fast torus network interconnection[22]. 

(Hand-craft) The application is manually optimized 

(see below) and compiled by the ABCL/f compiler. 

Fortunately the sequential part of ABCL/R3 is almost iden- 
tical to Common Lisp; thus, we can easily convert sequential 
ABCL/R3 program into Common Lisp programs by replac- 
ing message sends with function calls, for example. Note 
that this was done for benchmark purposes only; since under 
normal circumstances the partial evaluator unfolds possible 
function applications, the residual code, compiled with the 
ABCL/ j compiler, does not contain function closures. 

“The interpreter used in this benchmark is not highly opti- 
mized. However, it is worth pointing out that previous stud- 
ies to optimize/minimize interpreters still result in a factor 
of 10 times slower execution compared to the non-reflective 
compilers even with limited ‘openness’[G, 141. 

(Meta) The same optimizations are extracted and 

separately specified as a meta-level class library, 

and the original program at the base-level is not 

modified except for a few annotations; these pro- 

grams are compiled together by our compiler, and 

executed. 

Target application programs are as follows: 

Parallel Search: The first base-level application 

is a simple parallel search program (n-Queens 

problem). Each object is generated as a node in 

the search tree. Optimizations in Hand-craft and 

Meta are: (1) Locality control-child nodes (ob- 

jects) at deep levels in the search tree are created 

at the same processor as their parents’ in order 

to reduce remote communication overhead (the 

default is to randomly choose a processor). (2) 

Weighted termination detection[lg]-‘weight’ is 

propagated along the search tree in order to de- 

tect the end of a search process. By default, the 

detection is achieved by collecting acknowledg- 

ments in the search tree; therefore, intermediate 

search nodes cannot be released until all its de- 

scendant nodes terminate. The meta-level pro- 

gram and its compiled code in the Meta case are 

given in Appendix A. 

N-Body Simulation The second base-level appli- 

cation is a parallel Barnes-Hut N-body simula- 

tion algorithm. The optimization technique em- 

ployed in a hand-tuned ABCL/f code is to cache 

sub-space data, and exhibits comparable perfor- 

mance to highly optimized algorithm presented 

in [8]. In Hand-craft, method calls that access 

subspaces in the base-level program are modi- 

fied to first look-up the cache. In ABCL/R3, 

this optimization is separately described at the 

meta-level; a customized meta-interpreter is de- 

fined that looks up the cache on specific method 

calls. 

The graph in Figure 9 shows the benchmark re- 

sults of above two applications: 11-Queens problem, 

and 2,000/10,000 particles N-body simulations. ,411 

programs are executed on Fujitsu APlOOO (64 x 

(25MHz Spare processor + 16MB memory)). From 

the graph, we can observe that the Meta execution 

(1) significantly improves the performance of the 
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27.0 c 262.54 q Hand-Craft El 0 Meta/PE 
: n Original 

11 -Queens N-Body (2,000) N-Body (10,000) 

Original Optimized 

The height of each bar shows elapsed time relative to Hand- 

craft. Figures on top of each bar are real elapsed time in 

seconds. The Original execution of N-Body (10,000) failed 

because of memory exhaustion. 

Figure 9: Comparison of Overhead of Meta-Level 

Programming 

Original program, and (2) has only small overhead 

compared to the Hand-craft one, while encapsulat- 

ing the optimizations into the meta-level. (In the 

n-Queens problem, the overhead was about 17%. 

In the N-body simulation, the overhead in both 

cases was approximately 7%.) Consequently, we 

have achieved high efficiency as well as good pro- 

grammability and re-usability at the same time. 

The source of the overhead is mainly that (1) the 

partial evaluator converts a loop in the base-level 

program into recursive functions, which is less effi- 

cient in ABCL/f, (2) management of ‘weights’ for 

termination detection is implemented as separate 

methods, while they are inlined into the search func- 

tion in the Hand-craft case, (3) unnecessary assign- 

ments of instance variables are performed because 

of the technique described in Section 3.2.2. The 

overhead could be reduced by doing further opti- 

mizations such as eager inlining as in Self[4], and 

static flow analysis. 

To investigates the baseline efficiency of above 

programs, we also executed benchmark programs 

written in C with a message-passing library, against 

those written in ABCL/f and ABCL/RS on the 

APlOOO. The left bars in Figure 10 indicate elapsed 

times for the execution of ll-Queens problem (Orig- 

Figure 10: Elapsed time for 11-Queens problem in 

C, ABCL/f, and ABCL/RS 

inal) written in C and ABCL/f. The right bars 

are optimized ones in C, ABCL/f, and ABCL/RS. 

Only the locality control technique is employed here; 

it is achieved by modifying the base-level applica- 

tion (C and ABCL/f), or customizing the meta- 

level (ABCL/R3). We observe that (1) ABCL/f is 

only 1.5-1.6 times slower than C, and (2) the op- 

timization effectively improves performance about 

by 3-fold both in ABCL/f and C. 

5 Discussions and Related Work 

Optimization techniques in ABCL/R2[14] assumes 

that (1) a predetermined set of operations is inter- 

preted and can be modified by reflective program- 

ming, whereas other operations are non-reflective 

and thus cannot be modified so as to preserve their 

efficiency, and (2) some system-defined objects are 

subject to lazy re$cation, so that they could be 

executed directly until the system detects that in- 

terpretation is required. Similar approaches are be- 

lieved to be taken by CLOS-MOP and AL-l/D[17]. 

Although a dramatic improvement over pure inter- 

pretation, our experience is that even a small num- 

ber of interpreted operations drastically decrease 

performance. Even in Open C++[5], which throws 

away the ideal of presenting the entire meta-circular 

interpreter, but rather only provides a restricted set 
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of customizable operations (namely method invoca- 

tion, object creation, and instance variables access), 

any customization incurs a form of interpretation 

overhead. 

Some researchers investigated the alternative of 

subsuming the interpretation overhead with algo- 

rithmic gains achieved by reflective programming. 

For example, Okamura, et al. illustrate the effec- 

tiveness of meta-level optimization in a distributed 

information retrieval system[l6]. Their underlying 

computing environment exhibits very low remote 

message passing performance, and benefit of reduc- 

ing the number of remote messages overcomes the 

overhead of reflection. However, since such assump- 

tions are not universal, one cannot always make 

such a tradeoff; for example, with massively par- 

allel machines, message passing latency is a factor 

of 100-1000 times faster compared to workstation 

TCP/IP communication over Ethernet, so gains in 

communication would be overwhelmed by interpre- 

tation overhead. Furthermore, forcing the users to 

consider the tradeoff between interpretation vs. per- 

formance improvement complicates the applicabil- 

ity of open implementation technology. For exam- 

ple, if a particular algorithm change at the meta- 

level does not improve system performance, it will 

be difficult to judge whether the reason was the al- 

gorithm itself, or the interpretation overhead. 

Instead, in our approach, we can present the pro- 

grammer with customizability of the entire meta- 

interpreter described concisely in object-oriented 

style. The compiler successfully eliminates much 

of the unnecessary run-time interpretation over- 

head. The programmer no longer needs to be con- 

cerned with tradeoffs incurred with interpretation, 

widening the applicability of open implementation 

technology to areas including time-critical and per- 

formance conscious ones. Although there was an 

earlier static optimization attempt of meta-level 

code in Open C++[6] with a similar objective, its 

main optimization was in elimination of idempotent 

reify/reflect pairs, and did not have the full gener- 

ality or efficiency of our compiler. 

One might also claim that meta-level optimiza- 

tion and customization examples we have presented 

might well have been done solely at the base-level. 

However, for large-scale programming, meta-level 

programming can describe such changes in a con- 

cise, modular manner, and ubiquitously apply it 

throughout the program (with of course, appropri- 

ate scope control). For example, it would be un- 

feasible to expect the programmer to chase through 

a lOO,OOO-line program to insert notification code 

every time there is a syntactic reference to a vari- 

able client, and then change it back when notifi- 

cation is no longer required. Being able to describe 

the changes in a modular, object-oriented fashion is 

the essential characteristics for creating customiz- 

able meta-level class frameworks. 

As we have stated earlier, ‘compiling away’ meta- 

level interpretation requires the full generality of 

semantic-based optimization through partial eval- 

uation, and cannot be achieved by standard op- 

timization techniques such as inlining. This is 
not to say that standard optimization techniques 

are useless; rather, there are numerous possi- 

ble local optimizations that the partial evalua- 

tor does not support, only a few of which the 

current compiler performs during post-processing. 

More advanced optimization techniques developed 

in high-performance object-oriented compilers such 

as Self[4] and Concert[ll] could be greatly beneficial 

in this regard. Moreover, partial evaluator enlarges 

the opportunity for advanced optimizations because 

the residual code is directly executable without any 

indirections caused by interpretation. 

Since the discovery of the Futamura projection[7], 

there have been a number of studies that uses par- 

tial evaluation to compile programs from interpreter 

definitions[9, 211. The use of partial evaluation in 

our work follows the same path, albeit special tech- 

niques employed so as to be applicable to concurrent 

object-oriented programming. Partial evaluation is 

not a panacea; however, we believe that other pro- 

gram transformation techniques as well as run-time 

techniques are also important in order to build re- 

alistic reflective systems. 

6 Conclusion 

In this paper, we proposed a compilation frame- 

work for object-oriented concurrent reflective lan- 
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guages based on partial evaluation that almost com- 

pletely ‘compiles away’ the overhead of meta-level 

interpretation. The techniques that make partial 

evaluation possible include (1) pre-processing that 

converts object-oriented evaluator definition to CPS 

(and store-passing) functions, (2) a new partial eval- 

uation technique called preaction that preserve I/O 

type side-effects, (3) multiple compiled methods to 

cope with dynamic modification of the meta-level, 

and (4) post-processing that resolves assignments 

to instance variables and performs some other op- 

timizations. 

Preliminary benchmarks indicate that (1) the se- 

quential reflective programs in our framework ex- 

hibit equivalent performance to the ones compiled 

by non-reflective compilers, (2) compiled programs 

are faster than interpreted ones by orders of mag- 

nitude, (3) optimizations that are separately de- 

scribed by a meta-level class framework applied to 

a parallel application poses only lo-30% overhead, 

compared to a program that has been hand-tuned 

by embedding optimizations, and compiled by a 

non-reflective compiler. 
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Example Compilation of Re- 
flective Programs in 
ABCL/R3 

Here we give a meta-level programming example- 

the n-Queens problem described in Section 4.2, and 

the excerpt of the actual compiled result. 

The Base-level Program The base-level pro- 

gram is an n-Queens parallel search problem. A 

search node in the search tree is represented by a 

concurrent object. 

(def class queen (> > 
(defmethod queen do-search (size co1 places) 

(if (= size col) ; do we have an answer? 
.. yes, report the answer 
yprint-answer *printer* places) 
(dotimes (i size) 

.. no, check if we can place at i ‘th row of ,f 
;; the next column 
(when (not (checked? co1 i places)) 

;; create a new object and 
;; have it search in parallel 
(past (do-search (new ‘queen) size 

(l+ ~01) (cons i places))))))) 

The Evaluator for Locality Control The 

meta-level programs are divided into two modules; 

the locality control module and the weighted ter- 

mination detection module. Firstly, locality control 

is achieved by the evaluator object locality-eval, 

which specifies the processor numbers of newly cre- 

ated objects. A meta-level argument depth is trans- 

parently added to inter-object message passing. 

... Class definition; inherits from class standard-eval 9,) 
(defclass locality-eval (standard-eval)) 

... The method that gives the processor number for 11, 

... object creation is overridden. )I, 
(defmethod locality-eval 
get-object-creation-node (class arg-vals env) 
.. look up the meta-level variable depth 
ylet ((depth (lookup-meta-var ‘depth env>>> 

.. compare with the threshold ,f 
(if (< *threshold* depth) 

.. create on the local processor 
ythis-node-id) 
;; create on a remote processor 
(random-node-id)))) 

a.* A hidden parameter depth is passed to a newly 11, 
.*a created object. The following method returns an ,,, 
..’ association list of parameter names and values. ,I, 
(defmethod locality-eval 

get-object-creation-meta-arg 
(class arg-vals env) 

.* look up the meta-level variable depth 
ylet ((depth (lookup-meta-var ‘depth env))) 

(cons ;; (current depth)+1 
(cons :depth (l+ depth)) 
.. combine parameter list with delegatee’s 
itdelegate) > > > 

The Evaluator for Weighted Termination De- 

tection The module for the weighted termination 

detection modules manager objects, evaluator ob- 

ject WTD-eval, and several meta-object methods. 

Here, we only show the evaluator, which (1) calls 

an initialization method at the beginning of the 
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(defmethod queen do-search (size co1 places) 
irn;JtT-init-weight self) 
i = size col) 
(progn (print-answer *printer* places) 

(meta-return-weight self>) 
(if (< 0 size) 

(if (not (checked? co1 0 places)) 
(i:p(<g;threshold* depth) 

ro 
(past (do-search 

;from WTD-eval 

;from WTD-eval 

; 
** 

;fromlocality-eval 

(new 'queen :depth (I+ depth) 
:weight (meta-weight-for-child self) 
:on (this-node-id)) ; local creation 

size (l+ col) (cons 0 places))) 
(eval-while818 depth co1 size 1 places)) ;nezt step ofthe loop 

(progn 
(past (do-search 

(new 'queen :depth (I+ depth) 
:weight (meta-weight-for-child self) 
:on (random-node-id)) ; random creation 

size (I+ ~01) (cons 0 places))) 
(eval-while819 depth co1 size I places))) ;nezt step ofthe loop 

(eval-while820 depth co1 size 1 places)) . next step of the loop 
(meta-return-weight self>>>> : from WTD-eval 

.*. Methods eval-819, 820 have same definition. 917 
(defmethod queen eval-while818 (depth co1 size row places) 

.. The body is almost identical to the lines after ‘**’ of the method 7, 

.. do-search except that the value 0 is replaced with the variable row. 11 
> 

Figure 11: Compiled Result of n-Queens Program 

base-level method, (2) distributes weight to child 

objects, and (3) calls a finalization method (to re- 

turn weight) at the termination of the base-level 

method. 

... Class definition. ,,7 
(defclass WTD-eval (standard-eval)) 

..’ Invoke method init-weight at the beginning of a 1,) 
;;; method. 
(defmethod WTD-eval eval-entry-method (exp env) 
;; variable ID refers the meta-object 
(init-weight ID) 
.. body of method execution (by delegation) 
fjdelegate)) 

... Parameter weight is passed on to child objects. 111 
(defmethod WTD-eval 

get-object-creation-meta-arg 
(class arg-vals env) 

(cons (cons :weight 
(get-weight-for-child ID>> 

(delegate))) 

.-’ Invoke the method to return weight at termination ,,> 

..* of a method. 71, 
(defmethod WTD-eval eval-exit-method 

(return-value env) 
(return-remaining-weight ID) ; return weight 
(delegate)) 

Compiled Code We show the resulting compiled 

code in Figure 11 before being passed into the back- 

end compiler. Some arguments have been omitted, 

and some variables have been renamed for read- 

ability. Although program size has become slightly 

larger, interpretation is ‘compiled away.’ The rea- 

sons for increase in program size are: (1) a loop in 

the original program has been converted to recur- 

sive functions, (2) code after a conditional expres- 

sion has been duplicated, (3) the first iteration of 

the loop has been unfolded, and (4) different spe- 

cialized function is constructed for each branch of 

conditionals, although they have the same defini- 

tions. 
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