
An Overview of Modular Smalltalk

Allen Wirfs-Brock
(503) 242-0725

Instantiations, Inc.
1020 SW Taylor St., Suite 200

Portland, OR 97205

Brian Wilkerson
brianw%spt.tek.com@relay.cs.net

(503) 627-3294

P.O. Box 500, Mail Sta. 50-470
Tektronix, Inc.

Beaverton, OR 97077

Abstract
This paper introduces the programming language
Modular Smalltalk, a descendant of the Smalltalk-
programming language. Modular Smalltalk was
designed to support teams of software engineers
developing production application programs that can
run independently of the environment in which they
are developed. We first discuss our motivation for
designing Modular Smalltalk. Specifically, we
examine the properties of Smalltalk- that make it
inappropriate for our purposes. We then present an
overview of the design of Modular Smalltalk, with an
emphasis on how it overcomes these weaknesses.

Introduction
Modular Smalltalk is an evolution of the Smalltalk
programming language and system designed to
support teams of software engineers developing
production application programs that can operate
under the control of standard operating systems and
display environments.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise., or to republish, requires a fee and/
or specific permission.

@ 1988 ACM O-8979 l-284-5/88/0009/01 23 $1.50

The Smalltalk programming language and system was
originally intended to be the software component of
the Dynabook, a portable personal information
management tool [Kay77a, Kay77b]. As described by
one of its developers, its purpose was “to support
children of all ages in the world of information”
[Inga78]. Smalltalk is a uniformly object-oriented
system which integrates a programming language and
its implementation, development tools for the
language, a window-oriented user interface manager,
and other system software services. The development
of Smalltalk was an evolutionary process which took
place over an extended period [Inga83]. Its
developers typically built a version of the system,
experimented with it, and finally used what they
learned to build the next version upon the base of the
current version. The final result of this process was
the Smalltalk-80m system [Gold83, Gold84].

As SmaIltalk became available to a broader group of
users, it first found acceptance as a rapid prototyping
system. The fact that Smalltalk proved to be an
excellent prototyping tool should not be surprising, as
Smalltalk’s developers had themselves used the
system in this manner. However, outside of research
laboratories, prototypes are not viewed as ends unto
themselves but rather steps on the path towards the
development of a final product or solution. The
success of prototype applications developed using
Smalltalk has led many Smalltalk programmers to
look for ways to develop and deliver the final
production versions of applications using Smalltalk.
These attempts have so far had only limited success.

September 2530,1988 OOPSLA ‘88 Procet$dir\gs 123

While we have have found the Smalltalk language a
very effective tool for building complex systems, we
believe it is currently unrealistic to expect that an
excellent rapid prototyping system can also be an
excellent application delivery system. If Smalltalk is
to be widely used to develop production applications,
then the language, its development environment, and
its implementations need to be re-engineered for that
purpose. Modular Smalltalk is an offshoot of the
Smalltalk language which is specifically designed to
support the engineering of production application
programs. Modular Smalltalk will ultimately consist
of a formal language specification, an essential
module and class specification, an incremental
development environment, and a production-quality
compiler. This paper addresses the architectural
features of the Modular Smalltalk language.

In the following section we will discuss specific
difficulties of conventional Smalltalk implementations
for producing production applications. We then
present the design goals of Modular SmalItalk.
Finally we present a general overview of the Modular
Smalltalk language.

Smalltalk- as a Production Tool
As a tool for software development, Smalltalk- has
some serious drawbacks. These include

the image paradigm,

a confusion between the language and its
programming environment,

a confusion between the language definition and
its implementation,

the ability to learn the system, and

its performance.

The Image paradigm

Conventional Smalltalk systems are built around a
virtual image [Gold83]. A virtual image is the
dynamic data structure representing all code and data
for the running Smalltalk system. This includes not
only the application data, but the application programs
themselves. It also includes the tools (compiler,
editors, debuggers) for building programs, and for
basic system support facilities such as window and
file management. All code and data are represented
as objects described by classes which are themselves
objects. Both application and system objects share

common class definitions. Applications are built by
incrementally adding or modifying class definitions
within a running image. A Smalltalk application
“program” is in effect a set of edits to some baseline
virtual image.

However, applications are not best defined as a set of
incremental changes to some base environment.
Other programmers may have also made a set of
changes to their environments. In practice, it proves
impossible to predict when two applications, two sets
of independently made changes, will conflict.
Conflicts can also occur during the engineering of a
single application. Engineers working together can
never be sure when the changes made by one will
conflict with the changes made by another. The
ability to refine existing programs is similarly
hampered.

Furthermore, because any application can access and
modify any class or object in the entire system, all
dependencies between an application and other
features of the system are implicit. It becomes
difficult to prove that any given feature of the system
is not used. It therefore becomes very difficult to
extract the application from the surrounding system.

Also, every aspect of the system is open to inspection
and modification. Changes made by an application
for its own purposes can effect the operation of the
system. For example, an application can modify a
class in such a manner that it unintentionally
introduces errors into the compiler or the debugger.

This can also cause problems for the distribution and
continued support of applications. If users may
change anything about their own systems, it becomes
impossible to support an application that depends
upon certain features of that system remaining stable.
Similarly, user applications are vulnerable to the
effects of system revisions by the system developer.

Another result of the image paradigm is that
applications may rely upon a part of the state of the
image for which there is no code to reproduce the
state. For example, a programmer might execute code
in a workspace to initialize the state of an object
without including that code in the application. If the
application was loaded into another image, there
would be no mechanical means to perform the
appropriate initializations

124 OOPSLA ‘88 Proceedings September 25-30,198&l

Confusion between language and
programming environment

With conventional Smalltalk implementations, no
clear distinction exists between the language and the
environment in which programs are written. No
distinction is made between the language and the
standard set of abstractions (classes or components).
No distinction is made between the standard set of
abstractions and the implementation of the
environment.

Because of these confusions, it becomes effectively
impossible to build a new implementation optimized
for a different purpose, for example the delivery of
stand-alone applications instead of a system for rapid
prototyping. Features implemented for the sake of the
programming environment are used by programs,
compounding the confusion so that neither
implementor nor programmer can say which features
of the environment are essential to the language, and
which are just quirks of the implementation of the
environment. If implementors need to reimplement
the system anyway, they are forced to guess. For
example, is the ability to dynamically’add a method to
a class a convenience of a programming environment
designed for rapid prototyping, or is it an essential
feature of the language definition?

Confusion between language definition and
implementation

One of the main principles of object-oriented
programming has been said to be separating the
“what” from the “how” IRobs81]. But the
Smalltalk- language fails to make this distinction at
the grossest level. If the “what” is taken to be the
language specification, and the “how” is taken to be
the language implementation, Smalltalk- fails to
separate these. For example, one would like a clear
distinction between what it means to send a message,
and a particular implementation of message-sending.
No such distinction has ever existed for Smalltalk-80.
This confusion even extends to the terminology used
by Smalltalk programmers to describe the behavior of
programs. Smalltalk programmers may be frequently
heard speaking of “message lookup” but seldom, if
ever, use phrases such as “message binding” or
“message resolution” to describe the activity of
sending a message to an object. Because of this
confusion between language definition and
implementation, a programmer can write an
application that depends upon representational or
algorithmic details of the canonical implementation of
the virtual machine. All implementations of

Smalltalk- must mimic these details, regardless of
the effect upon the efficiency of the implementation.
At best an implementation may “cheat but not get
caught” [Deu t861.

The Smalltalk- system was originally designed as a
self-hosted, incrementa online program development
environment. As such, not only was it required to
support dynamic modification of a running program
but the image implementation model required such
modification be accomplished using reflective
operations upon the running system. A program may
make use of these same operations to dynamically
modify itself. While a handful of experimental
applications have made effective use of the reflective
characteristics of Smalltalk- [Bom81], the vast
majority of applications do not. Should reflectiveness
be considered an essential characteristic of Smalltalk,
or an implementation detail? Must all
implementations, including those targeted for ROM-
based embedded systems, support reflective
operations?

Learnability of the system

The Smalltalk- system is notably difficult to learn
[Bom87]. The size and complexity of the system
(hundreds of classes and thousands of methods) alone
serves as a formidable impediment. In addition,
various conceptual difficulties can hamper the novice,
such as metaclasses, or the distinction between
methods and blocks. Other conceptufil difficulties
spring from the confusions discussed above. If
Smalltalk is to become a widely used system, these
problems need to be addressed.

Performance

Existing Smalltalk- systems are slower and less
efficient than more conventional languages, even
other dynamic languages such as LISP. Present
systems are optimized for incremental rapid
prototyping systems, but they are not optimized for
execution speed.

While the poor performance of Smalltalk
implementations is frequently attributed to the
dynamic binding of procedure names to procedure
implementations (message send overhead), commonly
known techniques allow dynamic message binding to
be only slightly more expensive than a standard
procedure call. A much more severe performance
problem comes from the inability of a Smalltalk
compiler to perform any significant local or global
optimization. This is a direct consequence of the

September 2530,1988 OOPSIA ‘88 Proceedings 125

reflective nature of the language. Given the
possibility of reflective operations, it becomes
impossible for a compiler to reason definitively about
a program and hence perform any optimizations.

For example, it might be reasonably expected that the
binding of message-sends to self could be statically
resolved since the class of self can be determined at
compilation time *. Given such a static binding, it
should be possible to inline expand the target method
and then apply standard local optimization techniques.
Unfortunately, such optimizations prove to be
impossible since the program may arbitrarily modify
any of its methods. At best, an implementation could
attempt to maintain both optimized and unoptimized
representations of each method and switch
representations if a reflexive operation is performed.

As another example, consider that it is impossible
analytically to remove classes or methods from an
image. Even if there are no lexically apparent
references to a class or a message selector, a program
may dynamically construct a new method which
references them.

Modular Smalltalk Design Goals
To correct these deficiencies, we are designing a new
generation of Smalltalk that we call Modular
Smalltalk. Modular Smalltalk departs from
Smalltalk- with the addition of a module facility
and the elimination of all reflexive operations. In
addition, we have sought to clarify and modify the
definition of Smalltalk- to make it more
semantically consistent. The module facility supports
the encapsulation and hiding of classes. Modular
Smalltalk is designed to support the development of
separately deliverable applications - an implicit goal
of most software engineering efforts.

Modular Smalltalk is an object-oriented programming
language. Using Modular Smalltalk, programs can be
developed within an interactive development
environment similar to that of Smalltalk-80.
Programs developed within the Modular Smalltalk
environment, however, can then be delivered as
stand-alone applications.

Modular Smalltalk differs from other proposals to
modify or extend Smalltalk- such as Deltatalk
[Born871 in that it specifically addresses the problems

* This requires the additional optimization that all inheritance
issues be resolved at compilation time, and this optimization
is itself greatly complicated by Smalltalk’s reflectiveness.

of building stand-alone production programs instead
of enhancing Smalltalk’s utility as an exploratory
programming system. A principal goal of Modular
Smalltalk is to maintain a clear distinction between
the language specification, its implementations and its
development environment. In addition Modular
Smalltalk seeks to:

support the development of application programs
that execute independently of their development
environment,

allow for team engineering efforts,

provide consistent and explicit semantics,
independent of any implementation,

allow for the possibility of efficient
implementation,

be a recognizable descendant of Smalltalk-80,
thereby allowing existing Smalltalk
programmers to master it quickly, and

be simple enough for new Smalhalk
programmers to learn easily.

The -Modular Smalltalk Language
Modular Smalltalk defines a language with a
specification that is independent of its
implementation. The semantics of Modular Smalltalk
allow for many varying efficient implementations.
Modular Smalltalk follows the commonly understood
syntax and semantics of Smalltalk-80, but differs in
the following major respects:

The language is oriented towards the
construction of programs, which are stand-alone
entities.

Programs consist of modules. Modules provide
the units to divide the functional and
organizational responsibility within a program.

Modules encapsulate class definitions and other
constants.

Class definitions are static, declarative syntactic
structures.

Modular Smalltalk is not reflexive.

126 QOPSLA ‘88 Proceedings September 2530,1%8

In addition, Modular Smalltalk augments
Smalltalk- in several ways. It provides explicit
syntactic support for practices that have heretofore
been merely commonly used programming
conventions. It also addresses several commonly
recognized deficiencies, especially the absence of
multiple inheritance.

Programs
A program in Modular Smalltalk is the unit that
defines an independent application. A program
defines the classes of all objects used within an
application. It also defines the sequence of actions
performed with instances of those classes when the
program is executed.

A program is a collection of modules. One module is
the main module of a program. For example, a
program to play the game of blackjack might consist
of modules implementing the blackjack game itself,
playing cards, user interface components, graphics
packages, data structures, random number generators,
and the kernel classes required by all Modular
Smalltalk programs.

Modules can depend upon definitions from other
modules, but no module can depend upon the main
module. The dependencies of modules within a
program form a directed, acyclic graph with a single
root node (the main module). In the blackjack
example above, the blackjack module would be the
main module and would depend on definitions from
the playing card module, among others.

When a program is executed, modules are initialized
in the order given by a depth-first traversal of the
dependency graph. No module is ever initialized
more than once.

The objects upon which a program operates exist only
within the context of the executing program. That is,
independent executions of the program would operate
upon distinct sets of objects. The classes that a
program defines or uses and the objects that a
program manipulates are separate and distinct from
the classes and objects used to construct the
development environment for Modular Smalltalk.

Modules
Modules are program units that manage the visibility
and accessibility of names. A module defines a set of
constant bindings between names and objects.
Modules are not objects and have no existence
(representation) during the execution of a program. A

module typically groups a set of class definitions and
objects to implement some service or abstraction. A
module will frequently be the unit of division of
responsibility within a programming team.

A module provides an independent naming
environment that is separate from other modules
within the program. A module consists of a sequence
of named object definitions. A named object
definition introduces a static binding between an
identifier (a name) and an object. Because the
binding is static, the named object may be used as a
constant value within expressions. Named objects
may not be the target of an assignment statement.
Modular Smalltalk has no global variables. All
mutable global state is encapsulated within objects.
Where Smalltalk- makes extensive use of global
variables to name the classes and utility objects that
make up a program, Modular Smalltalk uses named
objects.

In the blackjack example, the playing cards module
might define the classes Card and CardDeck, as well
as the constant collections of Ranks and Suits. An
example implementation is given in the appendix.

Names must be uniquely defined within a module: no
name clashes are allowed. Because a naming conflict
is one form of conflict possible when teams of
engineers work together on a program, modules
support team engineering by providing rigorously
isolated name spaces.

A module controls the visibility of named objects.
Principles for the management of names follow the
commonly accepted principles for the management of
separate name spaces, as exemplified by languages
such as Modula-2 [W&84] or Ada [Booc83].

Definitions

There are two ways to introduce a named object
binding into a module.

l The binding may be defined locally by the
module, or

l it may be imported from another module.

A local definition consists of either:

l an expression whose value is the object to which
the name is bound, or

l a class definition.

September 25-30,1988 OOPSLA ‘88 Proceedings 127

Imports

Modules can import other modules. Imported
modules introduce additional bindings. Imported
bindings are specified by naming the module in which
the binding is available, and the desired named object.

Modules must specify explicitly which other modules,
and the bindings within them, they wish to import.
When a module imports another module, it implicitly
limits which object names are imported. Unless a
module specifically requests an object named
Belshazzar, for example, it will not import that
object. A module, therefore, consists of:

l a set of bindings between names and objects, and

l a declaration of other bindings to import<

As stated earlier, all names, whether local or
imported, must be unique within a module.
Nevertheless, sometimes a module may require the
import of an object with a duplicate name from
another module. A renaming mechanism allows for
the resolution of such name clashes. When a module
imports another module, it may rename any object it
imports. It may specify, for example, that it import an
object named Joe as Joseph.

The management of libraries of modules is considered
to be outside of the scope of the Modular Smalltalk
language definition. Modules will be the most
common unit of code reuse by Modular Smalltalk
programmers. A typical implementation would
include a module library manager that would manage
a repository of a wide selection of modules and
versions of modules. In order not to place undue
constraints on the design of such library managers,
Modular Smalltalk module names are literal strings
whose interptetation is implementation defined.

Visibility

A module also incorporates a mechanism to make
named objects selectively available to users of the
module. Each named object, in addition to binding an
object with a name, includes a visibility attribute
allowing the programmer to specify whether the
binding is to be public or private.

Names defined in a module are visible throughout that
module. Names defined in a module are not visible
outside that module unless the programmer explicitly
specifies otherwise. If a named object is specified to
be public, it is exported and may be made visible to
another module. Even so, the named object is not

visible to another module unless the other module
specifically imports the module containing it, and the
named object itself.

The ability to specify that a given name is private to a
module provides explicit syntactic language support
for information-hiding. This enhances the
maintainability of an application by making expIicit
all dependencies.

Because all dependencies of a program must be
explicit to support its delivery as a separate
application, Modular Smalltalk has no global object
naming space. No objects are implicitly available to
all modules. Objects are available to a module by
name from two sources only:

l the named objects defined within the module
itself, and

l named objects declared public within imported
modules, and explicitly requested by the module.

Modules control the accessibility of the names of
objects, not the objects themselves. Objects may be
freely passed as values between methods defined in
different modules regardless of whether the object’s
name or its class name is visible in either module.
While modules restrict the visibility of class names
they do not restrict the use of message selector names.
A program includes a single program-wide name
space for message selector. A mechanism other than
modules, discussed in the section entitled Methods,
is provided to restrict selector usage.

Classes
In many ways, classes in Modular Smalltalk are quite
similar to their Smalltalk- counterparts. There are
certain crucial differences, however.

l Class definitions are static.

l Multiple inheritance is supported.

l Modular Smalltalk has no metaclasses.

l Encapsulated state is uniformly accessed using
message selectors instead of variable names.

Class Definitions

A class definition is not an object and has no
existence during the execution of a program. A class
definition is also not an expression. New classes
cannot be created using message-sends.

128 OOPSL4 ‘88 Proceedings September 2530,19fW

Instead, a class definition is a static description of the
behavior* of a group of objects. Naturally, class
definitions can be manipulated within a development
environment. However, because Modular Smalitalk
is not a reflexive language, a running program may
not modify its class definitions.

A class definition defines two sets of behavior:

l the behavior of instance objects, and

l the behavior of a unique class object.

A class object is a named object introduced by a class
definition. It is the object bound to the name
associated with the class definition. Class objects in
Modular Smalltalk provide a place to define behavior
such as instance creation methods.

A class definition is considered to define the behavior
of the associated objects completely. There are two
ways a class definition may specify its object’s
behaviors:

l the behavior may be inherited, or

l the behavior may be locally defined as part of the
class definition.

Behavior may be inherited from zero or more other
class definitions (the class’ superclasses). Even
though behavior is inherited, it is still considered to be
part of the inheriting class’ definition. Modular
Smalltalk does not imply or require any sort of
dynamic superclass message lookup algorithm.
Dynamic lookup remains a valid implementation
technique, one that is especially useful in incremental
development environments. Modular Smalltalk
specifies the effect of sending a message, not the
mechanism for sending a message.

Local behavior definitions consist of a set of
mappings between message selectors and their
implementations. A local definition may mask or
override an inherited definition. Each selector has a
visibility attribute; it may be declared public or
private to its class.

Encapsulated state is declared and inherited as a
special case of method definition.

* By behavior we mean the comDlete set of message selectors
recognized by an object and their associated me&d
definitions.

Variables

Instance variable names do not exist within Modular
Smalltalk. Instead, instance variables are referred to
using accessing or modifying messages. For each
instance variable defined by a class, two accessing
methods are defined: one to set the value of the
variable, and one to retrieve to value of the variable.
Variable state can only be accessed or modified using
message sends that invoke the accessing methods.

An accessing method only stores or retrieves the
value of its associated variable. It performs no other
computations. For example, one could use the unary
selector getY to access an object’s instance variable.
One could also use the keyword selector setY: to
modify the instance variable. The accessing and
modifying protocols need not be lexically similar.

Referring to variables entirely through the use of
accessing protocol makes it easier to reuse existing
code by subclassing [Wirf88]. It also simplifies the
semantics of multiple inheritance, as the semantics of
variable inheritance is exactly the semantics of
method inheritance.

Unlike Smalltalk-80, which defines six or more
different types of variables that may appear on the left
hand side of an assignment operator, Modular
Smalltalk defines exactly one type, block temporaries.
All other variable state is modified using message
syntax.

Multiple Inheritance

Modular Smalltalk supports multiple inheritance.
Multiple inheritance provides the ability to break free
of a rigid, hierarchical view of the world. It allows
programmers to specify that instances of a given class
behave a great deal like instances of another class, but
also share aspects of their behavior with a third,
unrelated class. This mechanism is sufficiently
compelling that Smalltalk- has tried to incorporate
it [Bom82, W&86]. Problems arise with multiple
inheritance, however, when a class tries to inherit
from two or more superclasses that contain conflicting
method or variable definitions.

September 25-30,1908 OOPSLA ‘88 Proceedings 129

Modulit- Smalltalk addresses the problem of
conflicting methods in the following manner. A class
may have any number of superclasses, including
none. A class inherits behavior equally from all of its
immediate superclasses (some of which may itself be
inherited behavior). There is no order dependency
among superclasses.

It is an error for a class to inherit two different
definitions for the same message selector. Such an
error can be avoided by explicitly redefining the
conflicting selector in the class itself. Notice,
however, that inheriting the same method definition
(one defined in a single lexical location) from
multiple superclasses is not an error. Because
instance variables are specified in terms of message
selector definitions, the rules for variable inheritance
and conllict resolution are exactly those that apply to
any other methods.

Metaclasses

In Smalltalk- all objects must be an instance of
some class. The class defines the behavior of its
instances in terms of the message lookup algorithm.
Since classes are themselves objects, they too must be
instances of a classes. Metaclasses are the classes of
which each class is an instance.

In Modular Smalltalk, the behavior of every object is
specified by a class definition. This includes both
instance and class objects. Class definitions am not
objects. Therefore the behavior of an object is not
dependent upon any other object and hence an object
does not need to be an instance of a class.
Specifically, class objects do not need a class.
Therefore, Modular Smalltalk needs no metaclasses.

Class objects have the ability to instantiate the
instance objects described by their class definition.
Class objects are instantiated as part of the module
initialization process. The standard definition of the
class message in Modular Smalltalk is to return the
class object defined by the class definition that
describes the behavior of the receiver. Thus the
message class sent to an instance object will return
its associated class object and the class message sent
to a class object will return that same class object.

Metaclasses are one of the features of Smalltalk-
that make it difficult to teach and understand
[Bom87]. The Modular Smalltalk model of class and
instance objects is a direct reflection of the class
behavior/instance behavior model presented by the
standard Smalltalk- browser. Metaclasses are one
implementation of this model, one that is difficult to

understand. Because the semantics of classes and
instances are defined independently of any
implementation, Modular Smalltalk is easier to leam
and use.

This model of a syntactic class definition which
defines the behavior of both class and instance objects
is essentially the same as used by the Objective-C
language [Cox863. Objective-C uses the termfactory
object for class objects,

Class Extensions

Class extensions provide the ability for a module to
add protocol to existing classes defined outside the
module. This mechanism is another case where the

Modular Smalltalk programming language provides
explicit syntactic support for a common object-
oriented programming convention, that of specifying
a default behavior for all objects.

Extensions provide the ability to encapsulate behavior
supporting a function that may be common to many
classes, spread across several modules. For example,
an application might require that objects of a wide
variety of classes be able to store themselves in a file.
Just such a system has been implemented for
Smalltalk- [Vegd86]. It is reasonable to assume
that most of these classes are defined in modules other
than the module of the application requiring this
ability. Let us further assume that none of these
classes have the desired ability.

Because this ability is required for a wide variety of
classes, very different methods must be used to store
the different kinds of instances. Using the mechanism
of class extensions, it is possible to define a module to
provide the needed storage functionality. This
module could define extensions to all the classes that
require the functionality. Each class extension would
consist of the small number of methods required to
implement the functionality. In this way, the storage
module becomes a component that can be included in
any application requiring this functionality.

Class extensions can only add behavior. They cannot
modify or remove behavior.

Methods
Method definitions associate a message selector with
an implementation.

Unlike Smalltalk-80, Modular Smalltalk message
selectors are not instances of class Symbol (for
example, they are not synonymous with their textual

130 OOPSLA ‘88 Proceedings September 2530,1988

representation). Instead they are instances of class
MessageSelector. Message selectors may not be
dynamically constructed and specifically, strings may
not be dynamically converted into message selectors.
Message selectors still have a literal representation, so
that one can, for example, use:

anArray perform: (#(#first #second #third) at: n)

Disallowing the dynamic construction of message
selectors allows an implementation to compute for a
program the set of defined but unused selectors. Code
need not be generated for such selectors.

Implementations

The implementation of a method can be either

l a literal block,

l the keyword primitive,

l the keyword abstract, or

l the keyword undefined.

The ordinary implementation of a method in Modular
Smalltalk is a block which is evaluated when a
message is sent. Modular Smalltalk thus simplifies
Smalltalk-80, unifying the semantics of block and
method evaluation.-

Because methods are blocks, the default value
returned from a method is the value of the last
expression in the block. The default value returned
from a method is not self, as it was in Smalltalk-80.

Blocks in Modular Smalltalk can declare temporary
variables. Blocks can be lexically nested with
properly nested variable scope, and blocks are re-
entrant. This means that separate invocations of the
same block do not share the same state for block
arguments and temporaries, thus allowing two or
more executions to overlap in time.

The implementation primitive means that the
associated method definition is fully specified by
either the language definition or the implementation.
The method is not specified by Modular Smalltalk
code. Unlike Smalltalk-80, a primitive number is not
associated with a primitive specification. The class
name along with the message selector is sufficient to
uniquely identify the primitive. A special primitive
failure mechanism and associated Smalltalk code is
not used. Instead, each primitive’s specification fully
defines its behavior, including error conditions. This
behavior may include sending other messages. For
example, an integer division primitive specification

might specify that if the divisor is zero, the message
zeroDivide would be sent to the receiver of the divide
message.

Whenever possible, the syntax of Modular Smalltalk
seeks to support what have up to now been only
programming conventions. The method
implementations abstract and undefined are an
example of this support.

Defining a selector as abstract means that subclasses
must provide a definition for the method. It is the
equivalent of the Smalltalk- convention Self
subclassResponsibility. A class that includes
abstract methods, either locally or through
inheritance, is an abstract class and cannot be
instantiated.

If a class inherits an abstract method from one of its
superclasses, the abstract implementation will not
conflict with any nonabstract implementation
inherited from any other superclass. Abstract
methods cannot cause method definition clashes.

Defining a selector as undefined removes the
inherited selector from the behavior of the object. It
is the analog of the Smalltalk- convention self
shouldNotlmplement.

Visibility

Each method includes a visibility attribute; it is either
a public or a private method. The default is public.
Information-hiding, the encapsulation of
implementation details private to an object, is a key
principle of object-oriented programming. Therefore,
private methods have long been a convention of
Smalltalk-80. Modular Smalltalk provides support for
this convention by building it into the semantics of the
language.

When sent to an object, a private selector is
understood if the class description of the receiver is
the same as the class description of the sender.

Private selectors arc inherited by subclasses, which
C~UI therefore use them. The visibility of a message
selector (whether it is public or private) is inherited
separately from the body of the method. Subclasses
can inherit a method body while overriding its
visibility attribute.

131

Conclusion
We believe that Modular Smalltalk will prove to be an
effective tool for the construction of complex
applications. It is easier for novices to learn, while
remaining similar enough that current Smalltalk
programmers will be able to learn it swiftly and
easily. In addition, it supports current software
engineering practices for the following reasons:

l It allows the delivery of stand-alone applications.

0 It allows the protection of proprietary source
code.

l It supports change management and version
control, so that teams of programmers can work
together on a large project without collisions.

l It allows for varying implementations, each of
which can be optimized for different purposes.

[Deut86] Deutsch, L. Peter, private communication

[Gold831 Goldberg, Adele, and David Robson,
Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading
Massachusetts, 1983.

[Gold841 Goldberg, Adele, Smalltalk-80: The
Interactive Programming Environment,
Addison-Wesley, Reading, Massachusetts, 1984.

[Inga83] Ingalls, Daniel H. H., “The Evolution of the
Smalltallc Virtual Machine”, Smalltalk-80: Bits of
History, Words ofAdvice, ed. Glenn Krasner,
Addison-Wesley, Reading, Massachusetts, 1983.

[Kay77a] Kay, Alan C., “Microelectronics and the
Personal Computer,” Scientific American,
September 1977, pp. 230-244.

[Kay77b] Kay, Alan C. and Adele Goldberg,
“Personal Dynamic Media,” Computer, March
1977, pp. 31-41.

[RobsU] Robson, David. “Object-Oriented Software
Systems”, Byte, August, 198 1, pp. 74-86.

[VegdS6] Vegdahl, Steven R. “Moving Structures
between Smalltalk Images,” OOPSLA
Proceedings, 1986, pp. 466-47 1. Also published
in SIGPLAN Notices, vol. 21, no. 11, November
1986, pp. 466-471.

[Wilk86] Wilkerson, Brian C., Inheritance
Mechanisms for Smalltalk-80, Technical Report
CR-86-57, Tektronix, Inc., Beaverton, Oregon,
August 1986.

{Wirf88] Wirfs-Brock, Allen, and Brian C.
Wilkerson, Variables Limit Reusability,
Technical Report SPT-88-07.

[Wirt84] Wirth, Niklaus, “Programming in
Modula-2”, Texts and Monographs in Computer
Science, 2nd ed. David Gries, Springer-Verlag,
Berlin 1984.

Acknowledgements
Many of the ideas incorporated into Modular
Smalltalk grew out of a long series of language design
discussions with Will Clinger, Ralph London and
Steve Vegdahl. Mark Ballard was a major contributor
to the initia1 language design and along with Brian
Wilkerson built the first experimental implementation.
Kit Bradley has provided continuing managerial
support for what has often appeared to be a radical
project. Finally, Lauren Wiener helped us make this
paper and the preliminary language specification real.

References
[Booc83] Booth, Grady, Software Engineering with

Ada, Benjamin/Cummings, Menlo Park, CA.
1983

[Born811 Boming, Alan H., “The Programming
Language Aspects of ThingLab,” CM
Transactions of Programming Languages and
Systems, 3(4), pp. 353-387, Oct. 1981.

[Born821 Boming, Alan H., and Daniel H. H. Ingalls,
“Multiple Inheritance in Smalltalk-80,” AAAI
Proceedings, 1982, pp. 234-237.

[Born871 Boming, Alan, and Tim O’Shea, “Deltatalk:
An Empirically and Aesthetically Motivated
Simplification of the Smalltallc-80 Language,”
ECOOP Proceedings, 1987.

[Cox86] Cox, Brad J., Object-Oriented Programming
An Evolutionary Approach, Addison-Wesley,
Reading, Massachusetts, 1986.

132 OOPSLA ‘88 Proceedings September 25-30, 1988

Appendix
This appendix contains example code for the module
PlayingCards. The code below is formatted in an
informal publication syntax.

Module ‘PlayingCards’
“This module defines four named objects -
CardSuits, CardRanks, Card and CardDeck
- that are used to implement the functionality
of a deck of playing cards. Only the class
CardDeck is exported.”

imports Object from ‘Kernel’
imports List from ‘Collections’
imports UniformDistribution from
‘ProbabilityDistributions’

CardSuits -> #(‘heart’ ‘club’ ‘diamond’ ‘spade’)
” The symbol I->’ means ‘is defined as ‘.‘I

CardRanks -> 1 to: 13

Card -> Class
refines Object

instance behavior

accessing

variable suit suit: (private)
“Answer and set the suit of the

receiver. The suit should be an element of
<CardSuits>.”

variable rank rank: (private)
“Answer and set the rank of the

receiver. The rank of jacks, queens and
kings is 11, 12 and 13, respective/y.”

class behavior

value
“Answer the face value of the receiver.”

?.self rank min: 10

testing

= aCard
“Answer <true> if the receiver represents

the same card as <aCard>.”

?self suit = aCard suit
and: [self rank = aCard rank]

instance creation

suit: suitName rank: ranklndex
“Answer an instance of the receiver

whose suit is <suitName> and whose rank
is crankName>.”

j card f
card := self new.
card suit: suitName.
card rank: ranklndex.
Tcard

CardDeck (public) -> Class
refines Object

instance behavior

accessing

variable cards (private) cards: (private)
“Answer and set the ordered

collection of cards remaining in the
receiver.”

initialize (private)
“Initialize the receiver.”

self cards: List new

addcard: aCard (private)
“Add <aCard> to the receiver.”

self cards add: aCard

deal
“Deal the top card off of the receiver.”

?self cards removeFirst

shuffle
“Shuffle the cards remaining in the

receiver.”

j random j
random := UniformDistribution from: 1 to:

self cards size.
1 to: self cards size

do:
[:source j
j target temp j
target := random next.
temp := self cards at: source.
self cards at: source

put: (self cards at: target).
self cards at: target put: temp]

September 25-30,1988 OOPSLA ‘88 Proceedings 133

dass behavior

instance creation

134

new
“Answer an instance of the receiver

containing all 52 standard playing cards.”

1 deck 1
deck := super new initialize.
CardSuits

do:
[:suit 1
CardRanks

do:
[:rank 1
deck addcard: (Card suit: suit

ra;rzt-A;kn k)]] .

OOPSLA ‘88 Proceedings September 25-30, 1988

