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Introduction 

An alternative to the class-based object-orient lan- 
guage model has emerged in recent years. In this pro- 
toype-based paradigm there are no classes in the 
traditional sense. In object-oriented programming, a 
class usually provides a particular set of functional- 
ity: an object is created by instantiation of the class, 
the behavior for instances is held by the class, and 
the number and name of instance variables is speci- 
fied by the class. In most prototype-based systems 
however, a new object is made by copying, behavior 
can be held directly in an individual object or inher- 
ited from others, and what an object implements by 
instance variables or by methods is not proscribed. 

The purpose of the panel is to create a public forum 
in which the designers of four fairly mature and 
robust protoype-based languages discuss the benefits 
and problems of the prototype approach, and argue 
the merits of their particular design decisions. 

Brief history. Prototypes are arguably as old as 
classes: germs of the prototype ideas can be seen as 
early as 1963 in Sketchpad [9]. The following 
decades saw this approach taken in the actor-based 
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languages and derivatives, and languages with a 
strong graphical component (e.g.: [ll, [71, 181, [101X 
The 80’s brought further discussion and elaboration, 
and a few experimental languages or prototype-based 
systems ([2], [3], [5] - [83, [lo]; for areview see [41>. 

Today there are quite a few protoype-based lan- 
guages including several systems that are mature 
enough to enable us to ask about real-world experi- 
ence. This panel was limited to fairly pure object-ori- 
ented languages, in an attempt to gain clarity on the 
issues. (By “fairly pure” we mean that almost all data 
are objects, and most computation is triggered by 
message sending). This panel features designers of 
four such prototype-based programming language 
systems: Glyphic Script*, Kevo, Self, and Newton- 
Script+. Each system is robust and efficient enough to 
support real-world applications. 

Why prototypes? Proponents of prototypes usu- 
ally argue that the resulting language is more COIZ- 

* Glyphic and Codeworks are trademarks of Glyphic 
Technology 

t NewtonScript and Newton Toolkit are trademarks 
and Newton is a registered trademark of Apple 
Computer, Inc. 

102 



Crete (since copying and modification of an example 
object is more direct), conceptually simpler, since 
there is only one kind of object, and moreflexible 
since any object can hold behavior or, by being cop- 
ied, serve as a source for new objects. 

Lentczner and Ungar both point out that it is natural 
in prototype systems to unify state and behavior. 
Under this unification, it is impossible to distinguish 
between code that directly reads or writes state 
(“instance variables”) from code that invokes meth- 
ods, making it much easier to reuse code. This unifi- 
cation can also be achieved in class-based systems, 
but traditionally code within the methods of a class 
represents a store into an instance variable as differ- 
ent from a message send. 

Problems and issues. One of the more interesting 
problems panelists mention might be called the 
“family resemblance” problem. In a prototype-based 
object model, any object holding behavior can have 
that behavior applied to itself. Therefore, with inher- 
itance (or delegation), an object tends to behave at 
least partially like its inheritance children. Yet par- 
ents and children often play extremely different roles 
in the system, so this family resemblance is not 
always appropriate. In the following sections we see 
this problem show up in various ways for three of the 
languages - Kevo manages to escape the problem by 
avoiding delegation altogether. 

A class gives each instance a set of instance variables 
for every class in the inheritance path. How does the 
corresponding thing happen in prototype-based lan- 
guages? The four systems have different approaches 
to what is sometimes called the “copy down” ques- 
tion. 

The reader might also note how structure arises in the 
various languages, which do not have class hierar- 
chies to impose order. 

Format. In the following sections, each panelist 
gives a brief overview of his language model, dis- 
cusses the benefits and drawbacks he has seen in the 
prototype approach, and illustrates his language by 
working the same simple problem. The panel session 
should be an interesting forum for discussion and 
debate. 

Randall B. Smith, panel moderator, is co-leader 
of the Self project at Sun Microsystems Laborato- 
ries. He previously worked at Xerox PARC where 
he built the Alternate Reality Kit, the Shared 
Alternate Reality Kit, and with David Ungar 
designed the Selflanguage. He received his Ph.D. 
in theoretical physics porn the University of Cah- 
fornia at San Diego in 1981. 
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Glyphic Script 

Mark Lentczner 

Glyphic Script ([ 11, [a]) is the result of two years of 
effort to create a small portable, and practical devel- 
opment environment and language. Our primary 
goals were directness of the programming process 
and power of the programming language. Early on, 
we felt that prototypes would enable us to reach these 
goals more quickly and easily. 

In Glyphic Script, an object consists of a number of 
properties which may be variables or methods. Any 
object can serve as the parent (or “class” or “proto- 
type”) of other objects. This is a single inheritance 
model where properties of a parent may be inherited 
by its children. Inheritance is seen as an organizing 
tool for the programmer, not as a pure type abstrac- 
tion mechanism. The object model has two/types of 
copying: the “new” operation to create an instance 
and the “copy” operation to create a peer. Through 
property “scopes” the object has control over what is 
copied, what is shared and what is inherited by the 
objects created with these operations. 

How Well Prototypes Supported Our Goals 

Directness is a subjective property of programming 
environments. We say that an environment more 
direct if the programming process has fewer levels of 
indirection to achieve an end result. Directness was 
one of the primary arguments for choosing a proto- 
type-based language: We reasoned that classes, even 
when implemented as objects (for example in Small- 
talk), still represent a level of abstraction away from 

the elements of the program. 

Classes describe a program entity, whereas proto- 
types are an example of a program entity. It should be 
more direct for a programmer to edit an example of a 
program entity (a prototype) than to edit a descrip- 
tion of a program entity (a class) to make a change. 
In practice with our system, we observe that pro- 
grammers build and debug prototypes, and then gen- 
eralize by creating instances. Programmers clearly 
make use of the directness of prototypes. 

The power of a language is also a subjective prop- 
erty. We can draw on our experience with the system 
to estimate it: Like many other interactive systems, 
much of the Codeworks development environment 
for Glyphic Script is written in Glyphic Script. A siz- 

able amount of code has been written in Glyphic 
Script including a data collection library, an applica- 
tion framework, a viewing system, an import/export 
library, and a debugger. The whole system comprises 
nine thousand lines of code. Our ability to create a 
full applications development environment attests to 
the general power of the language. 

Problems and Surprises of Prototypes 

Property Scopes. The part of the language that 
gave us the most trouble and took the longest to settle 
was property scopes. While it is clearly possible to 
create a prototype language without the notions of 
property scope, we found that it was difficult to get 
by without them for long. Initially we started with 
the kinds of scopes that one finds in C++: The 
emphasis was on controlling visibility of properties 
to other objects. In its first year of evolution, the lan- 
guage ended up with a set of scopes with a very dif- 
ferent function: Now the role of scopes is to control 
inheritance and copying to descendants. Property 
scopes were required to make prototypes practical. 

Keeping Classes. We never found the need to 
remove the concept of class from the system: The 
concept of class works welI as an organizing princi- 
ple in libraries and programs. While the development 
environment and libraries talk of classes, these are 
really prototype objects and the language semantics 
do not treat them any differently. Instead of eliminat- 
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ing classes, Glyphic Script demystifies them and 
makes them truly regular object. 

Prototype Failure. Occasionally prototypes don’t 
work as prototypical objects: In the case of numbers, 
there is an object that is the parent of all numbers and 
contains all their shared behavior. This object isn’t a 
good prototype at alI: if you send it an arithmetic 
message, it will fail! This type of behavior can also 
be observed to a degree in user created prototypes 
where the instance variables aren’t set to valid values. 
While this problem is minor (we did not consider it 
important enough to complicate the object model to 
get around it), the programmer has to be aware of 
this new type of failure and why it happens. 

Variables and Methods 

There is a property that many prototype-based lan- 
guages share that really has nothing to do with proto- 
types: In three of the four languages represented at 
this panel, access to methods and access to object 
variables are treated the same. A method accessing 
an object’s variable (including its own) cannot distin- 
guish this from a no argument message send. This 
feature is independent of prototypes. However, it 
seems to go part and parcel with the territory, and we 
are not sure why! We choose this unification because 
we felt it simplified the object model and allowed the 
programmer to later control access to a variable via a 
method without substantial recoding, and it reduced 
the amount of syntax in the language. We feel that 
more attention needs to be paid to this choice and its 
relative merits in the future. 

Conclusion 

Glyphic Script has shown itself to meet its goals as a 
direct and powerful language. It owes much of that 
success to the choice of prototypes for its object 
model. However, it did not abandon the concept of 
class in the process. We hope that Glyphic Script 
helps show that prototypes are not just conceptual 
curiosities, but a powerful concept for the next gener- 
ation of practical languages. 

The Example 

This section explains how the example of Cartesian 
points is handled in Glyphic Script: 

Cartesian points are objects that inherit from a com- 
mon prototype called “point” in the standard system 
library. In the figure, point contains properties for x 
and y (whose initial values are “??‘I, a special value 
in Glyphic Script meaning “unknown”), and a I‘+” 
property for adding points. 

Point also inherits a host of standard properties from 
“object”, a common grand-parent in the system. A 
new point object is created by sending the message 
“new” to point and then setting the x and y properties 
to useful values. 
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Figure: Points and colored points in Glyphic 
Script. 

To create a “color-point”, a programmer sends the 
message “new” to point. This creates a new object 
with only x and y properties, and a parent of point. 
Then the programmer adds a “color” property to the 
new object and a “bluer” property with a method. 
New objects created by sending “new” to this new 
prototype would have three properties to assign val- 
ues to: x, y, and color. 

In this example, alI properties have the “copied” 
scope, except the two labeled “G” for “global” scope 
(,‘+” in point and “bluer” in color-point). Copied 
properties are copied during a “new” operation. Glo- 
bal properties are not copied during “new”, but are 
inherited and thus represent shared properties. 

Mark Lentczner is a founder of Glyphic Technol- 
ogy where he has been a principal designer of the 
language Glyphic Script and its development 
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environment Codeworks. He received a B.A. in 
Applied Mathematics from Harvard University. 
Previously he worked at Apple Computer (origi- 
nally in the Smalltalk group, then manager of the 
Sound and Music eflort) and GO Corporation (on 
application frameworks). When he is not staring 
at a computer screen, he prefers to be rock climb- 
im 
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Self 

David Ungar 

The language Self was originally designed with to be 
a successor to Smalltalk. Self was designed by 
removal; we removed classes and variables from 
Smalltalk and tried to see if we could still program in 
it. Peter Deutsch inspired us to unify Smalltalk’s 
seven kinds of variables into one kind of access, 
which we based on inheritance. [ 11 

In Self, prototypes are prototypical; a prototype has 
exactly the same set of slots as any copy. In fact, 
there is no linguistic way to distinguish them. For 
example, the prototypical panel object would have 
slots named “members” “topic” “name” and “par- 
ent”, and each copy would have exactly the same 
slots. Any shared information would reside in its 
ancestors. 

Each prototype implements a “copy” message, which 
“clones” (shallow-copies) the prototype and then 
performs any initialization required. 

Self unifies variables and methods in a fashion that 
makes code more reusable. Every identifier in Self 
code is interpreted as a message-send, and if no 
receiver is given, the message is sent to “self.” Either 
data or code can be found in a slot as the result of 
sending a message. Data is just returned, and code is 
run. Assignment is accomplished when sending a 
message with one argument finds a slot containing a 

special assignment primitive operation. 

In Self, objects inherit from objects, and inheritance 
performs exactly one function; that of allowing the 
same information to be in two places (objects) at the 
same time. For example, consider a method that is 
inherited. You could just copy that method down to 
every object that inherited the method, and the sys- 
tem would behave the same, until you needed to 
change the method. Then you would have change 
every copy, or replace every copy somehow. Inherit- 
ing one copy of a method makes it easier to change, 
as well as grouping methods into class-like clumps 
(called traits objects in Self) for easy comprehension. 
And, since Self lets you freely intermix methods and 
data, data can be inherited just as methods. Such 
inherited data slots enable objects to share state 
(somewhat like class variables) more flexibly. 

Since in Self, objects inherit from objects, and since 
there are no classes to enforce structural conform- 
ance, objects can easily alter their parents at runtime. 
This dynamic inheritance capability turns out to be 
an excellent vehicle for implementing objects whose 
behavior changes completely as they move among a 
small set of states. For example, a window that can 
either be expanded or iconified can be easily imple- 
mented in Self by switching a parent pointer between 
an object holding state and inheriting behavior for 
the icon, and another object representing the 
expanded version. Data common to the states can be 
conveniently stored in the child. I know of no other 
programming construct as well-suited to this sort of 
example. 

However, three interesting issues have arisen in 
Self s design. 

1. Browsing vs. Programming: Not unique to Self, 
this problem arises for every OOPL with inheritance. 
Although the conceptualization of the system as an 
inheritance hierarchy is well suited to understanding 
the effect of changing a method, it does not let you 
see what set of messages any particular object, or 
kind of objects, responds to. The environment must 
provide an alternate view that subordinates inherit- 
ance by simply showing each object as the union of 
inherited attributes. This need suggests that inherit- 
ance may not be fundamental to using or browsing 
objects, but that rather it arises as a consequence of 
programming them. 
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2. Traits are not concrete: Although Self uses 
objects to hold bundles of shared behavior (traits), 
such objects cannot respond to messages as well as 
you might expect. For instance, if you send “print” to 
the traits object for points, it will try to send itself 
“x”, but, since it holds only shared information, it has 
no “x” slot. This problem seems to be a consequence 
of Self manifesting a programmer-level phenomenon 
at the base level of runtime objects. 

3. Corrupted prototypes: Since a Self prototype is 
just like any other object, it will understand messages 
that change its state. For example, you could add an 
element to the prototypical list. Then every method 
that copied the prototype list would be surprised by 
the presence of an extra element. Concreteness can 
be a two-edged sword. 

4. Fewer structural guarantees: In a class-based 
language, you can guarantee that any object inherit- 
ing a method like “CountSnorts” will posses a 
required instance variable like “snortCount”, just by 
defining both in the same class. In Self (though not in 
all prototype languages), you cannot. 

Benefits: 

1. Unique objects: Objects such as nil, true, false 
can be constructed without building a class. 

2. Simplicity: Prototype-based languages remove the 
class-instance relation and so can be drawn with one 
less color of mental chalk. Also, the infinite-meta- 
class-regress does not arise when there are no 
classes. Copying is easier to explain than instantiat- 
ing. 

3. Structural diversity & code reuse: Most class- 
based languages require that alI of a class’s instances, 
and ail of its subclasses’ instances include all of its 
instance variables. This implementation convenience 
forces the programmer to cleave classes into abstract 
superclasses and concrete subclasses. Prototypes 
allow the programmer to change his or her mind 
about which attributes are stored vs. computed with- 
out refactoring parents, or rewriting methods. 

4. Concreteness: A prototypical circle can be graph- 
ically depicted on the screen, but how do you show 
the class of all circles? Similarly, a programmer can 
understand what a circle object is by inspecting the 
contents of slots in the prototype. But, for the Circle 
class, he or she would have to read the instantiation 

code. In Self, even methods are stored as prototype 
activation records, so that locals can be set by the 
programmer with values to help other programmers 
understand. 

Example 

In order to make a cartesian point object in Self, you 
would take an empty object and add slots to hold and 
assign to x and y. Then you would create another 
object to hold shared information for all points, and 
refer to that one by a parent slot in your point object. 

Figure 1. A point in Self. 

New points could be obtained by cloning the origi- 
nal point. Now suppose you want to extend your 
point with color information. First, you would 
take a point and add slots to it to hold the color 
information for that point. Then, you would 
interpose a new parent object to hold inforrna- 
tion shared by all colored point 
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added 
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i 
Figure 2. A colored point in Self. 
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David Ungat has long been fascinated by pro- 
gramming paradigms that change the way people 
think, novel implementation techniques that make 
new languages feasible, and user interfaces that 
vanish. He co-leads the Self project at Sun Micro- 
systems Laboratories. Before that, Dave taught at 
Stanford, consulted for Apple’s Newton group and 
for ParcPlace Systems, and obtained a doctorate 
at U.C. Berkeley. 
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NewtonScript 

Walter R. Smith 

Goals and audience 
NewtonScript was created specifically for develop- 
ing applications for the Newton platform [Smith94al. 
It is a general-purpose language (in fact, Newton- 
Script compilers have been written in NewtonScript), 
but particularly well suited to Newton programming. 
Newton’s language, view system, and persistent 
object store were designed in parallel to work well 
together. 

The language and its development environment, 
the Newton Toolkit, are being used by several thou- 
sand Newton developers. Many of them have no pre- 
vious experience with dynamic object-oriented 
languages. Newton Toolkit has generated surpris- 
ingly positive feedback; the adjustment to prototype- 
based programming appears to be relatively easy and 
pleasant for most of our developers. (Of course, this 
group is self-selected by the decision to adopt a 
brand-new platform in the first place!) 

Thus, NewtonScript’s most important contribution 
to the field may simply be a demonstration that a pro- 
totype-based language can be practical-currently, it 

is the only language publicly available for Newton- 
and that it can be acceptable to “real” programmers. 

Object model and inheritance scheme 
NewtonScript is based on an “impure” object model. 
Some data objects, such as integers, strings, and 
arrays, are manipulated through primitive language 
constructs or function calls. Only one kind of data 
object, called a frame, can respond to messages. 

A frame is a collection of named slots, each slot 
containing a reference to another object. Frames may 
be treated as “dumb” records when appropriate, 
including slot access operators and an in-line con- 
structor syntax. However, they also form the basis of 
the object-oriented features of NewtonScript. 

When a message is sent to a frame (the receiver), 
the system searches that frame for a slot with the 
same name as the message. The slot must contain a 
function object. That function is then run using the 
receiver as a context-that is, the function’s free 
variables are looked up as slots in the receiver. 
Assignment uses a special “copy-on-write” rule (see 
[Smith94a]). 

A frame may inherit properties by specifying up to 
two other frames that wiIl be searched for slots it 
does not contain. These inheritance paths are speci- 
fied by frame slots called groto and parent. 
First, the chain of groto frames is searched; if the 
slot is not found, the 
and tries again. 

search moves to the parent 

8 0 

a 

G 

8 0 
X 

“rn 
receiver 

Figure 1. NewtonScript inheritance.Lookup 
proceeds from the receiver in the order shown. 
Assignment to the variable X will create a slot 
X in frame 0. 

This system evolved symbiotically with the New- 
ton view system. The user interface of a Newton 
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applicatiun is built using frames that may inherit 

properties through their groto slots. When a view 
is opened, a small frame is created that contains a 
groto slot pointing to the corresponding applica- 
tion object and a parent slot pointing to the enclos- 
ing view’s frame. Thus, the groto chain is used for 
refinement, while the parent chain is used for con- 
tainershipOf course, this inheritance structure is use- 
ful for more than the view system. For example, it 
can be used to make class-like objects for shared 
behavior. 

Unlike SELF [Ungar87], NewtonScript separates 
message sending from slot access. A variable refer- 
ence is always satisfied by getting the value out of a 
slot, never by executing a method. This is due mostly 
to lack of time, not for any technical reason, and may 
be changed in the future. 

Issues and benefits of prototypes 
The main benefit we perceive from using prototypes 
is that programming is much more direct. Rather than 
having to write a new class to make a single control 
act differently, the programmer can just change the 
control directly. Once one object is working, it’s easy 
to get the effect of a class by using it as the groto 

of others. 
It’s easier to explain and use a user interface tool- 

kit without the distinction between classes and 
instances. There is only one kind of relationship, 
inheritance, instead of two, instantiation and sub- 
classing. Making a new control and making a new 
kind of control involve the same operations. 

We use the inheritance system to minimize mem- 
ory usage. Much of the information stays in ROM or 
compressed storage. If a slot is not changed, no RAM 
needs to be allocated to store it. 

The term “prototype-based” is in some ways a 
misnomer, since many of the objects a programmer 
creates in NewtonScript are not prototypes. The pro- 
totype for a radio button, for example, has no name 
slot, and thus cannot display itself. Users of the pro- 
totype are required to supply enough information to 
make it work. In practice, this does not appear to be a 
significant barrier to understanding. 

NewtonScript lacks scoping, although it would be 
useful to avoid accidental encapsulation violations 

through name conflicts. The uniformity of the object 
model makes it difficult to find a consistent place to 
specify and enforce scoping (the class is such a 
place). 

We use a relatively simple bytecode interpreter, 
having few machine or human resources to expend 
on more complex techniques, so NewtonScript does 
not currently approach the speed of C or even an 
industrial-quality Smalltalk interpreter. This is not 
entirely due to the use of prototypes, of course, but 
more simple optimizations become available when 
classes are used. 

Cartesian point example 
The example can be done in NewtonScript using 

class-like objects [Smith94bl. A point is a frame con- 
taining x and y slots for the values and a parent 

slot pointing to a frame with the common features of 
points, such as arithmetic operations. 

When a message is sent to a point object, a slot 
with the corresponding name will be found by fol- 
lowing the parent link to the “class” object. The 
function in that slot will execute in the context of the 
point object; for example, a reference to the variable 
x will get the value of the x slot in that object. 

Colored points have an extra color slot, and refer 
to a class object containing methods specific to col- 
ored points. This object inherits the original points 
behaviors through a groto link to the other class 
object. 

groto 
becomeBluer 

etc. 

+ 

-9 

etc 
0 

Figure 2. Cartesian point example. Frame 0 is a 
point “instance” object. Frame Q is the “class” 
object for points. Frame 0 is a colored point. 
Frame @ is the “class” object for colored points. 

The variable/method lookup for a colored point 
searches first in the point itself, then in the colored 
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point class, and finally in the original point class. 

Walter R. Smith is a Senior SojIware Engineer at 
Apple Computer, Inc., and one of the principal 
designers of the Newton platJiorm. His main con- 
tributions to Newton were the persistent object 
store and NewtonScript, the application develop- 
ment language. He received a B.S. in Applied 
Mathematics from Carnegie Mellon University in 
1988, and would probably have a Ph.D. by now if 
he had ever returned from that summer job in the 
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Kevo 
A delegation-free prototype-based 

object-oriented language 

Antero Taivalsaari 

One of the key features of object-oriented program- 
ming languages is incremental modification, i.e., the 
ability to build and refine programs incrementally, 
rather than editing existing code. In class-based lan- 
guages the basic incremental modification mecha- 
nism is inheritance, while in prototype-based 
languages alternative mechanisms exist. Self, for 
instance, uses delegation as the elementary incre- 
mental modification mechanism, allowing objects to 
flexibly share each others’ behavior and state. 

In the literature delegation is often used as a syn- 
onym for prototype-based programming. This is mis- 
leading, however, since it is possible to build 
prototype-based languages which do not support del- 
egation at all, but which nevertheless provide similar 
support for incremental modification. This was 
shown by Borning already in 1986, but the ideas 
were not taken any further. Kevo is an attempt to 
prove that delegation-free prototype-based languages 
are indeed feasible and practical. 

Introduction to Kevo 

Kevo is a prototype-based language designed around 
self-sufficient and concrete objects, By self-suffi- 
cient, it is meant that each Kevo object contains all 
the properties needed for implementing a certain 
abstraction, and that these properties are logically 
independent of the other objects’ properties. This is 
different from Self which relies heavily on sharing, 
and requires the programmer to divide objects into 
separate traits and prototype structures. By concrete, 
it is meant that Kevo allows the programmer to 
manipulate each object directly, either on a per- 
object or per-group basis. 

Kevo does not support inheritance in the traditional 
sense. And unlike many prototype-based object-ori- 
ented systems, Kevo does not support delegation. 
Instead of inheritance and delegation, the essence of 
inheritance - incremental modification - is captured 
using concatenation, i.e., by duplicating existing 
objects and by allowing flexible editing and combi- 
nation of objects. In practice, concatenation is sup- 
ported by providing two user-redefinable copying 
operations, new and clone, and a set of module oper- 
ations that allow different kinds of modifications to 
be performed on objects. For instance, to create a 
ColoredPoint object, one would simply copy an 
existing Point object, and then add the desired new 
properties to the copy using the module operation 
ADDS. Late binding of methods and variables 
ensures that earlier defined (“inherited”) properties 
can adapt to later modifications in an incremental 
fashion. 

As a result of the above mentioned arrangements, 
Kevo objects look quite different from Self objects. 
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Unlike in Self, in which objects are composed of two 
separate parts - traits and prototypes - Kevo objects 
are viewed as logical wholes that do not share prop- 
erties with each other, unless the programmer really 
wishes so. From the logical point of view this means 
that even the methods of objects are independent, and 
can be modified without affecting the other objects in 
the system. (Note that at the implementation level 
virtual copying techniques are used extensively to 
conserve memory, and therefore physically methods 
may be shared although logically they are not; the 
programmer is not aware of such sharing in any way 
other than checking the megabytes-used-meter). 

One apparent shortcoming of a naive object model 
supporting fully independent objects is the inability 
to manipulate larger groups of objects at once. In 
practice, having to, e.g., fix the same bug in possibly 
thousands of copies of the same object manually 
does not sound very appealing, and therefore a mech- 
anism for groupwise manipulation is needed. To 
overcome this problem, Kevo internally maintains 
information about clone families: groups of objects 
with similar behavior and structure. These families 
allow objects to be rapidly compared against other 
objects, serving as a guideline for change propaga- 
tion when larger groups of objects need to be modi- 
fied. For instance, to add a new method or a variable 
to all ColoredPoint objects, one would apply a spe- 
cial groupwise module operation ADDS* to one of 
the existing ColoredPoint objects. 

Due to the absence of inheritance and delegation, the 
Kevo system is organized quite differently from most 
other object-oriented systems. Instead of inheritance- 
or delegation-based structuring, Kevo relies heavily 
on part-whole based structuring, or composition; the 
system is divided into increasingly smaller sub- 
systems, modules or applications, according to the 
needs of the programmer, using objects as “directo- 
ries” to other objects. As a result, objects belonging 
to one subsystem can be kept in one place, without 
having to introduce additional structuring facilities 
such as class categories or modules. The resulting 
structure resembles conventional file systems, mak- 
ing the system intuitive to learn and use. 

Our current implementation of Kevo is built around a 

straightforward, multitasking threaded code inter- 
preter. Besides basic optimizations such as inline 
caching, no advanced compilation techniques have 
been used, and therefore the system cannot compete 
with Self in performance. Otherwise the implementa- 
tion is fairly complete, featuring an iconic user inter- 
face that allows the programmer to maneuver in the 
object hierarchies, inspect and alter the variables of 
objects, add, remove and rename variables and oper- 
ations, redefine and invoke operations, and define 
new objects on the fly. Additionally, tools are pro- 
vided for visually analyzing the commonalities and 
differences between objects, as well as controlling 
the execution of a virtually unlimited number of 
quasi-concurrent tasks. In general, our experiences 
with Kevo have been very positive, and we are cur- 
rently working on a next-generation implementation 
to make the system even more practical. 

Benefits/Issues of Prototypes vs. Classes 

Prototypes have many benefits especially when 
exploratory programming is concerned. They are 
cognitively more lightweight than classes, support 
direct manipulation more naturally, avoid many mod- 
ularity problems of class-based systems, and result in 
simpler and conceptually more elegant language 
implementations. Considering these benefits, it is 
appropriate to ask why haven’t prototype-based sys- 
tems received more widespread acceptance thus far. 
Besides the easy explanation - lack of maturity - the 
best answer to this question seems to be that there 
has been an over-emphasis on technical issues. The 
advocates of prototype-based systems have failed to 
advertise the conceptual benefits of prototypes, and 
emphasized technical curiosities instead. While fea- 
tures such as unanticipated sharing of data slots, 
dynamic inheritance, and prioritized parents are often 
useful, they are questionable and even dangerous in 
serious, large-scale software development. Com- 
pared to other issues, these features have received 
considerable attention in the literature, diverting the 
focus away from the real benefits of prototypes, and 
may have increased resistance against adopting pro- 
totype-based techniques more widely. 

In summary, prototypes are beneficial, but a more 
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concept-oriented view of prototypes is still lacking, 
and this is exactly what we should be aiming at in the 
future. Delegation-free languages serve as a promis- 
ing alternative in this respect. 

Illustrations. 

Note: due to the use of virtual copying techniques, 
Kevo objects look very different depending on 
whether they are examined from the logical or imple- 
mentation point of view. The figures below illustrate 
Kevo objects strictly from the logical viewpoint, and 
any optimizations performed by the actual Kevo sys- 
tem are ignored. 

(1) How does Kevo represent Cartesian points? 

I x I 
Y 4 

+ how to add points 

Figure 1: A Cartesian point in Kevo. 

(2) How would a programmer make a refinement of 
the Cartesian point abstraction to create a kind of 
colored point with x, y, and color attributes? 

Simply by making a copy of an existing Cartesian 
point object, and by adding the desired new variables 
and methods to the copy. 

I x 
I 

I 
I 

3 I 

Y I 4 I 
+ how to add points 

color “red” 

1 becomeBluer 1 how to be more blue 1 

Figure 2: A colored point in Kevo. 

(3) How would these colored points share colored 
point spec@c behavior (such as a methodfor the 
message “becomeBluer”)? 

From the logical viewpoint, Kevo objects do not 
share any behavior. Rather, each object maintains its 
own copy of each method. In order to, e.g., redefine a 
certain method in all the ColoredPoint objects, 

groupwise module operations are used. 

Li 

1 becomeBluer I how to be more blue I 

II 
color “red” 

becomeBluer how to be more blue 

Figure 3: %o colored points in Kevo. 
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