
Prototype-Based Languages:
Object Lessons from Class-Free Programming

(Panel)

Moderator: Randall B. Smith

Sun Microsystems Laboratories
2550 Garcia Ave. MTV 29- 116

Mountain View, CA 94043

randall.smith@sun.com

Mark Lentczner Walter R. Smith
Glyphic Technology Apple Computer, Inc.
1209 Villa Street 1 Infinite Loop,
Mtn. View, CA 94041 MS 30%2B

Cupertino, CA 950 14

markl@netcom.com wrs@apple.com

Introduction

An alternative to the class-based object-orient lan-
guage model has emerged in recent years. In this pro-
toype-based paradigm there are no classes in the
traditional sense. In object-oriented programming, a
class usually provides a particular set of functional-
ity: an object is created by instantiation of the class,
the behavior for instances is held by the class, and
the number and name of instance variables is speci-
fied by the class. In most prototype-based systems
however, a new object is made by copying, behavior
can be held directly in an individual object or inher-
ited from others, and what an object implements by
instance variables or by methods is not proscribed.

The purpose of the panel is to create a public forum
in which the designers of four fairly mature and
robust protoype-based languages discuss the benefits
and problems of the prototype approach, and argue
the merits of their particular design decisions.

Brief history. Prototypes are arguably as old as
classes: germs of the prototype ideas can be seen as
early as 1963 in Sketchpad [9]. The following
decades saw this approach taken in the actor-based

Panelists:

Antero lbivalsaari
Nokia Research Center
P.O. Box 45,002ll
Helsinki, Finland

David Ungar
Sun Microsystems

Laboratories
2550 Garcia Ave. MTV 29- 116
Mtn. View, CA 94043

antero.taivalsaari ungar@sun.com

@research.nokia.com

languages and derivatives, and languages with a
strong graphical component (e.g.: [ll, [71, 181, [101X
The 80’s brought further discussion and elaboration,
and a few experimental languages or prototype-based
systems ([2], [3], [5] - [83, [lo]; for areview see [41>.

Today there are quite a few protoype-based lan-
guages including several systems that are mature
enough to enable us to ask about real-world experi-
ence. This panel was limited to fairly pure object-ori-
ented languages, in an attempt to gain clarity on the
issues. (By “fairly pure” we mean that almost all data
are objects, and most computation is triggered by
message sending). This panel features designers of
four such prototype-based programming language
systems: Glyphic Script*, Kevo, Self, and Newton-
Script+. Each system is robust and efficient enough to
support real-world applications.

Why prototypes? Proponents of prototypes usu-
ally argue that the resulting language is more COIZ-

* Glyphic and Codeworks are trademarks of Glyphic
Technology

t NewtonScript and Newton Toolkit are trademarks
and Newton is a registered trademark of Apple
Computer, Inc.

102

Crete (since copying and modification of an example
object is more direct), conceptually simpler, since
there is only one kind of object, and moreflexible
since any object can hold behavior or, by being cop-
ied, serve as a source for new objects.

Lentczner and Ungar both point out that it is natural
in prototype systems to unify state and behavior.
Under this unification, it is impossible to distinguish
between code that directly reads or writes state
(“instance variables”) from code that invokes meth-
ods, making it much easier to reuse code. This unifi-
cation can also be achieved in class-based systems,
but traditionally code within the methods of a class
represents a store into an instance variable as differ-
ent from a message send.

Problems and issues. One of the more interesting
problems panelists mention might be called the
“family resemblance” problem. In a prototype-based
object model, any object holding behavior can have
that behavior applied to itself. Therefore, with inher-
itance (or delegation), an object tends to behave at
least partially like its inheritance children. Yet par-
ents and children often play extremely different roles
in the system, so this family resemblance is not
always appropriate. In the following sections we see
this problem show up in various ways for three of the
languages - Kevo manages to escape the problem by
avoiding delegation altogether.

A class gives each instance a set of instance variables
for every class in the inheritance path. How does the
corresponding thing happen in prototype-based lan-
guages? The four systems have different approaches
to what is sometimes called the “copy down” ques-
tion.

The reader might also note how structure arises in the
various languages, which do not have class hierar-
chies to impose order.

Format. In the following sections, each panelist
gives a brief overview of his language model, dis-
cusses the benefits and drawbacks he has seen in the
prototype approach, and illustrates his language by
working the same simple problem. The panel session
should be an interesting forum for discussion and
debate.

Randall B. Smith, panel moderator, is co-leader
of the Self project at Sun Microsystems Laborato-
ries. He previously worked at Xerox PARC where
he built the Alternate Reality Kit, the Shared
Alternate Reality Kit, and with David Ungar
designed the Selflanguage. He received his Ph.D.
in theoretical physics porn the University of Cah-
fornia at San Diego in 1981.

References:

[I] Borning, A.H., Thinglab - a Constraint-Oriented
Simulation Laboratory. Ph. D. dissertation, Stanford
University (1979).

121 Boming, A.H., The Programming Language
Aspects of Thinglab, A Constraint-Oriented Simula-
tion Laboratory. In ACM Transactions on Program-
ming Languages and Systems, 3,4 (198 1) pp. 353-
387.

[3] Boming, A. H., Classes Versus Prototypes in
Object-Oriented Languages. In Proceedings of the
ACMIIEEE Fall Joint Computer Conference (1986)
pp 36-40.

[43 Dony, C., Malefant, J., Cointe, P., Prototype-
Based Languages: From a New Taxonomy to Con-
structive Proposals and their Validation. In n OOP-
SLA ‘92 Conference Proceedings, Published as
S&plan Notices, 27, 10, (1992). pp. 201-217.

[5] LaLonde, W.R., Thomas, D.A., An Exemplar
based Smalltalk. In OOPSLA ‘86 Conference Pro-
ceedings, Published as S&plan Notices, 21, 11,
(1986) pp 30-37.

[6] Lieberman, H. Using Prototypical Objects to
Implement Shared Behavior in Object Oriented Sys-
tems. In OOPSLA ‘86 Conference Proceedings, Pub-
lished as Sigplan Notices, 21, 11, (1986). pp. 214-
223.

[7] Myers, B.A., Giuse, D., Dannnenberg, R.B.,
Vander Zanden, B., Kosbie, D. S., Pervin, E.. Mick-
ish, A, Marchal, P., “Garnet: Comprehensive Support
for Graphical Highly Interactive User Interfaces.”
IEEE Computer, 23, 11, (Nov. 1990). pp 71-85.

[8] Smith, R. B., Experiences with the Alternate
Reality Kit: An Example of the Tension Between Lit-

103

eralism and Magic, in Proceedings of the CHI+GI
‘87 Conference (1987) pp. 61-67.

[9] Sutherland, I.E., Sketchpad: a man-machine
graphical communication system. MIT Lincoln Lab-
oratory Tech. Rept. No. 296, 1963.

[lo] Yonezawa, A., Briot, J., and Shibayama, E,
Object-Oriented Concurrent Programming in ABCL/
1, In OOPSLA ‘86 Conference Proceedings, Pub-
lished as Sigplan Notices, 21, 11, (1986), pp 258-
268.

Glyphic Script

Mark Lentczner

Glyphic Script ([11, [a]) is the result of two years of
effort to create a small portable, and practical devel-
opment environment and language. Our primary
goals were directness of the programming process
and power of the programming language. Early on,
we felt that prototypes would enable us to reach these
goals more quickly and easily.

In Glyphic Script, an object consists of a number of
properties which may be variables or methods. Any
object can serve as the parent (or “class” or “proto-
type”) of other objects. This is a single inheritance
model where properties of a parent may be inherited
by its children. Inheritance is seen as an organizing
tool for the programmer, not as a pure type abstrac-
tion mechanism. The object model has two/types of
copying: the “new” operation to create an instance
and the “copy” operation to create a peer. Through
property “scopes” the object has control over what is
copied, what is shared and what is inherited by the
objects created with these operations.

How Well Prototypes Supported Our Goals

Directness is a subjective property of programming
environments. We say that an environment more
direct if the programming process has fewer levels of
indirection to achieve an end result. Directness was
one of the primary arguments for choosing a proto-
type-based language: We reasoned that classes, even
when implemented as objects (for example in Small-
talk), still represent a level of abstraction away from

the elements of the program.

Classes describe a program entity, whereas proto-
types are an example of a program entity. It should be
more direct for a programmer to edit an example of a
program entity (a prototype) than to edit a descrip-
tion of a program entity (a class) to make a change.
In practice with our system, we observe that pro-
grammers build and debug prototypes, and then gen-
eralize by creating instances. Programmers clearly
make use of the directness of prototypes.

The power of a language is also a subjective prop-
erty. We can draw on our experience with the system
to estimate it: Like many other interactive systems,
much of the Codeworks development environment
for Glyphic Script is written in Glyphic Script. A siz-

able amount of code has been written in Glyphic
Script including a data collection library, an applica-
tion framework, a viewing system, an import/export
library, and a debugger. The whole system comprises
nine thousand lines of code. Our ability to create a
full applications development environment attests to
the general power of the language.

Problems and Surprises of Prototypes

Property Scopes. The part of the language that
gave us the most trouble and took the longest to settle
was property scopes. While it is clearly possible to
create a prototype language without the notions of
property scope, we found that it was difficult to get
by without them for long. Initially we started with
the kinds of scopes that one finds in C++: The
emphasis was on controlling visibility of properties
to other objects. In its first year of evolution, the lan-
guage ended up with a set of scopes with a very dif-
ferent function: Now the role of scopes is to control
inheritance and copying to descendants. Property
scopes were required to make prototypes practical.

Keeping Classes. We never found the need to
remove the concept of class from the system: The
concept of class works welI as an organizing princi-
ple in libraries and programs. While the development
environment and libraries talk of classes, these are
really prototype objects and the language semantics
do not treat them any differently. Instead of eliminat-

104

ing classes, Glyphic Script demystifies them and
makes them truly regular object.

Prototype Failure. Occasionally prototypes don’t
work as prototypical objects: In the case of numbers,
there is an object that is the parent of all numbers and
contains all their shared behavior. This object isn’t a
good prototype at alI: if you send it an arithmetic
message, it will fail! This type of behavior can also
be observed to a degree in user created prototypes
where the instance variables aren’t set to valid values.
While this problem is minor (we did not consider it
important enough to complicate the object model to
get around it), the programmer has to be aware of
this new type of failure and why it happens.

Variables and Methods

There is a property that many prototype-based lan-
guages share that really has nothing to do with proto-
types: In three of the four languages represented at
this panel, access to methods and access to object
variables are treated the same. A method accessing
an object’s variable (including its own) cannot distin-
guish this from a no argument message send. This
feature is independent of prototypes. However, it
seems to go part and parcel with the territory, and we
are not sure why! We choose this unification because
we felt it simplified the object model and allowed the
programmer to later control access to a variable via a
method without substantial recoding, and it reduced
the amount of syntax in the language. We feel that
more attention needs to be paid to this choice and its
relative merits in the future.

Conclusion

Glyphic Script has shown itself to meet its goals as a
direct and powerful language. It owes much of that
success to the choice of prototypes for its object
model. However, it did not abandon the concept of
class in the process. We hope that Glyphic Script
helps show that prototypes are not just conceptual
curiosities, but a powerful concept for the next gener-
ation of practical languages.

The Example

This section explains how the example of Cartesian
points is handled in Glyphic Script:

Cartesian points are objects that inherit from a com-
mon prototype called “point” in the standard system
library. In the figure, point contains properties for x
and y (whose initial values are “??‘I, a special value
in Glyphic Script meaning “unknown”), and a I‘+”
property for adding points.

Point also inherits a host of standard properties from
“object”, a common grand-parent in the system. A
new point object is created by sending the message
“new” to point and then setting the x and y properties
to useful values.

a point 3@4
parent

El3

X 3

Y 4

noint
parent L
X E Y

+

a red 3~94
parent ke parent *’
X 3 X ??

Y 4 Y ??
color , color 33

I
6 “lUM -

t I color I

I 1 more blue(

Figure: Points and colored points in Glyphic
Script.

To create a “color-point”, a programmer sends the
message “new” to point. This creates a new object
with only x and y properties, and a parent of point.
Then the programmer adds a “color” property to the
new object and a “bluer” property with a method.
New objects created by sending “new” to this new
prototype would have three properties to assign val-
ues to: x, y, and color.

In this example, alI properties have the “copied”
scope, except the two labeled “G” for “global” scope
(,‘+” in point and “bluer” in color-point). Copied
properties are copied during a “new” operation. Glo-
bal properties are not copied during “new”, but are
inherited and thus represent shared properties.

Mark Lentczner is a founder of Glyphic Technol-
ogy where he has been a principal designer of the
language Glyphic Script and its development

105

environment Codeworks. He received a B.A. in
Applied Mathematics from Harvard University.
Previously he worked at Apple Computer (origi-
nally in the Smalltalk group, then manager of the
Sound and Music eflort) and GO Corporation (on
application frameworks). When he is not staring
at a computer screen, he prefers to be rock climb-
im

References

[l] Glyphic Technology, “Glyphic Codeworks
Scripting”. Unpublished manual (1994).

[2] Schwartz, B., Lentczner, M., “Direct Program-
ming Using a Unified Object Model”. In “OOPSLA
‘92 Addendum to the Proceedings”. Published as
“OOPS Messenger”, 4.2, (1993) 237.

Self

David Ungar

The language Self was originally designed with to be
a successor to Smalltalk. Self was designed by
removal; we removed classes and variables from
Smalltalk and tried to see if we could still program in
it. Peter Deutsch inspired us to unify Smalltalk’s
seven kinds of variables into one kind of access,
which we based on inheritance. [11

In Self, prototypes are prototypical; a prototype has
exactly the same set of slots as any copy. In fact,
there is no linguistic way to distinguish them. For
example, the prototypical panel object would have
slots named “members” “topic” “name” and “par-
ent”, and each copy would have exactly the same
slots. Any shared information would reside in its
ancestors.

Each prototype implements a “copy” message, which
“clones” (shallow-copies) the prototype and then
performs any initialization required.

Self unifies variables and methods in a fashion that
makes code more reusable. Every identifier in Self
code is interpreted as a message-send, and if no
receiver is given, the message is sent to “self.” Either
data or code can be found in a slot as the result of
sending a message. Data is just returned, and code is
run. Assignment is accomplished when sending a
message with one argument finds a slot containing a

special assignment primitive operation.

In Self, objects inherit from objects, and inheritance
performs exactly one function; that of allowing the
same information to be in two places (objects) at the
same time. For example, consider a method that is
inherited. You could just copy that method down to
every object that inherited the method, and the sys-
tem would behave the same, until you needed to
change the method. Then you would have change
every copy, or replace every copy somehow. Inherit-
ing one copy of a method makes it easier to change,
as well as grouping methods into class-like clumps
(called traits objects in Self) for easy comprehension.
And, since Self lets you freely intermix methods and
data, data can be inherited just as methods. Such
inherited data slots enable objects to share state
(somewhat like class variables) more flexibly.

Since in Self, objects inherit from objects, and since
there are no classes to enforce structural conform-
ance, objects can easily alter their parents at runtime.
This dynamic inheritance capability turns out to be
an excellent vehicle for implementing objects whose
behavior changes completely as they move among a
small set of states. For example, a window that can
either be expanded or iconified can be easily imple-
mented in Self by switching a parent pointer between
an object holding state and inheriting behavior for
the icon, and another object representing the
expanded version. Data common to the states can be
conveniently stored in the child. I know of no other
programming construct as well-suited to this sort of
example.

However, three interesting issues have arisen in
Self s design.

1. Browsing vs. Programming: Not unique to Self,
this problem arises for every OOPL with inheritance.
Although the conceptualization of the system as an
inheritance hierarchy is well suited to understanding
the effect of changing a method, it does not let you
see what set of messages any particular object, or
kind of objects, responds to. The environment must
provide an alternate view that subordinates inherit-
ance by simply showing each object as the union of
inherited attributes. This need suggests that inherit-
ance may not be fundamental to using or browsing
objects, but that rather it arises as a consequence of
programming them.

106

2. Traits are not concrete: Although Self uses
objects to hold bundles of shared behavior (traits),
such objects cannot respond to messages as well as
you might expect. For instance, if you send “print” to
the traits object for points, it will try to send itself
“x”, but, since it holds only shared information, it has
no “x” slot. This problem seems to be a consequence
of Self manifesting a programmer-level phenomenon
at the base level of runtime objects.

3. Corrupted prototypes: Since a Self prototype is
just like any other object, it will understand messages
that change its state. For example, you could add an
element to the prototypical list. Then every method
that copied the prototype list would be surprised by
the presence of an extra element. Concreteness can
be a two-edged sword.

4. Fewer structural guarantees: In a class-based
language, you can guarantee that any object inherit-
ing a method like “CountSnorts” will posses a
required instance variable like “snortCount”, just by
defining both in the same class. In Self (though not in
all prototype languages), you cannot.

Benefits:

1. Unique objects: Objects such as nil, true, false
can be constructed without building a class.

2. Simplicity: Prototype-based languages remove the
class-instance relation and so can be drawn with one
less color of mental chalk. Also, the infinite-meta-
class-regress does not arise when there are no
classes. Copying is easier to explain than instantiat-
ing.

3. Structural diversity & code reuse: Most class-
based languages require that alI of a class’s instances,
and ail of its subclasses’ instances include all of its
instance variables. This implementation convenience
forces the programmer to cleave classes into abstract
superclasses and concrete subclasses. Prototypes
allow the programmer to change his or her mind
about which attributes are stored vs. computed with-
out refactoring parents, or rewriting methods.

4. Concreteness: A prototypical circle can be graph-
ically depicted on the screen, but how do you show
the class of all circles? Similarly, a programmer can
understand what a circle object is by inspecting the
contents of slots in the prototype. But, for the Circle
class, he or she would have to read the instantiation

code. In Self, even methods are stored as prototype
activation records, so that locals can be set by the
programmer with values to help other programmers
understand.

Example

In order to make a cartesian point object in Self, you
would take an empty object and add slots to hold and
assign to x and y. Then you would create another
object to hold shared information for all points, and
refer to that one by a parent slot in your point object.

Figure 1. A point in Self.

New points could be obtained by cloning the origi-
nal point. Now suppose you want to extend your
point with color information. First, you would
take a point and add slots to it to hold the color
information for that point. Then, you would
interpose a new parent object to hold inforrna-
tion shared by all colored point

SpyJq~

shared info for colored points

parent*

blueify

I ’
how-to-

-) make-bluer

added
slots

i
Figure 2. A colored point in Self.

107

David Ungat has long been fascinated by pro-
gramming paradigms that change the way people
think, novel implementation techniques that make
new languages feasible, and user interfaces that
vanish. He co-leads the Self project at Sun Micro-
systems Laboratories. Before that, Dave taught at
Stanford, consulted for Apple’s Newton group and
for ParcPlace Systems, and obtained a doctorate
at U.C. Berkeley.

References

[l] David Ungar and Randall B. Smith, “SELF: The
Power of Simplicity,” Proceedings of the I987 ACM
Conference on Object Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA),
Orlando, FL, October, 1987, pp. 227-242. A revised
version appeared in the Journal of Lisp and Symbolic
Computation, 4(3), Kluwer Academic Publishers,
June, 1991.

NewtonScript

Walter R. Smith

Goals and audience
NewtonScript was created specifically for develop-
ing applications for the Newton platform [Smith94al.
It is a general-purpose language (in fact, Newton-
Script compilers have been written in NewtonScript),
but particularly well suited to Newton programming.
Newton’s language, view system, and persistent
object store were designed in parallel to work well
together.

The language and its development environment,
the Newton Toolkit, are being used by several thou-
sand Newton developers. Many of them have no pre-
vious experience with dynamic object-oriented
languages. Newton Toolkit has generated surpris-
ingly positive feedback; the adjustment to prototype-
based programming appears to be relatively easy and
pleasant for most of our developers. (Of course, this
group is self-selected by the decision to adopt a
brand-new platform in the first place!)

Thus, NewtonScript’s most important contribution
to the field may simply be a demonstration that a pro-
totype-based language can be practical-currently, it

is the only language publicly available for Newton-
and that it can be acceptable to “real” programmers.

Object model and inheritance scheme
NewtonScript is based on an “impure” object model.
Some data objects, such as integers, strings, and
arrays, are manipulated through primitive language
constructs or function calls. Only one kind of data
object, called a frame, can respond to messages.

A frame is a collection of named slots, each slot
containing a reference to another object. Frames may
be treated as “dumb” records when appropriate,
including slot access operators and an in-line con-
structor syntax. However, they also form the basis of
the object-oriented features of NewtonScript.

When a message is sent to a frame (the receiver),
the system searches that frame for a slot with the
same name as the message. The slot must contain a
function object. That function is then run using the
receiver as a context-that is, the function’s free
variables are looked up as slots in the receiver.
Assignment uses a special “copy-on-write” rule (see
[Smith94a]).

A frame may inherit properties by specifying up to
two other frames that wiIl be searched for slots it
does not contain. These inheritance paths are speci-
fied by frame slots called groto and parent.
First, the chain of groto frames is searched; if the
slot is not found, the
and tries again.

search moves to the parent

8 0

a

G

8 0
X

“rn
receiver

Figure 1. NewtonScript inheritance.Lookup
proceeds from the receiver in the order shown.
Assignment to the variable X will create a slot
X in frame 0.

This system evolved symbiotically with the New-
ton view system. The user interface of a Newton

108

applicatiun is built using frames that may inherit

properties through their groto slots. When a view
is opened, a small frame is created that contains a
groto slot pointing to the corresponding applica-
tion object and a parent slot pointing to the enclos-
ing view’s frame. Thus, the groto chain is used for
refinement, while the parent chain is used for con-
tainershipOf course, this inheritance structure is use-
ful for more than the view system. For example, it
can be used to make class-like objects for shared
behavior.

Unlike SELF [Ungar87], NewtonScript separates
message sending from slot access. A variable refer-
ence is always satisfied by getting the value out of a
slot, never by executing a method. This is due mostly
to lack of time, not for any technical reason, and may
be changed in the future.

Issues and benefits of prototypes
The main benefit we perceive from using prototypes
is that programming is much more direct. Rather than
having to write a new class to make a single control
act differently, the programmer can just change the
control directly. Once one object is working, it’s easy
to get the effect of a class by using it as the groto

of others.
It’s easier to explain and use a user interface tool-

kit without the distinction between classes and
instances. There is only one kind of relationship,
inheritance, instead of two, instantiation and sub-
classing. Making a new control and making a new
kind of control involve the same operations.

We use the inheritance system to minimize mem-
ory usage. Much of the information stays in ROM or
compressed storage. If a slot is not changed, no RAM
needs to be allocated to store it.

The term “prototype-based” is in some ways a
misnomer, since many of the objects a programmer
creates in NewtonScript are not prototypes. The pro-
totype for a radio button, for example, has no name
slot, and thus cannot display itself. Users of the pro-
totype are required to supply enough information to
make it work. In practice, this does not appear to be a
significant barrier to understanding.

NewtonScript lacks scoping, although it would be
useful to avoid accidental encapsulation violations

through name conflicts. The uniformity of the object
model makes it difficult to find a consistent place to
specify and enforce scoping (the class is such a
place).

We use a relatively simple bytecode interpreter,
having few machine or human resources to expend
on more complex techniques, so NewtonScript does
not currently approach the speed of C or even an
industrial-quality Smalltalk interpreter. This is not
entirely due to the use of prototypes, of course, but
more simple optimizations become available when
classes are used.

Cartesian point example
The example can be done in NewtonScript using

class-like objects [Smith94bl. A point is a frame con-
taining x and y slots for the values and a parent

slot pointing to a frame with the common features of
points, such as arithmetic operations.

When a message is sent to a point object, a slot
with the corresponding name will be found by fol-
lowing the parent link to the “class” object. The
function in that slot will execute in the context of the
point object; for example, a reference to the variable
x will get the value of the x slot in that object.

Colored points have an extra color slot, and refer
to a class object containing methods specific to col-
ored points. This object inherits the original points
behaviors through a groto link to the other class
object.

groto
becomeBluer

etc.

+

-9

etc
0

Figure 2. Cartesian point example. Frame 0 is a
point “instance” object. Frame Q is the “class”
object for points. Frame 0 is a colored point.
Frame @ is the “class” object for colored points.

The variable/method lookup for a colored point
searches first in the point itself, then in the colored

109

point class, and finally in the original point class.

Walter R. Smith is a Senior SojIware Engineer at
Apple Computer, Inc., and one of the principal
designers of the Newton platJiorm. His main con-
tributions to Newton were the persistent object
store and NewtonScript, the application develop-
ment language. He received a B.S. in Applied
Mathematics from Carnegie Mellon University in
1988, and would probably have a Ph.D. by now if
he had ever returned from that summer job in the
Newton Group

References
[Smith94al Walter R. Smith The Newton application

architecture. In Proceedings of the 39th IEEE
Computer Society International Conference,
pp. 156-161. San Francisco, 1994.
Also available as ftp : / / ftp . apple. con/
pie/newton/articles/COMPCON-
Arch.ps

[Smith94b] Walter Smith. Class-based NewtonScript pro-

lungam

gramming. PIE Developers, January 1994.
Also available as ftp://ftp.apple.com/
pub/wrs/class-based-NS.ps
David Ungar and Randall B. Smith. Self: the
power of simplicity. In OOPSLA ‘87 Confer-
ence Proceedings, pp. 227-241, Orlando,
Florida, 1987. Published as SlGPLAN Notices
22,12, December 1987.

Kevo
A delegation-free prototype-based

object-oriented language

Antero Taivalsaari

One of the key features of object-oriented program-
ming languages is incremental modification, i.e., the
ability to build and refine programs incrementally,
rather than editing existing code. In class-based lan-
guages the basic incremental modification mecha-
nism is inheritance, while in prototype-based
languages alternative mechanisms exist. Self, for
instance, uses delegation as the elementary incre-
mental modification mechanism, allowing objects to
flexibly share each others’ behavior and state.

In the literature delegation is often used as a syn-
onym for prototype-based programming. This is mis-
leading, however, since it is possible to build
prototype-based languages which do not support del-
egation at all, but which nevertheless provide similar
support for incremental modification. This was
shown by Borning already in 1986, but the ideas
were not taken any further. Kevo is an attempt to
prove that delegation-free prototype-based languages
are indeed feasible and practical.

Introduction to Kevo

Kevo is a prototype-based language designed around
self-sufficient and concrete objects, By self-suffi-
cient, it is meant that each Kevo object contains all
the properties needed for implementing a certain
abstraction, and that these properties are logically
independent of the other objects’ properties. This is
different from Self which relies heavily on sharing,
and requires the programmer to divide objects into
separate traits and prototype structures. By concrete,
it is meant that Kevo allows the programmer to
manipulate each object directly, either on a per-
object or per-group basis.

Kevo does not support inheritance in the traditional
sense. And unlike many prototype-based object-ori-
ented systems, Kevo does not support delegation.
Instead of inheritance and delegation, the essence of
inheritance - incremental modification - is captured
using concatenation, i.e., by duplicating existing
objects and by allowing flexible editing and combi-
nation of objects. In practice, concatenation is sup-
ported by providing two user-redefinable copying
operations, new and clone, and a set of module oper-
ations that allow different kinds of modifications to
be performed on objects. For instance, to create a
ColoredPoint object, one would simply copy an
existing Point object, and then add the desired new
properties to the copy using the module operation
ADDS. Late binding of methods and variables
ensures that earlier defined (“inherited”) properties
can adapt to later modifications in an incremental
fashion.

As a result of the above mentioned arrangements,
Kevo objects look quite different from Self objects.

110

Unlike in Self, in which objects are composed of two
separate parts - traits and prototypes - Kevo objects
are viewed as logical wholes that do not share prop-
erties with each other, unless the programmer really
wishes so. From the logical point of view this means
that even the methods of objects are independent, and
can be modified without affecting the other objects in
the system. (Note that at the implementation level
virtual copying techniques are used extensively to
conserve memory, and therefore physically methods
may be shared although logically they are not; the
programmer is not aware of such sharing in any way
other than checking the megabytes-used-meter).

One apparent shortcoming of a naive object model
supporting fully independent objects is the inability
to manipulate larger groups of objects at once. In
practice, having to, e.g., fix the same bug in possibly
thousands of copies of the same object manually
does not sound very appealing, and therefore a mech-
anism for groupwise manipulation is needed. To
overcome this problem, Kevo internally maintains
information about clone families: groups of objects
with similar behavior and structure. These families
allow objects to be rapidly compared against other
objects, serving as a guideline for change propaga-
tion when larger groups of objects need to be modi-
fied. For instance, to add a new method or a variable
to all ColoredPoint objects, one would apply a spe-
cial groupwise module operation ADDS* to one of
the existing ColoredPoint objects.

Due to the absence of inheritance and delegation, the
Kevo system is organized quite differently from most
other object-oriented systems. Instead of inheritance-
or delegation-based structuring, Kevo relies heavily
on part-whole based structuring, or composition; the
system is divided into increasingly smaller sub-
systems, modules or applications, according to the
needs of the programmer, using objects as “directo-
ries” to other objects. As a result, objects belonging
to one subsystem can be kept in one place, without
having to introduce additional structuring facilities
such as class categories or modules. The resulting
structure resembles conventional file systems, mak-
ing the system intuitive to learn and use.

Our current implementation of Kevo is built around a

straightforward, multitasking threaded code inter-
preter. Besides basic optimizations such as inline
caching, no advanced compilation techniques have
been used, and therefore the system cannot compete
with Self in performance. Otherwise the implementa-
tion is fairly complete, featuring an iconic user inter-
face that allows the programmer to maneuver in the
object hierarchies, inspect and alter the variables of
objects, add, remove and rename variables and oper-
ations, redefine and invoke operations, and define
new objects on the fly. Additionally, tools are pro-
vided for visually analyzing the commonalities and
differences between objects, as well as controlling
the execution of a virtually unlimited number of
quasi-concurrent tasks. In general, our experiences
with Kevo have been very positive, and we are cur-
rently working on a next-generation implementation
to make the system even more practical.

Benefits/Issues of Prototypes vs. Classes

Prototypes have many benefits especially when
exploratory programming is concerned. They are
cognitively more lightweight than classes, support
direct manipulation more naturally, avoid many mod-
ularity problems of class-based systems, and result in
simpler and conceptually more elegant language
implementations. Considering these benefits, it is
appropriate to ask why haven’t prototype-based sys-
tems received more widespread acceptance thus far.
Besides the easy explanation - lack of maturity - the
best answer to this question seems to be that there
has been an over-emphasis on technical issues. The
advocates of prototype-based systems have failed to
advertise the conceptual benefits of prototypes, and
emphasized technical curiosities instead. While fea-
tures such as unanticipated sharing of data slots,
dynamic inheritance, and prioritized parents are often
useful, they are questionable and even dangerous in
serious, large-scale software development. Com-
pared to other issues, these features have received
considerable attention in the literature, diverting the
focus away from the real benefits of prototypes, and
may have increased resistance against adopting pro-
totype-based techniques more widely.

In summary, prototypes are beneficial, but a more

111

concept-oriented view of prototypes is still lacking,
and this is exactly what we should be aiming at in the
future. Delegation-free languages serve as a promis-
ing alternative in this respect.

Illustrations.

Note: due to the use of virtual copying techniques,
Kevo objects look very different depending on
whether they are examined from the logical or imple-
mentation point of view. The figures below illustrate
Kevo objects strictly from the logical viewpoint, and
any optimizations performed by the actual Kevo sys-
tem are ignored.

(1) How does Kevo represent Cartesian points?

I x I
Y 4

+ how to add points

Figure 1: A Cartesian point in Kevo.

(2) How would a programmer make a refinement of
the Cartesian point abstraction to create a kind of
colored point with x, y, and color attributes?

Simply by making a copy of an existing Cartesian
point object, and by adding the desired new variables
and methods to the copy.

I x
I

I
I

3 I

Y I 4 I
+ how to add points

color “red”

1 becomeBluer 1 how to be more blue 1

Figure 2: A colored point in Kevo.

(3) How would these colored points share colored
point spec@c behavior (such as a methodfor the
message “becomeBluer”)?

From the logical viewpoint, Kevo objects do not
share any behavior. Rather, each object maintains its
own copy of each method. In order to, e.g., redefine a
certain method in all the ColoredPoint objects,

groupwise module operations are used.

Li

1 becomeBluer I how to be more blue I

II
color “red”

becomeBluer how to be more blue

Figure 3: %o colored points in Kevo.

Antero Taivalsauri is a research engineer at
Nokia Research Center, Helsinki, Finland. Hefin-
ished his doctoral thesis in 1993, focusing on pro-
totype-based languages and problems of
traditional object-oriented systems. He is the
designer of Kevo, a prototype-based language
that he implemented during his stay as a visiting
researcher in Canada in 1991 -I 992.

References.

Taivalsaari. A., Kevo - a prototype-based object-ori-
ented language based on concatenation and module
operations. University of Victoria Technical Report
DCS-197-lR, Victoria, B.C., Canada, June 1992

Taivalsaari, A., Concatenation-based object-oriented
programming in Kevo. Actes de la 2eme Conference
sur la Representations Par Objets RPO’93 (La
Grande Motte, France, June 17-18, 1993), Published
by EC2, France, June 1993, pp.117-130

Taivalsaari, A., A critical view of inheritance and
reusability in object-oriented programming. Ph.D.
thesis, Jyvaskyla Studies in Computer Science, Eco-
nomics and Statistics 23. University of Jyvaskyla,
Finland, December 1993,276 pages (ISBN 95 l-34-
0161-8).

112

