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Abstract
Current compilers are still largely ignorant of the scheduling
of parallel tasks at runtime. Without this information, how-
ever, they have difficulties optimizing and verifying concur-
rent programs.

In this paper, we present a programming model where the
program contains explicit scheduling constraints in the form
of happens-before relationships between scheduled tasks.
This model allows for flexible and fine-grained ad hoc par-
allelism while still enabling us to statically extract an ab-
straction of the runtime schedule. The result of this schedule
analysis can answer the question as to whether two tasks ex-
ecute in sequence, exclusively, or in parallel with each other.

Categories and Subject Descriptors D.1.3 [Software]:
[Concurrent Programming]

General Terms Algorithms, Languages

1. Introduction
With the arrival of multicore systems, parallel programming
is becoming increasingly mainstream. Despite this, compil-
ers still remain largely ignorant of the task scheduling at run-
time. Absent this knowledge, however, a compiler is missing
important optimization and verification opportunities.

In a traditional thread model, the lifetime of a thread and
its dependencies on other threads are not stated explicitly;
rather, they come about as a side effect of executing low
level primitives such as signals and locks. For this reason,
it is hard for compilers to construct an approximation of the
runtime schedule.

Consider the following short Java method:
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void begin() {

this.a = new ThreadA(this);

this.b = new ThreadB(this);

a.start();

//other computations

b.start();

}

Without further information about the lifetime and syn-
chronization of threads a and b, a traditional compiler can-
not verify the absence of data races nor can it optimize the
parallel code.

One alternative to this unstructured parallelism is to
adopt specialized syntactic language features. Systems like
OpenMP [20] and Cilk [5, 21], for example, offer lexically
scoped fork-join style parallelism in place of ad hoc threads.
As a result, these systems are able to better approximate the
parallel control flow. Structured parallelism, however, comes
at the cost of flexibility, making it difficult to model common
patterns such as futures or producer-consumer.

In this paper, we propose a model with explicit task
scheduling that keeps the flexibility of threads and enables
static reasoning. Given two tasks, a schedule analysis can
answer the question whether the tasks are sequential, par-
allel, or exclusive. A compiler can use this information to
make parallelism-related decisions during verification and
optimization phases.

For representing concurrent programs, we introduce two
new primitives to a Java-like language. One primitive sched-
ules a new task and the other explicitly adds a happens-
before relationship between two scheduled tasks (Section 3).
When executing a program with explicit scheduling, the run-
time keeps track of the schedule. The schedule is represented
as a graph that exhibits specific structural properties (Section
4). These properties allow us to statically extract an approx-
imation of the runtime schedule (Section 5). We have imple-
mented a prototype and are working on integrating it with an
existing Java compiler framework (Section 6).

We build upon a large body of related work (Section 7) for
parallel program analysis to design a system that preserves
both flexible, unstructured control flow and static analysis of
the program schedule. To summarize, this paper makes the
following three contributions:
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• We define a representation and execution model of paral-
lel programs with explicit happens-before relationships.

• We identify structural properties of abstract schedules.

• We describe an analysis to extract an abstract schedule
from a program that was written in or transformed into
our representation.

2. The Need for Schedule Analysis
Researchers have developed a wide variety of compiler opti-
mizations and verifications for parallel programs. Adapting
such optimizations to parallel programs, however, requires
information about what parts of the program might be exe-
cuted in parallel. The goal of a schedule analysis is to stat-
ically compute a mapping Task × Task → Relation to
answer the question of how two program tasks relate to each
other:

Sequential: Two tasks are sequential if their execution is
strictly ordered.

Exclusive: Two tasks are exclusive if they can never co-exist
in a single run of the program (e.g., they are scheduled in
different branches of a conditional statement).

Parallel: If two tasks are neither sequential nor exclusive,
they are considered (potentially) parallel.

Generally, the safe and conservative assumption is to
over-approximate the parallelism. As an example, take the
detection of data races. Two activations are allowed to write
to the same data if and only if they are sequentially ordered.
If the sequential execution cannot be guaranteed we must
assume that both tasks are potentially executed in parallel
and report a data race if they access the same data.

There are numerous examples for optimizations that re-
quire or benefit from scheduling information:

Synchronization Elimination aims at removing unneces-
sary synchronization constructs [22]. A synchronization
construct can be removed if all tasks that execute the crit-
ical section are sequentially ordered or exclusive.

Region-based Allocation optimizes garbage collection by
allocating all or some objects created during a (possi-
bly parallel) computation in a contiguous memory re-
gion [24]. The whole region is deallocated as a unit when
the computation finishes. To avoid dangling references,
however, the compiler must ensure that at the point of
de-allocation there are no more parallel tasks that might
use the memory.

Polyhedral Analysis tries to automatically introduce paral-
lelism that was not originally specified by the program-
mer [6]. Parallelism can be increased if, for example, a
compiler can show that a happens-before relationship be-
tween two tasks can be removed without introducing a
data race.

3. Explicit Task Scheduling
Our model is based on lightweight tasks with explicit
scheduling. Compared to traditional threads, explicit happens-
before relationships simplify the analysis of parallel program
schedules while avoiding the limitations of lexically scoped
parallelism.

The basic building block of our execution model is a task.
A task is similar to a method in that it contains code that
is executed in the context of a this-object (or the class,
in the case of static methods/tasks). Unlike a method,
however, one does not call a task, which would result in the
immediate execution of the body, but instead schedules it for
later execution.

As an example, consider a task t() that starts a long-
running computation compute() and schedules a task
print() that will print the result after the computation has
finished:

task t() {

Activation aPrint = sched(this.print());

Activation aCompute = sched(this.compute());

aCompute→aPrint;

}

A schedule is represented as a graph of 〈object, task()〉
pairs. The statement sched(this.print()), for example,
creates a new node with the this object and the print()
task and returns an object of type Activation representing
that node. Like any other object, Activation objects can
be kept in local variables, passed around as parameters, and
stored in fields.

At runtime, a scheduler constantly chooses activations
that are eligible for execution and starts them. The or-
der in which the scheduler is allowed to start the activa-
tions is specified by the edges in the schedule graph. If
the schedule contains a happens-before edge 〈o1, t1()〉 →
〈o2, t2()〉, the scheduler must guarantee that activation
〈o1, t1()〉 has finished execution before activation 〈o2, t2()〉
is started. The statement aCompute→aPrint creates an ex-
plicit happens-before relationship between the two activa-
tion objects aCompute and aPrint.

In the code, the currently executing activation can be
accessed through the keyword now. Whenever a new task
is scheduled, the scheduler automatically adds an initial
happens-before relationship between now and the new ac-
tivation node. Therefore, in the example the scheduler im-
plicitly creates two additional edges now→aCompute and
now→aPrint. These edges prevent the immediate execu-
tion of the new activations and enable the current task to add
additional constraints to the schedule before it finishes.

The above example works, as long as compute() does
not schedule new subtasks. If it does, however, the schedule
would not contain any happens-before edges between the
aPrint activation and those new activations. Therefore, the
scheduler would be allowed to execute aPrint before the
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subtasks have finished, i.e. too early. However, there is no
place where we could create edges to prevent aPrint from
executing prematurely: In t() the subtasks have not yet been
created and inside compute() we are missing a reference to
aPrint.

To solve this we can pass the aPrint object as a param-
eter to the compute() task and use it to schedule the new
subtasks before aPrint:

task t() {

Activation aPrint = sched(this.print());

//pass a reference to aPrint:

Activation aCompute = sched(this.compute(aPrint));

aCompute→aPrint;

}

task compute(Activation later) {

Activation aSubtask =

sched(this.someSubtask(later));

//schedule our subtask before later

aSubtask→later;

}

In compute() we can pass the reference even further
along to aSubtask, thus allowing aSubtask (and its sub-
tasks, if there are any) to push the execution of the aPrint
activation further and further into the future until the whole
computation is finished. Once the subtasks terminate with-
out inserting new tasks, the scheduler will be able to execute
aPrint.

3.1 A Recursive Divide-and-Conquer Example

Figure 1 shows an example of a recursive divide-and-
conquer algorithm with explicit scheduling. The algorithm
sums the elements of an integer array by recursively divid-
ing the array into a left and a right half before computing
their sums. The base case of the recursion is reached for
sub-arrays of length 1, in which case the sum is trivial.

The class ArraySum is an implementation of this algo-
rithm. It defines two tasks: sum() divides the work between
two children and subtotal() adds their results. Figure 2
shows the changes in the schedule when ArraySum is started
with an array of length 3.

Initially, the schedule contains an activation 〈o1, sum()〉
for an ArraySum object o1 plus an activation 〈x, y()〉.
〈x, y()〉 is provided by the client of ArraySum to make use
of the result after the computation is finished. A reference
to 〈x, y()〉 is passed to sum() through the later param-
eter on line 8. In this schedule, the scheduler can choose
〈o1, sum()〉 because there are no other outstanding happens-
before relationships for that activation.

In the first iteration the array length is greater than 1,
which leads to the recursive case starting at line 12. In this
branch, we first schedule this.subtotal() on line 13. We
then add the happens-before relationship subtotal→later
on line 14, creating an edge between the nodes 〈o1, subtotal()〉

1 class ArraySum {

2 IntArray arr;

3 int result;

4 Activation left, right;

5

6 ArraySum(IntArray arr) { this.arr = arr; }

7

8 task sum(Activation later) {

9 if(arr.length() == 1) {

10 result = arr.getInt();

11 //end of this task

12 } else {

13 Activation subtotal = sched(this.subtotal());

14 subtotal→later;

15

16 left = new ArraySum(arr.leftHalf());

17 right = new ArraySum(arr.rightHalf());

18

19 sched(left.sum(subtotal))→subtotal;

20 sched(right.sum(subtotal))→subtotal;

21 }

22 }

23

24 task subtotal() {

25 result = ((ArraySum)left.obj()).result

26 + ((ArraySum)right.obj()).result;

27 //end of this task

28 }

29 }

Figure 1. Example of a recursive divide-and-conquer algo-
rithm with explicit scheduling.

and 〈x, y()〉. As shown in Figure 2, this edge defers the exe-
cution of 〈x, y()〉 until the subtotal is available.

Lines 16 and 17 split the input array into two halves
and pass them to two new instances of ArraySum. We store
references to both instances in the left and right fields so
that the subtotal() task can later read their result.

The subtasks left.sum() and right.sum() are sched-
uled on lines 19 and 20. By passing a reference to the
subtotal activation, the recursive child activations of
sum() can insert their own subtotal activations on line
14, preventing the parent’s subtotal from executing before
the children have finished.

The two scheduling statements add the nodes 〈o2, sum()〉
and 〈o3, sum()〉 to the schedule and bind their later pa-
rameter to the node 〈o1, subtotal()〉. This is shown in
Panel 2 of Figure 2. On the same lines 19 and 20, the
two new activations are also scheduled before subtotal,
thus creating the edges 〈o2, sum()〉→〈o1, subtotal()〉 and
〈o3, sum()〉→〈o1, subtotal()〉.

The scheduler can now choose either 〈o2, sum()〉 or
〈o3, sum()〉 for execution. 〈o2, sum()〉 hits the base case
because its array is of length 1. The base case of the recur-
sion on line 9 does not schedule any new tasks and does
not create any new happens-before edges, so the schedule
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Figure 2. Snapshots of the schedule during execution of the
example from Figure 1 for an array of length 3. Satisfied
happens-before relationships and already executed nodes are
grayed out. Black nodes are eligible for execution. Unfilled
nodes have unfulfilled scheduling constraints.

remains unchanged. The execution of 〈o3, sum()〉, on the
other hand, recursively activates three new tasks: two tasks
to compute the partial results and one task to add them.

Panel 3 of Figure 2 shows the state of the schedule af-
ter 〈o2, sum()〉 and 〈o3, sum()〉 have been executed. The
scheduler continues to execute 〈o4, sum()〉 and 〈o5, sum()〉
in any order and (because of the original array of length
3) both activations hit the base case and leave the sched-
ule unchanged. Therefore, the schedule can execute the
remaining linear chain consisting of 〈o3, subtotal()〉 and
〈o1, subtotal()〉 before continuing with the caller at 〈x, y()〉.

4. Structural Properties of Schedules
This section describes structural properties of schedules.

4.1 Well-formed Schedules

A well-formed schedule guarantees that the scheduler can al-
ways choose at least one activation for execution (progress)
and that every activation is eventually executed (liveness).
Both conditions require that the schedule is a directed
acyclic graph. A cycle in the schedule would result in a
deadlock where two activations block each other and pre-
vent progress. Assuming that the execution of a task always
terminates, an acyclic graph ensures that there is always at
least one node that has only incoming edges from already
executed activations.

Besides being acyclic, a well-formed schedule also re-
stricts the addition of new happens-before relationships. Be-
cause activations can be stored in fields, an activation object
may reference an activation that has already been executed.

task a(Activation later) {
  if(cond) {
    sched(this.b())→later;
  } else {
    sched(this.c())→later;
    sched(this.d())→later;
  }
  sched(this.e())→later;
}

a

b c d

later

e

Figure 3. An abstract schedule with a conditional activa-
tion. The arc groups the exclusive creation edges.

Imagine that one tries to add a happens-before relationship
a1→a2 after a2 has already been executed. The scheduler
has no chance of satisfying this edge; since a2 lies in the
past, the scheduler cannot retroactively execute anything be-
fore that.

To prevent such unresolvable scheduling conflicts, the
scheduler allows an edge a1→a2 to be added from within
an activation a0 only if there exists an edge a0→a2. This
edge ensures that a2 is scheduled after a0 and therefore is
still unexecuted at the time of the edge creation. It is not
necessary to require an edge a0→a1, however, because it
is not a problem if the source of a happens before edge has
already been executed.

4.2 Conditional Activation

Conditional control flow can result in a conditional activa-
tion of a task. The if statement on line 9 of Figure 1, for
example, results in three activations in the else branch but
none on the true branch.

At compile-time, the analysis generally cannot determine
which branch is executed at runtime. Therefore, all possible
executions must be taken into account. Two activations that
are created in different branches of a conditional statement
are exclusive because they cannot co-exist in the same run
of the program. Figure 3 shows an example where node b is
exclusive to both c and d but parallel to e. Nodes c and d are
parallel to each other as well as parallel to e. Graphically,
exclusive edges are connected by arcs.

4.3 Creation Tree

The scheduler implicitly adds an edge between the current
activation now and all the tasks it schedules. Those initial
edges are called creation edges. We depict creation edges
with double arrow heads. Because an activation has exactly
one creator, the creation edges form a spanning tree that is
embedded into the schedule.

The creation tree is a fundamental data structure that
enables many of the operations needed during the analysis.
Its importance comes from two basic properties:

1. If one activation x is the direct or indirect parent of
another activation y in the creation tree, it is guaranteed
that x always executes before y because x creates y.
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Figure 4. Marking nodes in the creation tree to test if x → y
is genuine. The fence is circled by the dotted line, marks are
shown as stars.

2. If x � y is a creation edge, the existence of the child
activation y implies the existence of its parent x, written
y ⇒ x. In fact, this relationship is transitive, thus im-
plying the existence of all parents up to the root of the
creation tree (the initial activation that started the pro-
gram). The inverse, however, is not true. Due to condi-
tional activations, one cannot deduce the existence of a
child activation simply from the existence of the parent.

4.4 Genuine Edges

The analysis uses the schedule and its embedded creation
tree to decide how two activations relate to each other.

Sequential Activations: If two nodes are connected by a
path in the schedule, their execution is ordered and there-
fore sequential. If there is no such path, the activations
are either exclusive or parallel.

Exclusive Activations: If we find that in the creation tree
two nodes are connected to their common ancestor by
conditional edges, the two activations are exclusive.

Parallel Activations: If two nodes are connected to their
common ancestor by parallel edges, the activations are
considered parallel.

Because happens-before relationships can be created con-
ditionally, many parts of the analysis only consider genuine
edges. A genuine edge x → y is an edge where the exis-
tence of the source node x implies that the edge exists, de-
noted x ⇒ x → y. Genuine edges are useful because we
know that if the node x executed at all, it executed before y.
Edges that are not genuine are ignored by the analysis, thus
over-approximating the parallelism.

To determine whether x ⇒ x → y we record all the
activations creators(x → y) that unconditionally create the
edge x → y. We can now rephrase the problem to check if
the existence of x implies the existence of at least one node
c that creates the edge: ∃c.x ⇒ c ∧ c ∈ creators(x → y).
This predicate can be approximated using the creation tree.

Figure 4 shows an example of a creation tree. We want to
compute whether the edge x → y is genuine. The algorithm
starts by marking the fence. The fence is comprised of all
the nodes from the edge source up to the root of the creation
tree. As described earlier, the existence of the fence nodes is
implied by the existence of x.

The goal is now, to check whether any node in the fence
implies the existence of any node that creates the edge x →
y. We do so by iteratively marking nodes, walking up the
creation tree, until we either mark a node in the fence, in
which case the edge is genuine, or no more nodes can be
marked, in which case the edge is not genuine.

The label on edge x → y in Figure 4 indicates that
the edge was created by activations a and b. Therefore, the
algorithm initially marks the nodes a and b and continues
with node 6 as the parent of a and b. Because all its exclusive
children were marked, and thus all possible execution paths
are covered, node 6 can be marked as well. The mark on 6 is
sufficient to further mark node 5 because node 6 was created
unconditionally.

In the example, node 4 cannot be marked because there is
a conditional unmarked sibling of node 5. Therefore, there is
a program execution that will create node x but not nodes a
or b and thus not the edge x → y. This concludes that x → y
is not genuine.

If the program was modified to create node 5 uncondi-
tionally, the algorithm would eventually mark the fence in
node 1, showing that x → y were genuine.

4.5 Recursion

Example 1 contains a recursive activation of the task sum()
on lines 19 and 20. It is important to detect recursion to pre-
vent infinite expansion of the creation tree during analysis.

In our framework, a recursion is detected as soon as an
activation of a task t() directly or indirectly causes the cre-
ation of another activation of the same task t(), but possi-
bly with different this-objects. Multiple occurrences of the
same task t() on an execution trace are not automatically
considered recursive, however. It is necessary that the recur-
sion is “self-induced”; the second activation of t() must be
a result from the first activation of t().

For example, a task s() could schedule o1.t() and
o2.t() and add a happens-before constraint between the
two. In this case, the execution of o2.t() is not considered
recursive even though it is executed after o1.t() because it
did not cause the activation of o1.t().

Given a node in the schedule, we can test for recursive
activation by walking up the creation tree. If the node rep-
resents a recursive activation of a task t(), the creation tree
will contain a parent with the same task t().

The analysis records recursive activations in the ab-
stract schedule by adding recursion edges. Recursion edges
are creation edges that are treated specially when testing
whether two nodes are exclusive or parallel.
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Imagine an activation a that conditionally creates two
activations b and c. In the non-recursive case, b and c are
considered to be exclusive. If there is a recursion around a,
however, a might create b in the first iteration and c in the
second iteration. Because the analysis cannot distinguish the
individual iterations, it must assume that b and c are parallel.

5. Schedule Analysis
At the core of the schedule-driven analysis is a standard
points-to analysis for object-oriented programs such as the
analyses presented in [25] or [23]. The points-to information
is necessary because we need information about the target
object when a task is scheduled. Similarly, because activa-
tions are first-class objects, we need the pointer information
to compute the sources and targets of new happens-before
edges.

A points-to analysis is driven by the control-flow graph.
That is, the order in which nodes are visited and the paths
of the information flow are determined by the edges of the
CFG. In our schedule-driven analysis, the schedule graph
augments this (inter-procedural) role of the CFG for guid-
ing the analysis of parallel constructs. During analysis, the
schedule determines in what order the nodes are visited and
how information flows between them.

The interface between the points-to analysis and the
schedule analysis is an abstract heap: a data structure con-
taining the points-to information. For the schedule analysis,
the abstract heap is a largely opaque data structure that is
defined by the points-to analysis at hand. The schedule anal-
ysis requires methods for merging heaps and for querying a
heap to determine the points-to set for a given variable.

The analysis works by visiting each node in the abstract
schedule until a fixed point has been reached. Analyzing a
single node is done in three steps:

1. A heap abstraction is computed by combining the heaps
flowing into the node through the incoming edges.

2. The combined heap functions as the input to an incre-
mental pointer analysis; the result of this analysis is an
updated heap containing the new points-to information.

3. For non-recursive nodes, the points-to information is
used to find newly created activations and/or happens-
before edges and to incorporate them into the abstract
schedule. If the current node is a recursive activation,
however, we instead add a recursion edge that feeds back
the result heap and re-open the parent for analysis until a
fixed point has been reached.

5.1 Combining Incoming Heaps

The abstract heap at the beginning of an activation a must
approximate the effects of all the activations that, at runtime,
could execute before a. For sequential executions, the exe-
cution order is captured by the happens-before relationships
in the abstract schedule. The question is, therefore, what in-
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Figure 5. Schedule analysis of Example 1.

fluence can parallel activations have on the initial heap of
a?

As it turns out, parallel activations can be ignored if data
races are considered to be illegal and if we are willing to
‘lazily’ detect a data race not in the activations that are
directly involved but only in one of their successors. This
lazy approach is in contrast to other analyses that iteratively
reanalyze threads and update their interference information
until a fixed point is reached. For the rare cases where data
races should be deliberately allowed we can fall back to such
an iterative algorithm, however.

Imagine a special node exit that marks the end of the
program and happens after all other activations. Then there is
always at least one node c for any two unordered activations
a and b that happens after a and b: a →∗ c ∧ b →∗ c. Such
a join node c is the point where a data race detection can
find concurrent accesses to the same memory locations by
comparing the read/write sets of the parallel activations.

Therefore, we can simply assume the absence of data
races between a and b because this assumption will be veri-
fied later in c. If there is no data race, two activations cannot
interfere with each other. For this reason, while analyzing a
we can ignore all unordered activations b, c, . . . and derive
the abstract heap by combining only the heaps of the prede-
cessors connected to a by incoming edges.

5.2 Locks

Synchronizing an arbitrary number of concurrent tasks re-
quires an additional synchronization primitive such as mu-
texes, atomic compare-and-swap, or locks [11, p.37ff]. Inter-
task synchronization requires the analysis to compute the
fixed point for the implicit information flow between syn-
chronization points. For space reasons, we do not discuss
synchronization primitives but the analysis can be extended
to handle them.
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5.3 Analysis of the Example

Figure 5 shows how the schedule analysis proceeds for the
example of Figure 1. The analysis is at the point where a
client has scheduled the sum() task with the abstract object
i1. The client further activated 〈i0, y()〉 to make use of
the result later. The relevant part of the abstract schedule is
shown in Panel 1 of Figure 5.

The analysis can start to analyze node 〈i1, sum()〉 be-
cause all the preceding nodes have been analyzed. The first
step of computing the initial heap is trivial, because there
is only one incoming edge. Therefore, we can immediately
start the points-to analysis.

Because this was the first time the points-to analysis was
started for this node, the resulting abstract heap will contain
the three new activations that were created on lines 13, 19,
and 20 of Figure 1. Panel 2 of Figure 5 shows the updated
abstract schedule after adding the new activation nodes and
the corresponding happens-before edges. It is also shown
that the later parameters of the two sum() activations are
both bound to the same 〈i1, subtotal()〉 node.

This finishes the analysis of the first node and the analysis
consults the schedule to see which node to analyze next. The
options are 〈i2, sum()〉 and 〈i3, sum()〉 because they are
the only nodes that have no unanalyzed predecessors. There
is only one incoming edge to either node and the points-to
analysis can be started immediately. Because for both nodes
we detect a recursion around sum(), we add recursion edges
as shown in Panel 3. This re-opens 〈i1, sum()〉 for analysis.

Back at node 〈i1, sum()〉, the recursion edges require the
analysis to merge the later parameter of the sum() tasks.
As shown in Panel 4, due to the recursion, later may point
to 〈i1, subtotal()〉 or 〈i0, y()〉.

There is more than one incoming edge to 〈i1, sum()〉;
thus we must combine the incoming heaps before we can
start the points-to analysis. Looking at the creation tree re-
veals that 〈i2, sum()〉 and 〈i3, sum()〉 are parallel. A data
race detection can verify that both tasks can safely run in
parallel because both activations access disjoint regions of
the array.

Having merged the heaps, the pointer analysis can be
restarted for node 〈i1, sum()〉. In this example, the heap
before the pointer analysis is equal to the heap returned by
the pointer analysis and we have found a fixed point.

There were no new nodes created, but checking for newly
created edges reveals that the statement subtotal→later
on line 14 results in an additional recursion edge from
〈i1, subtotal()〉 to itself because both variables subtotal
and latermay point to the same 〈i1, subtotal()〉. This loop
represents the chain of subtotal() activations that can oc-
cur at runtime.

Panel 5 of Figure 5 shows the state of the abstract sched-
ule after the sum() recursion has been analyzed. The analy-
sis proceeds with computing the fixed point for the recursive
node 〈i1, subtotal()〉 before finishing with node 〈i0, y()〉.

6. Prototype
We have implemented a prototype of the schedule analy-
sis. The prototype works on a simplified object-oriented lan-
guage and can be found at
http://github.com/chmaruni/XSched. We are now in
the process of integrating the analysis with the WALA Java
analysis library [28].

7. Related Work
The happens-before ordering was first formulated by Lam-
port [14] and is the basis of the Java memory model [15]. De-
spite its significance in the memory model, in Java happens-
before edges can be created only implicitly, for example by
using synchronized blocks or volatile variables.

The goal of a pointer analysis is to statically determine
when two pointer expressions refer to the same memory lo-
cation. Steengaard [26] and Andersen [2] laid the ground-
work for the flow-insensitive analysis of single threaded pro-
grams. Because points-to analysis is undecidable in the gen-
eral case, however, researchers developed a large collection
of approximation algorithms specialized for different prob-
lem domains [12], including parallel programming.

Rugina and Rinard [23] describe a pointer analysis for
programs with structured fork-join style concurrency. For
each program point, their algorithm computes a points-to
graph that maps each pointer to a set of locations. By captur-
ing the effects of pointer assignments for each thread, their
algorithm can compute the interference information between
parallel threads. Computing the interference information re-
lies on the lexical scoping of the parallel constructs; it cannot
handle unstructured parallelism.

By combining pointer and escape analysis, subsequent
projects were able to extend their analyses beyond structured
parallelism [18, 24]. Both analyses compute points-to infor-
mation but do not directly answer as to how two tasks are
executed with respect to each other. Further, the tight inte-
gration of the pointer analysis with the escape analysis and
concurrency analysis is contrary to our goal of separating the
concerns of schedule analysis from points-to analysis.

A may-happen-in-parallel (MHP) analysis can be used to
determine what statements in a program may be executed in
parallel [19]. Without flow sensitivity, relating two program
statements is of limited use for analyzing programs with
unstructured parallelism. If two threads execute the same
statements but in different contexts, for example, a context
insensitive MHP analysis might unnecessarily classify the
statements as parallel. When the programming language is
restricted to structured parallelism, as has been done for the
X10 programming language [1], an intra-procedural MHP
analysis can achieve good results, however.

Barik [3] describes a context and flow-sensitive may-
happen-before analysis that distinguishes threads by their
creation site. Barik introduces a ‘thread creation tree’, which
is closely related to our creation tree. By using threads as
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their model, however, they must conservatively assume that
a parent thread in the tree runs in parallel with each child
thread. In our model a parent activation is known to happen
before any child activation because the creation tree is a
spanning tree embedded in the schedule.

As an alternative to data-flow analysis, many systems
apply techniques based on type theory and related for-
malisms for analyzing parallel programs. Among the many
approaches used are typestates [4], ownership types [7], ef-
fect systems [9, 16], and access permissions [27].

Actor-based systems [10, 13] avoid many synchroniza-
tion issues by removing the need for a global schedule alto-
gether. Actors are entities that communicate asynchronously
by sending and receiving messages to and from each other.
There is no restriction on the order in which messages arrive
and an actor has no direct control over the message passing
mechanism. This lack of synchronization requires the actor
model to avoid mutable shared state whereas our work is
based on a shared-memory model. Process calculi, such as
the join-calculus [8] and π-calculus [17], permit formal rea-
soning about systems with autonomous entities.

8. Concluding Remarks
Fully utilizing the increasing number of cores in modern pro-
cessors requires finer- and finer-grained parallelism. Fine-
grained parallelism is characterized by small tasks with only
short pieces of sequential code. Many powerful compiler op-
timizations for single-threaded code, however, become inef-
fective when the sequential parts are too short. At the same
time, new parallelism-aware optimizations require knowl-
edge about the task scheduling at runtime, but this informa-
tion is not available in current compilers.

Instead of each project inventing its own model of con-
currency, we propose an independent discipline of schedule
analysis. From this, we expect the same beneficial synergies
for future parallel optimizations as with the theory of points-
to analysis, which allowed optimizations to focus on their
optimization problems instead of computing points-to sets.

We believe that static schedule analysis is a necessary
step towards efficient next-generation compilers for multi-
core systems.
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