
A Framework for Dynamic Program Analyzers
Bernd Bruegge, Tim Gottschalk and Bin Luo

Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 152 13

Abstract

BEE++ is an object-oriented application framework for
the dynamic analysis of distributed programs. The main
objective of BEE++ is to provide a common platform for

monitoring and debugging. BEE++‘s class library consists
of a rich set of classes for event processing to support a
variety of visualization, monitoring and debugging needs.

It also provides for customizability of event processing
through inheritance. Users can derive customized graphi-
cal debugging and visualization systems from a set of base

classes. BEE++‘s other design goals are the support of
dynamic program analysis for distributed heterogenous
target applications at runtime with predictable overhead.

The design is based a symmetric peer-peer architecture,
including the ability to dynamically configure target appli,.
cations and monitoring tools. The dynamic analysis tools

can be distributed across nodes, which provides signifi-
cant performance gains for visualization applications. In
addition, the framework can be instantiated for a variety of

communication protoco1s.A TCP/IP based instance of the
framework has been ported to several machine architec-
tures including Sun, Vax and Cray-YMP. BEE++ is based
on BEEI 101, a portable platform for monitoring imple-
mented in C but has been completely reengineered in C++
using the object-oriented design methodology OMT. Per-

formance measurements indicate that the runtime overhead
of the object-oriented version is not signilicant when com-
pared with the C version.

This work was supported in part by Defense Advanced Research

Projects Agency (DOD) monitored by DARPAKMO under Con-
tract MDA972-90-C-0035, and in part by the National Science

Foundation and the Defense Advanced Research Projects Agency
under Cooperative Agreement NCR-8919038 with the Corporation
for National Research Initiatives

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

@ 1993 ACM 0-89791~587~9193/000910065...81.50

1 Introduction

Dynamic program analysis, that is, performance and

correctness debugging, is one of the least understood
activities in software development and is practiced

with the least amount of discipline. It is often

approached with much hope and little planning. There
is still much to be learned about debugging and, in par-
ticular, about what leads to successful debugging.

A major problem is still the inability to express the
mismatch between the expected and the observed
behavior on the level of abstraction maintained by the
user. A general approach is to characterize a program’s
behavior (observable effects and interactions of com-
ponents of a system) as a set of events. Event-based
systems are attractive due to their simplicity. By view-
ing a program as an event-based system, a user can
easily instrument it with event sensors to denote the
occurrence of specific events. Whenever an event sen-
sor is encountered, an event is generated and one or
more tools connected to the system are notified. These
tools are used individually or in concert to detect the
desired correctness or performance information.

The effectiveness of event-based systems relies on
two assumptions: First, the dynamic behavior of a sys-
tem can be partitioned and observed with sensors. Sec-
ond, it is possible to understand the system by viewing
the sequence of events generated by these sensors with
a set of program analysis tools.

The main drawback of an event-based model is that
events are in many ways specific to the way the system
is viewed, which is often related to a certain level of

abstraction maintained by the system. For example,
the process control part of an operating system would

have create-process, suspend-process and resume-pro-
cess as its most simple or primitive events. The same
system with respect to its file I/O subsystem might

OOPSLA’93, pp. 65-82

65

have open-file, create-file and close-file as primitive
events. The problem is even more complicated though,
because in many cases the interesting events are cross-
ing several levels of abstraction, involving a composi-
tion of sensors from low-level as well as high-level
abstractions.

One possible solution that has been proposed is to
provide a small debugging platform with a small set of
primitive events based on which the user can define
composite events[3]. This is a powerful idea, but does
not quite address the full problem. Any decision to
include or exclude a certain event from the platform
will cause problems, because it is easy to foresee
debugging situations for which events cannot be speci-
fied because the primitive events are not part of the
platform.

Another solution is to enlarge the platform and add
a new primitive event every time we encounter the
need for one. Unfortunately, the power of a debugging
tool cannot not come from adding as many nuts and
bolts to the platform as possible. The designer of the
tool can simply not foresee all possible scenarios in
which the tool is going to be applied. In addition, such
a powerful tool can be quite overwhelming and might
not be very helpful for the casual user which we
believe is the main type of user for dynamic program
analysis tools.

We believe the problem has more to do with the
inflexibility in the formulation of primitive events. A
user should be able to modify an existing primitive
event with ease and we believe that this is one of the
crucial elements of a successful debugger design. This
kind of flexibility can be easily achieved through
inheritance. Inheritance provides exactly what a
debugger user desires: a new situation looks almost
like another one, but only after a few modifications.
We believe that a primitive set of events should be cus-
tomizable based on inheritance. Furthermore, the tools
which manipulate these event should be customizable
as well.

2 The BEE++ Framework

A promising solution to the above problems is the
use of an object-oriented application framework. A
framework is a set of classes that embodies an abstract
design for solutions to a family of related problems

and supports reuse at a larger granularity than routines
orclasses[l7].

In the last few years there has been a proliferation of
frameworks to make the job of developing programs
easier. The main goal of these frameworks is to speed
up the software development process by providing
reusable code. Some of these frameworks are simply
class libraries covering general data structures such as
collections, search tables or trees. The first such frame-
work was the Smalltalk class library. The NIH
library[131 is a reimplementation of the Smalltalk class
library for the C++ programmer.

Other frameworks are designed to support the
development of certain applications. An application
framework is a framework that defines much of an
application’s standard user interface, behavior and
operating environment. MacApp is an application
framework that makes the task of building applications
programs for the Macintosh faster and easier[2 11.
Examples of application frameworks to ease the build-
ing of graphical applications such as user interfaces are
the Andrew toolkit (Atk) [26], the X Toolkit (Xt)[24],
Interviews[20] and ET++[30].

BEE++ is an object-oriented application’framework
for the development of software-based distributed
dynamic analysis tools. BEE++ is fundamentally an
event processing system since it views the execution of
a distributed program as a stream of events. There-
fore, BEE++ provides customizability of all aspects of
events processing: customizability of events, customiz-
ability of event views, and customizability of event
configurations.

Event and view customizability is achieved through
the inheritance mechanism available in C++, BEE++‘s
implementation language. BEE++‘s entire event pro-
cessing system is encapsulated in a set of core base
classes. From these, additional classes needed to sup-
port various aspects of dynamic analysis tool develop-
ment can be derived. Thus, we provide the user with a
prepackaged hierarchy of classes and the means to cre-
ate customized classes through derivation of the appro-
priate base class(es). While this assumes knowledge
of object-oriented design and how subclassing is
implemented in C++, it is the most nonintrusive way
to extend or modify the functionality of BEE++, since
the components of the event processing model can be
altered or replaced without modifying existing code.
This avoids the recursive problem of debugging a user-

66

customized analysis tool, in particular a debugger itself,
because the user can assume that the class library is
verified and validated.

Configuration customizability allows the dynamic
establishment of user-defined events with user-defined
views that can be modified during the execution. A
well-designed event processing system should support
three kinds of event analysis: post-game analysis, runt-
ime monitoring, and during-game analysis. Post-game
analysis, also called post-mortem analysis, is the tradi-
tional way to analyze event traces and many sophisti-
cated tools have been developed for this type of
monitoring [141, [19],[22]. However, post-mortem
analysis is unacceptable for many problems, as we will
examine below. Configuration customizability is neces-
sary to achieve runtime monitoring, that is, the ability
to monitor the behavior of an active system while it is
running. Runtime monitoring is often the only way to
monitor non-terminating programs such as servers,
Runtime monitoring is also useful to monitor pro-
cesses that take a long time to complete but deliver use-
ful termination information much earlier during the
execution. In many cases the behavior of an algorithm
can be judged from monitoring information obtained
quite early during the execution. An example where
this is useful is the design of computationally expen-
sive algorithms. In Section 8 we demonstrate the use-
fulness of runtime monitoring for algorithm design,
that is, the exploration of algorithms to solve a certain
problem, in this case the traveling salesman problem.
One problem in connection with runtime monitoring is
that the human users are hard-pressed to digest visual-
izations unfolding in real-time[l4].

Thus we provide a special set of classes for during-
game analysis, which allows a user interface to display
past events while new events are still pouring in. This
allows the user to browse a visual display of the system
as it appeared back in time without losing new informa-
tion. Our class abstractions hide many synchronization
and caching schemes needed to implement this feature
efficiently.

A naive implementation of runtime monitoring can
place a high demand on system resources. To reduce
the execution overhead, many implementations pro-
vide filters to suppress the generation and/or interpreta-
tion of unnecessary events [29]. The overhead can also
be reduced by delaying the event interpretation to the
postprocessing phase. Existing implementations that

do provide runtime monitoring separate event genera-
tion and analysis by sending events to remote moni-
tors, which may also combine event streams from
different nodes[23][25]. Most of these systems, how-
ever, offer a rather static connection between client
program and event processing system. Users are
expected to specify queries statically before the execu-
tion or interpret the events afterwards[181.

BEE++ is a reincarnation of an earlier software
development platform for program monitoring called
BEE[G], implemented entirely in C, which supported
customizability by providing a system of templates for
clients and tools. However, in practice, this kind of
customizability involved considerable reworking of
existing code.

The paper is organized as follows. Section 3 pro-
vides a top level overview of BEE++ and discusses
event processing architectures that can be built with
the framework. Section 4 provides the rationale behind
the selection of the classes developed during the analy-
sis and design of the framework to support a single
platform for monitoring, debugging and visualization
tools. The complete framework is represented as a
functional and object model in OMT[28] and we will
therefore make extensive use of the OMT notation
when discussing the rationale behind the abstractions
and the services provided to framework users and
other classes. Sections 5 and 6 explain the design goals
and the detailed architecture. Section 7 describes
object design decisions that improve the efficiency of
BEE++. BEE++ has proven to be quite successful in
debugging, visualizing and monitoring distributed
applications. Section 8 demonstrates the usefulness of
customizable event processing in combination with
runtime monitoring for algorithmic design. Section 9
explains the result of experiments that illustrate the
cost of event processing. Section 10 summarizes our
experiences with BEE++ and provides ideas for further
work.

3 An Overview of BEE++

Our functional model for event processing is com-
posed of three processes: event generation, event inter-
pretation, and the event transmission between
generator and interpreter. For visualization applica-
tions, the target application performs the bulk of the
event generation and the tool performs most of the
event interpretation. On the other hand, a debugging

67

tool might generate program control and data events
for interpretation by a target application. Hence, both
target applications and monitoring tools perform event
generation and event interpretation.

Note that while event generation and event interpre-
tation can be combined in the same entity, the ability to
abstract event processing from physical processes is a
central feature of BEE++. Clearly, we allow users to
move event interpretation out of the target application
to another node. This not only makes it possible to do
sophisticated runtime analysis with less impact on the
application, but event streams of different parts of the
application can also be combined to present a global
picture of the application.

The top level architecture of any program under
BEE++ can be described with a data flow model con-
sisting of three main processes: the target program, the
dynamic analysis tool and the event configuration man-
ager as shown in Figure 1.

Target
Program
(Client)

Event
Protocol

Dynamonalysis

(Event Interpreter)

Clicnl Code with Sensors
Tool Code

Event Gcncration
Firehose

) Event tntcrprctation

Event Interpretation v Event Generation

Lookup & EntF-*W & Enter

Event Configuration Manager

Figure 1 : BEE++% top level system architecture

Events flow between the target program and the
dynamic analysis tools over two distinct communica-
tion pathways which are called the Firehose and the
Trickle, respectively. The Firehose consists of methods
that send event instances to the dynamic program ana-
lyzer which processes them using user-supplied rou-
tines. The analyzer can also request information from
the target program via the Trickle (We will discuss the
Firehose and Trickle in more detail in Section 4.5).

The set of all the methods defined by the Firehose
and the Trickle, that is, all methods of the class event,
is called the event protocol. The event protocol defines

the capability of the communication between clients
and event interpreters. The chief reason the event pro-
tocol provides bidirectional traffic is to support perfor-
mance debugging as well as correctness debugging. In
monitoring and visualization situations, the target pro-
gram performs the bulk of the event generation and
sends the events to the tool for interpretation. In
debugging situations, the dynamic analysis tool gener-
ates program control and data events and sends them
for interpretation by the target application. The con-
nection between the target application and the analyzer
is provided by the event configuration manager and
can be done at any time during the execution of the
target application.

For the remainder of this paper we associate the
term client with an instrumented target application
and the term event interpreter (EI) with any dynamic
program analyzer, which can be either a debugger,
monitor or a visualizer. However, as we will discuss
below, both, clients as well as event interpreters do
quite a bit of event generation and event interpretation;
this symmetric functionality distinguishes BEE++
from many other distributed dynamic analysis tools.
Hence, we use the term event processor to denote
either a client or an event interpreter

3.1 Event Forwarding

The design of many dynamic analysis tools is cen-
tered around a client-server architecture. This is suffi-
cient if the tool is either a debugger or a performance
monitor, but not both. The goal of our framework was
to provide a uniform platform for both activities and
thus our architecture follows a symmetric, peer-to-peer
approach. We believe that many attributes and meth-
ods can be shared by both the target application and
the tool. For example, as shown in Figure 1, both event
processing components are able to perform event gen-
eration as well as event interpretation. By deriving
both target applications and analysis tools from a com-
mon base class, we believe we can achieve a symmet-
ric architecture.

Consider the following thought: since BEE++ can
be used on most any target application, it should be
entirely possible to use BEE++ to analyze itself. That
is, we should be able to treat an event interpreter as a
candidate target application. Therefore, an event inter-
preter should be able to generate events exactly like
the original target application. A key motivation for

68

this scenario is eventforwarding. A target application
might be connected only to a single event interpreter for
client efficiency reasons However, often multiple views
of the execution are required, e.g. multiple event inter-
preters need to access the same event stream. This com-
mon performance bottleneck can be easily solved by
event forwarding. The event interpreter, connected to a
set of additional event interpreters, regenerates the
event sent by the original target program. The event for-
warding architecture scales quite well and reduces the
bandwidth demands on the communication channel
between target and first event interpreter

To implement such a forwarding device, the entire
BEE++ event processing model must be encapsulated
into a set of classes such that both of the following
methods are possible: (1) the forwarding device can be
derived through multiple inheritance, and (2) the for-
warding device can be formed by instantiating both the
target application and event interpreter in the same
address space. Hence, we use event forwarding as a
key test of the integrity of the overall BEE++ class
architecture. BEE++ distinguishes itself from other
dynamic analysis frameworks in its ability to achieve
this functionality via both methods.

4 The Object Model

To permit customizability of the entire BEE++ event
processing model, we represent each component of the
data flow model (client, event interpreter, event genera-
tion, event interpretation, event transmission, event con-
figuration manager) by one or more classes, In the
following we discuss the main classes of BEE++ as
they relate to this model.

4.1 Class BeeProcessor

The commonality between target application and
dynamic analysis tools, that is, the abstraction of an
event processor is expressed in BEE++ by the BeePro-
cessor class which is shown as the center of the object
model in Figure 2.

One of the key aspects of BEE++ is that all distrib-
uted processes running under BEE++ (monitors, debug-
gers, visualizers, event configuration manager,
applications) are derived from this single base class.
Every thread of control in BEE++, either in the same
address space (local) or across a network, is represented
by an instance of class BeeProcessor and all BEE++
methods are executed in the context of a BeeProcessor.

I

r-Y BeeClient III
BeeEl

Figure 2 : Object model of the BeeProcessor

In fact, the BEE++ framework uses an internal
BeeProcessor to bootstrap itself on start-up and shut
things down after the last local BeeProcessor termi-
nates. Thus, BEE++ is designed to support both multi-
threaded target applications and multithreaded analysis
tools.

The BeeProcessor provides for the basic functional-
ity needed by any target application or analysis tool:
the ability to communicate with another BeeProcessor.
However, while the BeeProcessor houses the entire
event processing system (both event generation and
event interpretation), it does not actually contain built-
in event processing functionality. Rather, event pro-
cessing methods are added through the derivation of
new classes. In addition, the BeeProcessor does not
have built-in communication capabilities; instead, it
contains low-level communication objects that will be
discussed in Section 6. On the other hand, the BeePro-
cessor does provide housekeeping details such as basic
thread management, initialization and shutdown, com-
mand-line options, the ability to map communication
objects to each other, and interactions with the event
configuration manager. As shown in the object model,
BeeProcessor relates to several other classes: The class
Event-ID -t contains various information about this
BeeProcessor. Server is an association to a Server
object which allows it to serve connections over the
Firehose or the Trickle.

The association corm-table points to a table of Con-
nection objects; each remote BeeProcessor that this
BeeProcessor is connected to (and the Server can com-
municate with) is represented by a Connection object.
This association provides the ability for a single client
to connect to multiple event interpreters and a single
event interpreter to connect to multiple clients.

The corm-map-table association relates the BeePro-
cessor with the class EventMapTable; the event map

69

table allows a BeeProcessor to quickly determine the
sender of an incoming event. It maps, via a hash table,
the event identifiers of incoming events received by the
Server to the appropriate Connection object in the
corm-table, since each Connection object represents a
sender.

The BeeProcessor handles many normal and unex-
pected program termination conditions so it can notify
any remote BeeProcessors about its death and shutdown
gracefully.

The BeeProcessor serves as a superclass for clients
represented by the class BeeClient and event interpret-
ers represented by the class BeeEI. In the following sec-
tions we discuss the BeeClient and BeeEI classes in
more detail.

4.2 Event Generation: Class BeeClient

Although both target applications and analysis tools
can perform all aspects of event processing, the target
application usually performs the vast bulk of event gen-
eration. Therefore, we derive a class from BeeProcessor
called BeeClient that is specially designed for event
generation. Since the BeeProcessor has no event pro-
cessing methods of its own, the BeeClient introduces
methods for dealing with the Firehose and Trickle com-
munication pathways. The BeeClient devotes its full
attention to running an instrumented target application.
Events from other event interpreters arrive infre-
quently, so instances of BeeClient typically employ
asynchronous means to detect and interpret them.

Since target applications are external to BEE++, we
use the class BeeClient as an abstract representation of
the target application. Thus, the BeeClient deals with
the special issues of instrumenting and executing a
thread of target application code.

4.3 Class Sensor

Intuitively, we know some sort of association must
exist between the target application code and the Bee-
Client. So far, we’ve used the notion of an “event sen-
sor” to capture this association. We model this
association as a class and hence introduce class Sensor

A Sensor provides a placeholder for an event that is
either user-defined or predefined by BEE++. When a
Sensor is encountered, e.g. triggered, runtime data is
loaded into the event and it is sent off to each analysis

tool that has bound itself to that Sensor. A tool binds
itself to a Sensor through the following process.

Each event within a Sensor contains type informa-

BeeProcessor

Sensor

begin-sensor, end-sensor, print-sensor,
proc-act-sensor. proc-term-sensor,
block-sensor, point-sensor, stop-sensor

Figure 3 : Event sensor table

tion about the data it contains. When an analysis tool
first communicates with a BeeClient, it asks the Bee-
Client for type information about all the Sensors it
knows about. The BeeClient tracks every Sensor it
encounters during program execution in a sensor-
table (see Figure 3). If the tool can understand the type
of event within a particular Sensor, then it asks that
Sensor to send it data whenever the Sensor is trig-
gered. Note that for any Sensor encountered after a
tool is connected to a BeeClient, a sensor initialization
event is automatically sent to the bound tool announc-
ing its presence.

4.4 Event Interpretation: Class BeeEl

Since dynamic analysis tools perform the bulk of
event interpretation, we associate them with the term
event interpreter (EI). An event interpreter “inter-
prets” events typically by displaying them in a graphi-
cal manner for further interpretation by a human user.
Unlike the BeeClient class, which is designed largely
for event generation, the dynamic model of an event
interpreter is specially optimized for event interpreta-
tion: it spends much of its time just waiting for new
events to artive so they can be processed quickly.

From a system architecture point of view, dynamic
analysis tools can be seen as interactive inter-
faces[28], that is, they are dominated by interactions
with external agents, such as humans or other pro-
cesses. External agents are independent of the system,
so their inputs cannot be controlled by the dynamic
analysis tool. Event interpreters, therefore, have to deal
with two kinds of events: (1) events from a human

70

interacting with the system (e.g. GUI events) and (2)
events from the target application (e.g. BEE++ events).

The event interpreters provided by the BEE++ frame-
work form a hierarchy of classes. BEE++ provides users
with a prepackaged set of event interpreter classes and
the means to create customized classes through deriva-
tion of the appropriate base class(es). Figure 4 shows
the BeeEI class hierarchy provided by BEE++.

~BeePryssor~

[Note multiple inheritance]

Figure 4 : BEE+‘s event interpreter hierarchy

The BeeEl class is the base class for all BEE++ event
interpreter classes. It provides only what is absolutely
needed to build a minimal “monitoring” tool. It can
fully process BEE++ events but has no means to display
them.

The user can derive traditional text- or graphic- ori-
ented tool classes from this class as well as classes
where a user interface (or any screen output) would be
inappropriate or unnecessary. In all these cases, the size
and complexity of the code of the derived event inter-
preter is directly proportional to its functionality; an
event interpreter directly derived from the BeeEl class
does not carry any of the heavy baggage required for
graphical visualization tools.

For example, the framework provides an ArchiveEl
class that dumps events to a trace file. A user can also
use the BeeEl class as a basis for interpreters that for-
ward events to other interpreters. This is an interesting
case of multiple inheritance because the ForwardEl pro-
vided by the framework is derived from BeeEl as well
from BeeClient. In addition a benchmarking class

BenchmarkEl is provided. This is actually a very sim-
ple derived class with no additional methods. The
main purpose of the BenchmarkEl is to provide an
upper bound on the performance characteristics of an
event interpreter in performance comparison with
other event based platforms. This class is in fact used

for the performance evaluation of BEE++ described in
section 9.

The BeeEl-Text class deals only with events origi-
nating at the client and prints textual notification mes-
sages when the events arrive. It also adds some simple
interactive prompting for the definition of client break-
points and single-stepping at runtime (Single-stepping
in the current BEE++ implementation means stepping
from one BEE++ event sensor to another.)

The BeeEl-GraphicalE class provides a graphical
user interface based on the X Window System. It
seamlessly integrates BEE++ event processing with X
event processing and provides a simple menu bar and
scrolling text region for messages.

The user interface design of this class and subse-
quent classes derived from BeeEl-GraphicalE define
an overall Motif-compliant layout policy while giving
the tool developer the freedom to customize specifics
such as menus, menu items. window arrangements
etc. as needed.

The BeeEl-CompositeEl class adds additional user
interface functionality that graphics-intensive tools
might find beneficial, such as sensor count, event
count, and event rate windows, and a scrolling text
region for diagnostic messages This class also pro-
vides a basic GUI for interactively controlling the exe-
cution of target applications for debugger support.

4.5 Event Class

BEE++‘s event-processing model is based on the
observation that dynamic understanding problems can
not be dealt with a priori by program analysis tools
that provide a set of predefined events. Assuming that
BEE++‘s library of existing events is found deficient,
BEE++‘s mechanism for event customizability allows
a user to create a custom event and use it like any pre-
defined event. To provide customizable events, we
had two choices. We could provide a set of primitive
events and a set of language constructs to compose
higher level events, This is the approach taken, for
example, by Generalized Path Expressions[S] and

71

EBBA[3]. Another solution is the specification of high
level events from low level events by way of inherit-
ance. This approach is supported by BEE++. We
believe that it is easier to use for the casual user,
because no new language concepts have to be learned to
express new events.

We chose to model the association between targets
and dynamic analysis tools as an object. Thus, we intro-
duce class Event to serve as the base class for all
BEE++ event classes. To support many kinds of BEE++
events, we derived a rich hierarchy of predefined event
classes from class Event, which we will explore below.

Class Event contains two attributes, Family and
Event-ID. The Family attribute (and other similar
attributes of derived event classes) partitions the event
space into equivalence classes. At each level of the
Event class hierarchy, BEE++ supports predefined event
classes such as the invocation of a procedure, as well as
user-defined events to mark important milestones in the
execution of an application. The Event-ID uniquely
identifies the BeeProcessor that generated the event by
storing its network node, OS-level process, OS-level
thread, BeeProcessor id, and BeeProcessor instantiation.

To motivate how the class hierarchy was derived
from Event, we examine how events are actually used
in BEE++.

4.5.1 Firehose and Trickle

When designing the communication pathways
between the target applications and the program analy-
sis tools, we assumed different bandwidth requirements
for the different directions of the event flow. Perfor-
mance debugging and visualization are generally non-
interactive and produce vast volumes of events flowing
from the target application to the tool. An instrumented
target program, for example, can have an extraordinar-
ily high event rate if an event sensor is placed in a very
tight loop. Interactive debugging produces a far smaller
number of events; debugging events usually loop
between the tool and the target application in the form
of requests and replies. These events occur relatively
infrequently as they are almost always generated in
response to a user command. Note that we regard events
generated by the program execution to be part of the
former case. Therefore, correctness debugging requires
a reliable but possibly slow protocol, whereas in perfor-
mance debugging the protocol should provide a fast
response, in some cases, can occasionally drop a packet.

Note that since BEE++ analysis tools support during-
game analysis, they cannot discard data; they can how-
ever chose to display only the latest information.

In light of these observations, we established two
distinct communication pathways between any given
target application and analysis tool, which as intro-
duced earlier, are the Firehose and the Trickle. The
Firehose is used for high bandwidth communication
from target applications to tools. The Trickle is used
relatively infrequently whenever a tool needs to com-
municate with the target application independent of the
activity on the firehose. The top of the event class hier-
archy provided by the framework is illustrated in Fig-
ure 5.

Figure 5 : BEE++‘s event hierarchy

4.52 Class Firehose

From the Firehose, we establish an event hierarchy
used in many instrumentation systems through the der-
ivation of Init. Every, and Final event classes as shown
in Figure 6. These classes are customized largely for
dynamic program analysis as a whole; they define the
bulk of BEE++ events.

Figure 6 : Firehose subclasses

72

Since an event interpreter must dynamically bind to
event sensors within a target application, we define a
Descriptor event to facilitate the exchange of event type
information. When an interpreter opens a connection,
it sends the application a DescriptorInfo event contain-
ing a list of all event types it can or wants to recognize,
The application then binds that interpreter to only
those sensors that generate events of that type. In turn,
these sensors generate SensorInit events to announce
their presence to the interpreter.

The target program fires an Init event when it starts
executing. Events of class Init are used for initialization
of the analysis tool and are customized according to the
functionality of the tool itself. For example, sophisti-
cated GUI-based interpreters derive Init events with
complex user interface attributes such as window size,
title, placement.

Certainly the most important class is class Every. All
events related to the execution of a program are derived
from Every. We derive the UserDefinedEvery class to
serve as the base class for all customizable Every
events. For example, a scattergraph would derive an
Every event from this class with two attributes (X and
Y coordinates) whereas an Every event for a linegraph
might only contain a single value. Creation of a user-
defined event involves defining three methods: Init,
Write, and Read. The Init method is invoked after event
instantiation to set any internal attributes. The Write
method is invoked by the sender (typically a sensor) to
package the attributes of an Event into a byte stream
suitable for transmission, An event may already main-
tain itself in such a way for efficiency reasons. Read
does the opposite; it unpacks a byte stream into an
Event again.

We also derive the PreDefinedEvery family of
classes to provide common useful services, such as the
ability to send text messages and important runtime
information such as line numbers, function call invoca-
tions, and notification when breakpoints are encoun-
tered.

The Final event is sent upon death of the target pro-
gram. In practice, we do not use the Final class since its
functionality is largely supplanted by the Connect event
class, whose derived classes specifically deal with the
administration of a network connection

4.5.3 Class Trickle

The Trickle and its derived event classes shown in
Figure 7 are designed largely for asynchronous remote
program control and asynchronous monitoring (e.g.
“probing”). The Trickle event hierarchy is designed
around a request-reply protocol. TrickleRequest
events are subclassed into ClientConnect, BlockCont
and Probe event classes. TrickleReply events are cur-
rently nothing more than acknowledgments, but can
potentially support complex query interactions

Trickle a trickle-cmd
Init I Ez

TrickleRequest

request-type

1
~~~ 

Figure 7 : Trickle subclasses 

The ClientConnect class, which is very similar to 
the Connect class on the Firehose. handles the admin- 
istration of an asynchronous connection. Chiefly, it 
provides the ability to connect to an already running 
target application. Thus the Trickle provides services 
similar to the ptrace facility in Unix to control the 
thread/process and read/ write data. In contrast to the 
standard ptrace, which assumes a static connection 
between client and debugger, a Trickle can be dynami- 
cally established which allows BEE++ to support two 
kinds of event sessions: an unplanned event session. 
where the client runs for a while before connecting to 
an event interpreter, and a planned event session where 
the event interpreter connects to the client before the 
latter starts with its execution 

From the ClientConnect class, we derive Client- 
Death, ClientRegistration and ClientControl classes 
that specifically support remote program control, such 

73 



as the ability to pause, restart, or kill the application. 
The BlockCont event is sent by the event interpreter to 
continue the execution of a blocked target application. 
The Probe event is very similar to a DescriptorInfo 
event on the Firehose. An interpreter fills the attributes 
of this event with the Every event types it wishes to 
receive and then sends it to an application. The applica- 
tion then triggers those sensors that can generate those 
events, independent of the execution of the program. 
The BEE++ event kernel ensures atomicity of event 
generation. 

5 System Design 

BEE++‘s class library was designed to support a 
variety of architectures ranging from single processes 
to parallel and networked programs. Special consider- 
ation was given to the goal of supporting a variety of 
heterogenous architectures in a wide area network; it 
is almost inevitable that a network becomes heteroge- 
nous even if it is initially configured as a set of homog- 
enous nodes. With the advance of high-speed networks, 
new protocols are being developed that utilize the 
increasing bandwidth better than existing protocols and 
the design allows to move the BEE++ framework eas- 
ily to the new protocol. The separation of event genera- 
tion and interpretation allows the developer to write 
client programs and event interpreters in different lan- 
guages employing different compilers, runtime systems 
and operating systems. 

BEE++ achieves heterogeneous event processing by 
converting all events into a canonical form before 
sending them across the Firehose or Trickle. The con- 
version to canonical form is described by a set of 
encoding rules which define exactly how data is 
arranged as a sequence of bytes when it is sent over the 
network. There are two main classes of encoding 
rules: primitive and complex. BEE++‘s primitive 
encoding rules describe how ambiguous atomic data 
types are represented. For example, BEE++ represents 
integers as four-byte quantities using Big-Endian byte 
ordering (the MSB is in the lowest memory position). 
String buffers are left untouched since their representa- 
tions are unambiguous. In practice, BEE++ event 
instances contain several fields of data. While each 
field can be encoded using primitive encoding rules, 
the ordering of each field is still ambiguous. There- 
fore, complex encoding rules describe the ordering of 
the event fields The encoding approach used by 

BEE++ is similar to Sun’s Remote Procedure Call 
(RPC) mechanism which uses a set of primitive and 
complex encoding rules called the External Data Rep- 
resentation (XDR). BEE++ has also adopted XDR’s 
representation for four-byte integers. 

The Firehose as well as the Trickle make use of a set 
of encoding methods provided by the superclass Event. 
However, because the Cc+ language and the underly- 
ing Sun RPC mechanism used in the implementation 
of the encoding methods do not support the communi- 
cation of classes over the network, we implemented 
an internal scheme to track the type information of 
event instances. Each event stores its event type in the 
attribute Event-ID-t. 

Event-based systems based on BEE++ can span dif- 
ferent network protocols. BEE++ supports TCP/IP for 
use with standard Ethernet and a customized protocol 
for use with Nectar, an experimental fiber-optic net- 
work developed at Carnegie Mellon University[ 11. 
Since BEE++ can instantiate multiple client and 
server objects in the same process, it can support mul- 
tihomed hosts; hence, in the future it may be able to 
act as a gateway. 

5.1 System Topologies 

The system architectural design issues for BEE++ 
included both, the network architecture connecting the 
client program with the event processors as well as the 
event processor architecture, that is, the distribution of 
the event processors. BEE++ provides the user with 
the ability to set up event configurations, where one or 
more clients are connected to one or more event inter- 
preters. Event configurations enable the user to distrib- 
ute the monitoring activities across the network to 
decrease the impact of the monitoring process on any 
single processor. 

One of the main features of BEE++ is its flexibility 
with respect to its system topology. Users need to be 
able to customize the monitoring process by connect- 
ing client programs and dynamic analysis tools and 
rearranging the connections at runtime. BEE++‘s 
dynamic model supports this requirement in several 
ways: The event interpreter can interact with more 
than one client during a single monitoring session. 
Alternatively, a client can interact with more than one 
event interpreters during a single monitoring session. 

74 



BEE++ supports a wide spectrum of topologies. The 
simplest topology is a local event interpreter (called 
LocalEI in Figure 4) that uses the same address space as 
the client program. Generation of events means the invo- 
cation of procedures within the event interpreter at the 
appropriate locations. Local event interpreters are ideal 
when information can be accumulated during program 
execution, and displayed at the end. They are less well- 
suited for runtime monitoring; displaying status informa- 
tion or updating the screen inside an event interpreter can 
slow down the client significantly. 

BEE++ also allows users to group event interpreters 
or clients together as needed. Several clients executing 
simultaneously (either as separate threads or processes) 
can be attached to an event interpreter as shown in Figure 
8. 

event interpreter which then forwards events to other 
interpreters. This configuration can easily be achieved 
using BEE++. 

5.2 Boundary Conditions 

BEE++ supports two ways of setting up a connec- 
tion between an application and an analysis tool. In an 
unplanned connection, an application starts up first and 
then event interpreters connect during execution. In a 
planned connection, the event interpreter is started up 
first followed by the start of the application. Planned 
connections support the dynamic model employed by 
many existing debuggers. Unplanned connections are 
useful for monitoring daemons or long running appli- 
cations that are exhibiting performance problems but 
cannot be restarted easily. 

6 BEE++% Network Architecture 

Figure 8 : Monitoring multiple clients 

In order for BEE++ to provide a flexible symmetric 
communication model, we deliberately did not provide 
the event processor e.g. class BeeProcessor with any 
built-in means of communications. Rather, we pack- 
aged the entire communication mechanism into a sim- 
ple set of classes isolated entirely from the rest of the 
system. Thus, a BeeEI or BeeClient can instantiate the 
desired communication protocol at runtime. Likewise, 

different event interpreters can either be on the same 

This configuration is very important in a network envi- 
ronment since users want to get an overview of the activi-. 
ties in the entire system. An example is measuring the 
load on the network nodes for monitoring and for 
dynamic load balancing purposes. 

Figure 9 shows a client connected to several event 
interpreters, each of them tapping on the same event 
stream, but providing different views of the behavior. The 

BEE++ can be ported to new protocols by simply 

work protocol. 
* 

deriving new classes. Any necessary customization is 

The Connection-Server layer provides a protocol- 
independent means of communication for servers 

achieved through inheritance and overriding. The 

and connection classes that are connected via the 
Port class. 

classes providing BEE++‘s communication model are 

. The Firehnse-Trickle layer provides the event pro- 

organized into the following three hierarchical layers: 

tocol to be used by the BeeClient and BeeEI 

l 

classes. This layer does not introduce any new 
classes but instantiates classes from the previous 
layer to establish Firehose and Trickle communi- 

The Port layer i 

cation pathways. 

IS the lowest layer of BEE++ and 
provides the ba> ;ic means to send/receive data. The 
classes in this Ii,,,. *I,_ h\‘pr Pnrapsulate the implementa- 
tion of the event protocc- ___ __r __ ___ _.__ .___. __ ..__ nl nn tnn nf :in ewictino net- 

At first glance at this hierarchy it would appear that 

node or on different nodes. The client overhead can be BEEt+‘s communication model follows a traditional 

reduced by having the client send the events to just one client-server approach. However, BEE++ allows cli- 

75 



ent and server objects to be placed in the same entity, 
thereby providing peer-peer functionality. In the follow- 
ing we describe each of these layers in more detail to 
demonstrate the portability of the BEE++ framework 
and to show how the framework classes defined above 
can communicate with each other in a heterogenous 
network. 

6.1 The Port Layer 

The Port layer contains objects of class Port, its sub- 
classes and the Event Configuration Manager class. 
Instances of class Port interact with each other and the 
Event Configuration Manager to provide the simplest 
form of client-server communication. 

6.1.1 Class Port 

The Port class provides a standard way of developing 
new communication primitives across different proto- 
cols and networks. It defines standard methods for 
opening and closing connections (OpenConnection, 
CloseConnection) as well as sending and receiving 
bytes of data (Send, Receive). In practice, Ports are first 
subclassed into the network protocol (e.g. Class 
TCP-IP or Class RMP) and then into the client-server 
relationship (TCP-IP-Client, TCP-IP-Server, RMP-- 
Client, RMP-Server etc.). Client and server Ports may 
be further broken down according to the type of server 
being used: iterative or concurrent. An iterative server 
Port handles only one client at a time, whereas a con- 
current server Port can maintain many open connec- 
tions to clients at once. 

Client Ports need to know certain information about 
server Ports before they can open a connection. There- 
fore, all Ports have a method called GetPortInfo that 
returns all the network-dependent information needed 
for a client Port to connect to a server Port. Typically, a 
server Port’s GetPortInfo method is called and the 
resulting string is stored in the event configuration man- 
ager. A client obtains this string from the event configu- 
ration manager and then calls the client Port’s 
SetServerPortInfo method with this information. Then, 
the client calls the OpenConnection method on the cli- 
ent port and the connection is established automatically. 

6.1.2 Class Event Configuration Manager 

BEE++ has a special class for tracking event config- 
urations called the Event Configuration Manager. This 
class has to be instantiated before any event configura- 

tion can be built. It allows event interpreters to connect 
to clients and vice-versa. 

The Event Configuration Manager class manages 
the entire set of event interpreters and clients involved 
in a single monitoring session. Event configurations 
are dynamic, that is the set can grow as new clients/ 
interpreters are added at r-untime or shrink as clients/ 
interpreters are stopped or die. 

The Event Configuration Manager provides basi- 
cally the functionality of a multiprotocol nameserver. 
The class has methods for entering, looking up, and 
removing services that are associated with the Ports 
described above. A service is the name associated with 
any operational server Port. Server Ports can be associ- 
ated with both, target applications and event interpret- 
ers, and thus clients and event interpreters might 
provide the same service. The name space of the Event 
Configuration Manager is therefore partitioned into 
domains to distinguish between them. For example, 
clients belong to the CLIENT domain and event inter- 
preters belong to the EI domain. Domains can be fur- 
ther partitioned into groups for system maintenance 
purposes. 

6.2 The Connection-Sewer Layer 

The Connection-Server layer introduces the classes 
Connection and Server as well as their subclasses. 
Connections contact Servers to establish a portable, 
protocol-independent means of communication. The 
model of communication is identical to the Port layer 
in that Servers register themselves with the Event Con- 
figuration Manager and are the contacted by Connec- 
tions, e.g. clients, connect to them. 

Firehose 
El-Sewer 

I 

6.2.1 Class Server 

The Server class contains a server-related Port mem- 
ber. We use the term service to describe the Server 
object in a program. A server contains methods for 
opening and closing connections (Open, Close) and 
handling information (PutMessage, GetMessage). A 

76 



Server stores information about itself with the event 
configuration manager so objects of type Connection 
can communicate with it. The Terminate method 
requests that the event configuration manager remove 
information about that service before shutting down the 
Server. The InstallHandler method allows the Server to 
be used in an interrupt-driven manner so a program 
does not have to poll for new events. 

6.2.2 Class Connection 

The Connection class contains a client-related Port 
member and provides the same services as the Server 
class. Like a Server, it contains the methods Open, 
Close, PutMessage, and GetMessage. In addition, it 
provides a Connect method which asks the event con- 
figuration manager for information about a remote 
Server and then establishes a communication path with 
it (the client Port connects to the server Port using the 
event configuration manager information as described 
above). 

The Disconnect method shuts down the path created 
by Connect. The Connection class is subclassed into 
Client-Connection (for use with target applications) 
and EI-Connection (for use with monitoring tools). The 
Client-Connection also performs special duties related 
to buffering messages (event collections). The EI-Con- 
nection tracks special information about the target 
application as a whole, such as the procedure call stack 
and all BEE++ instrumentation sensors. In the future, it 
may even contain a copy of the target application’s 
symbol table. 

6.3 The Firehose-Trickle Layer 

Up until now, the BEE++ layers have treated com- 
munication information as an untyped stream of bytes 
However, the Firehose-Trickle layer communicates 
strictly with instances of class Event or its subclasses, 
The Firehose-Trickle layer is built on top of the Con- 
nection-server layer and providing the highest commu- 
nication layer in the BEE++ framework; it is used by 
clients and event interpreters to communicate with 
each other. Recall that methods for dealing with the 
Firehose or Trickle are not provided with the BeePro- 
cessor class, but rather defined by the BeeClient and 
BeeEI classes. These methods are named GetFireho- 
seEvent, PutFirehoseEvent, GetTrickleEvent, and Put- 
TrickleEvent. The BeeClient uses each Connection to 
communicate via a Firehose to a Server located in a 
BeeEI. Likewise, a BeeEI uses each Connection to 

communicate via the Trickle to a Server located in a 
BeeClient. 

During initialization, the Firehose is used to send 
setup information in both directions. The Trickle 
allows the event interpreter to communicate with the 
client (usually asynchronously) independent of Fire- 
hose activity. The Firehose-Trickle methods Attach 
and Detach are called to connect or disconnect a Con- 
nection with a Server. As described earlier, the term 
service means any Server object and its associated 
BeeProcessor as a whole. Hence, the phrase “attach- 
ing to a remote service” describes either an event inter- 
preter connecting with a running application 
(unplanned) or an application connecting with a run- 
ning event interpreter (planned). 

The illustration in Figure 10 shows how the differ- 
ent classes and subclasses of Port, Connection, Server, 
and BeeProcessor are instantiated to realize a specific 
event configuration (Ports are shown as gray circles). 

FS = Firehose Server 
FC = Firehose Client Connection 
TS = Trickle Server 
TC = Trickle Client Connection 

Figure 10 Instance diagram for an event 
configuration with 3 clients and 3 event interpreters 

7 Efficiency 

Event-based systems, no matter how carefully 
designed, introduce an overhead in the client execu- 
tion. An important goal of any event based monitoring 
system is to minimize the effects of client perturbation 

77 



due to instrumentation and monitoring. However, in 
many cases the perturbation is acceptable, in particu- 
lar if the insights in the program’s behavior and the 
eventual speedup gained from the measurements 
improve the program significantly. BEE++‘s design 
goal was therefore to provide an event processing sys- 
tem with predictable instrumentation cost. Several 
optimization mechanisms available in the framework 
allow to reduce the event overhead in those cases 
where the event overhead is too large. The two most 
important ones are event buffering and poll-driven 
instrumentation. Sometimes it is not possible to deter- 
mine the overhead a priori. BEE++ supports the inter- 
active setting of parameters that influence the event 
rate at run-time. 

7.1 Event Probes 

An event interpreter can communicate with a client 
in probing mode, meaning that it does not receive any 
sensor-generated events over the Firehose unless it 
specifically asks for them by sending a probe event 
over the Trickle. When this happens, the client forces 
that sensor to regenerate an event using attributes from 
the latest trigger action. 

This can be a significant performance boost during 
long computations where the client only needs to be 
checked occasionally to ensure that nothing is wrong. 

7.2 Event Collections 

An event collection is a set of Firehose events that 
are collected on the client’s side into an event collec- 
tion buffer and sent to the event interpreter only when 
the buffer is full. Similar to blocked I/O, a large event 
buffer reduces the event overhead on the client side but 
increases the event latency. In one extreme case all 
generated events are collected and sent to the event 
interpreter after the client finishes execution. A famil- 
iar example is postmortem debugging. True runtime 
monitoring means that once a sensor is encountered, it 
sends events immediately over the Firehose. 

BEE++ provides individual event collection buffers 
and buffers arguments for each connection between 
client and event interpreters. This allows a client to 
attach a debugger listening for a breakpoint while also 
being attached to a frequency counter 

Because event collections impact the event latency 
they can interfere with any real-time constraints placed 
on the event interpreter such as response time. BEE++ 

provides a mechanism that lets the user to flush the 
collection buffer at specific times. This allows interac- 
tive BEE++ users to choose between the conflicting 
goals of event efficiency and runtime monitoring. 

8 Examples of “BEE++ Instantiations” 

BEE++ has proven to be useful in several distrib- 
uted applications for performance debugging, visual- 
ization and monitoring on Nectar, including 
NOODLES, a solid modeling application[ I I], the 
COSMOS switch-level circuit simulator[ IO], a chemi- 
cal flow-sheet application and environmental simula- 
tions [9] and Mistral-3, a parallel solid modeling 
program based on an octree decomposition of model- 
ling space[ 161. BEE++ has also been interfaced to the 
visualization system Paragraph[ 141 by supporting the 
interpretation of PICL[ 121 events. 

Another application for BEE++ is the visualization 
of algorithmic design. The screen snapshot in Figure 

Figure 11 : Runtime visualization of a distributed 
traveling salesman problem 

11 shows a “cockpit” involving several event interpret- 
ers to visualize the performance of a distributed Trav- 
eling Salesman Problem program using a client/server 
architecture[27]. The instrumentation of the applica- 
tion program with customized sensors and the devel- 
opment of the BEE++ cockpit was done by an 
application programmer in a few hours Four load 

78 



meters and a customized event interpreter are used for 
the runtime visualization as follows. The upper left 
event interpreter shows the size of the queue of sub- 
problems maintained by the server. The middle left 
window displays the local upper & lower bounds for 
subtours investigated by each client. The lower left 
window show the number of subtours (children) 
spawned by each client. The middle bottom window 
visualizes the development of the global upper&lower 
bounds over time. The window called GraphView is a 
customized graphical event interpreter showing a 
branch and bound tree as it is being searched during the 
execution. This event interpreter was built by subclass- 
ing the class BeeEI-2D from BeeEI-CompositeEI (See 
Figure 4 in Section 4.4) and combining it with existing 
tree viewing code. Runtime monitoring in combination 
with these views turns out to be extremely useful for 
this problem of algorithm design, because the devel- 
oper can see the quality of the convergence of the algo- 
rithm without having to run the application to its 
completion. 

9 Performance Evaluation 
A bee collects the nectar without hurting the &wet 

Chincsc Proverb 

The performance of any event processing system 
depends critically on the application and its instrumen- 
tation. Currently there is no benchmark for event pro- 
cessing systems that covers a wide spectrum of 
applications. Given the lack of a good benchmark we 
used the event configuration described in [6]: An 
instrumented client executing a loop generating nothing 
but events and an event interpreter “processing” these 
events with an empty method. 

To compare the performance of the C++ and C 
implementations, respectively, we conducted a set of 3 
experiments measuring the event overhead of three 
event configurations: a l- 1 configuration consisting of a 
single client connected to a single event interpreter, a 
multiple monitoring configuration of up to four clients 
connected to a single event interpreter and a multiple 
view configuration of up to four event interpreters con- 
nected to a single client. As event interpreter(s) we 
used the BenchmarkEI from the class hierarchy 
described in Figure 4. 

The performance is characterized in terms of three 
parameters: the event rate, the event overhead experi- 
enced by the client and the event latency. The event 

overhead is the runtime overhead per event sensor 
when executing an instrumented client program 
attached to an empty local event interpreter. The event 
rate is the number of events generated per time unit by 
an instrumented client program attached to an event 
interpreter. The event lutency measures the time from 
when an event sensor is encountered to the point when 
the event is passed to a event interpreter routine for 
analysis. Event latency is an important metric to char- 
acterize the real-time capability of the event system]. 

The measurements were performed on a network of 

Figure 12 : Comparison of event overhead 
between BEE and BEE++ 

Sun4/330 workstations connected via Ethernet. The 
event protocol was instantiated with TCP/IP All pro- 
grams including event libraries were compiled with the 
same optimization switches and the measurements 

1. Measuring these parameters in controlled 
experiments poses several problems described 
in more detail in[7]. 

79 



were done on an otherwise “empty” network, that is, 
without the presence of other users. 

The event latency was the same for BEE and 
BEE++ and was measured to be 20 msecs. The event 
overhead and event rates for the basic event configura- 
tion are shown in Figure 12. With a user tolerating an 
event overhead of l%, BEE++ can generate 50 events/ 
set and 500 events incur an event overhead of 10%. 
Note that event collection buffering increases the event 
rates to 80 and 800 in the 1 o/o and 10% cases, respec- 
tively. For comparison, the C implementation delivers 
80 and 800 events/set for unbuffered event transmis- 
sion for the 1% and 10% data points. Thus, according 
to our measurements, the BEE++ user is paying a 
slight runtime performance penalty. 

BEE++ 

Figure 13 : Event overhead for multiple view 
monitoring 

Figure 13 compares the event overhead for multiple 
view monitoring for event configurations of a client 
connected to up to four event interpreters and Figure 
14 shows the event overhead caused by a single event 
interpreter connected to up four clients. In both cases, 

the user experiences a performance penalty in the C+t 
implementation, caused mostly by the additional pro- 
cedure calls due to the use of inheritance in the event 
generation and event interpretation, respectively. 

I 

Figure 14 : Event overhead for monitoring 
multiple clients 

10 Conclusion 

In this paper we have described BEE++, a frame- 
work for distributed event processing systems provid- 
ing user customizable instrumentation and visuali- 
zation facilities based on inheritance. 

BEE++ programs can run on a variety of architec- 
tures including Sun workstations under SunOS and 
Mach, Dee Workstations under Ultrix and on Cray 
supercomputers under UNICOS. The framework is 
written in C++ and Xl 1 R4/Motif 1.1. The event proto- 
col is implemented on two network protocols, TCP/IP 
and Nectar RMP, and is currently ported to PVM[4]. 
The event kernel consumes less than 80K of execut- 
able code and supports the instrumentation of C and 
C++ programs. Compared with the C implementation, 

80 



the size of the overall executables shrunk by about 80%, 
most of it due to the use of inheritance 

BEE++ has been used for the performance and cor- 
rectness debugging of several distributed applications 
and as a result a sizable collection of BEE++ event 
interpreters has been created that is now available to 
new users. These “default” event interpreters range from 
distributed time profilers, linegraphs, scattergraphs and 
frequency counters to 3-d visualization tools. 

The current version of BEE++ is available via ftp for 
interested users. We are also planning to continue our 
work on BEE++, in particular to improve the support 
for distributed debugging. The creation of sensors is 
currently the task of the application programmer, who 
has to insert the sensors in the application program 
which must be compiled before the execution starts. 
There are ways to relieve the programmer from this 
chore, for example, by introducing a mechanism that 
allows the dynamic creation of sensors at runtime. The 
dynamic creation of event sensors would also support 
the setting of breakpoints at runtime which is currently 
not supported by BEE++. 

Finally, we are investigating a SymbolTable class that 
provides full access to the symbol table of a target pro- 
gram. BEE++ currently accesses only the symbols asso- 
ciated with event sensors. To support the full debugging 
paradigm, BEE++ must provide access to the symbol 
table associated with the application 

11 References 

[1] E. Arnould, F. Bitz, E. Cooper, H.T. Kung, R. 
Sansom, P Steenkiste, The Design of Nectar: A Net- 
work Backplane for Heterogenous Multicomputers, 
Proceedings of the 3rd lnt. Conf. on Architectural 
Support for Programming, Languages and Operating 
Systems, Boston, 205216, April 1989. 

PI P. Bates, Distributed Debugging Tools for Heter- 
ogeneous Distributed Systems, 8th International 
Conference on Distributed Computer Systems, 
IEEE Computer Society, San Jose, CA, 1988. 

[3] P. Bates, Debugging Programs Using Event-based 
Models of Behavior, In Proceedings of the Workshop 
on Parallel and Distributed Debugging. pages 68-77. 
ACM, Madison Wisconsin, May, 1988. Also in 
SIGPLAN Notices, 24( 1), January 1989. 

[4] A. Beguelin, J. Dongarra, A: Geist, V. Sunderam, 
Visualization and Debugging in a Heterogenous 

[6 

Environment, Computer, 26(6), 88-95, June 1993. 

B. Bruegge and P. Hibbard, Generalized Path 
Expressions -- A High Level Debugging Mecha- 
nism, Journal of Systems and Software 3, 265-276, 
1983. 

B. Bruegge, BEE: A Basis for Distributed Event 
Environments (Reference Manual), CMU-CS-90- 
180, Carnegie-Mellon University, November 1990. 

[7] B. Bruegge, A Portable Platform for Distributed 
Event Environments. In Proceedings of the ACM/ 
ONR Workshop on Parallel and Distributed Debug- 
ging, 184-193. ACM, December, 1991. 

[8] B. Bruegge, P. Steenkiste. Supporting the Devel- 
opment of Network Programs. In International 
Conference on Distributed Computing Systems, 
Texas. IEEE, May, 199 1. 

[9] B. Bruegge, H. Nishikawa, P Steenkiste. Com- 
puting over Networks: An Illustrated Example. In 
6th Distributed Memory Computing Conference, 
Portland. April, 199 1~ 

[lo] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. 
Sheffler. COSMOS: A Compiled Simulator for 
MOS Circuits. In Proceedings of the Design Auto- 
mation Conference, 9- 16, ACM/IEEE, June, 1987. 

[ 111 Y. Choi. Vertex-based Boundary Representation 
of Non-Manifold Geometric Models. Ph.D. thesis, 
Carnegie Mellon University, 1989. 

[12] G.A. Geist et. al., PICL: A Portable lnstru- 
mented Communication Library, Reference Man- 
ual, Technical Report ORNLSTM- 11130, Oak 
Ridge National Lab, Oak Ridge, 1990 

[ 131 K Gorlen, S. Orlow, P. Plexico. Datu Abstruction 
und Object-Oriented Programming in C++, Chich- 
ester, England, John Wiley & Sons Ltd., 1990. 

[14] M. Heath, J. Etheridge, Visualizing the Perfor- 
mance of Parallel Programs, IEEE Software, 29-40, 
September 1991. 

[ 151 D. Heller, Motif Programming Manual, Vol 6 in 
the X Series, O’Reilly & Associates, Inc. 1991 

[16] N. Holliman, C. Wang and P. Dew. Mistral-3 : 
Parallel Solid Modelling. Technical Report TR 91- 
4, University of Leeds, January, 1991, 

[ 171 R. E. Johnson, Brian Foote, Designing reusable 
classes, Journal of Object-Oriented Programming 
Vol 1 No 2, 22-35, 1988. 

1181 R. LeBlanc and A, Robbins. Event-driven moni- 
toring of distributed programs. Proceedings of the 

81 



5th Conference on Distributed Systems, IEEE 
1985. 

[ 193 T. Lehr, Z. Segall, D. Vrsalovic, E. Caplan, A. 
Chung, and C. Fineman. Visualizing Performance 
Debugging. IEEE Computer 22( 10):38-52, Octo- 
ber, 1989. 

[20] M.A. Linton, J.M. Vlissides, P.R. Calder, Com- 
posing User interfaces with Interviews, Computer, 
Vol22, No 2,8-22, February 1989. 

[21] Macapp 2.0 General Reference Manual, Apple 
Computer 1990. 

[22] A. Malony, D. Hammerslag, D. Jablonowski, 
Traceview: A Trace Visualization Tool. IEEE Soft- 
ware, 19-28, September 1991. 

[23] B. P. Miller, M. Clark, J. Hollingsworth, S. Kier- 
stead, S. Lim, and T. Torzewski. IPS-2: The Second 
Generation of a Parallel Program Measurement 
System. IEEE Transactions on Parallel and Distrib- 
uted Systems 1(2):206-217, April, 1990. 

[24] A. Nye and T. O’Reilly, X Toolkit lntrinsics Pro- 
gramming Manual, Vol 4 in the X Series, O’Reilly 
& Associates, Inc. January 1990. 

[25] D. Ogle, K. Schwan, and R. Snodgrass. The 
Dynamic Monitoring of Real-Time Distributed and 
Parallel Systems. Technical Report GIT-ICS-90/ 
23, Georgia Institute of Technology, May, 1990 

[26] A. Palay, W. Hansen, M. Kazar, M. Sherman, M. 
Wadlow, T. Neuendorffer, Z. Stem, M. Bader and T. 
Peters, The Andrew Toolkit: An Overview, Proc. of 
the USENIX Technical Conference, 1988. 

[27] J. Pekny, D. Miller, A. Kudva, An Exact Algo- 
rithm for Resource Constrained Sequencing With 
Application to Production Scheduling Under an 
Aggregate Deadline, Computers and Chemical 
Engineering, 17(7), 671-682, 1993. 

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, 
W. Lorensen, Object-Oriented Modeling and 
Design, Prentice Hall, 199 1. 

[29] R. Snodgrass. A Relational Approach to Moni- 
toring Complex Systems. ACM Transactions on 
Computer Systems 6(2):157-l 96, May, 1988. Per- 
formance Evaluation 

[30] A. Weinand, E. Gamma, R. Marty, Design and 
Implementation of ET++, a Seamless Object-Ori- 
ented Application Framework., Structured Pro- 
gramming Vol 10, No 2, 63-87, 1989. 

82 


