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Abstract 

This paper describes Symbolics' newly redesigned object- 
oriented programming system, Flavors. Ravors encourages 
program modularity, eases the development of large, 
complex programs, and provides high efficiency at run 
time. Flavors is integrated into Lisp and the Symbelics 
program development environment. This paper describes 
the philosophy and soma of the msjor characteristics of 
Symbollcs' Flavors and shows how the above goals are 
addressed. Full details of Flavors are le f t  to the 
programmers' manual, R e ,  fence Guile to 8ymboli~ 
Common Lisp. (5) 

History of F/avora 

The origulal Flavors system was developed by the /,fiT 
Lisp Machine group in 1979. (I, 2, 3) It was used to build 
a window system and later applied to other system 
programming. In 1981, Symbel/cs designed a more 
efficient implementation of Flavo~ Since that time, we 
have made increasingly heavy use of Flavors in nearly 
every aspect of the Symbelics 3600 software, such as I/O 
streams, network control programs, the debugger, the 
editor, and user interface facilities. Flavors permeate 
beth the operating system and higher-level utilities. The 
same Flavors tools used in-house are fully documented and 
are used by most SymbeLics customers to build their 
application programs. 

Five years' experience with Flavors has pointed out the 
strengths and weaknesses of the original design. In 1985 
we undertook a thorough redesign of Flavors to solve the 
problems that we had identified. The result is a new 
Flavo~ system that has been implemented at Symbelics 
and has been used in-houas to develop several complex 
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programs. This newly-designed Flavors is the version 
described in this paper. It will be released with the next 
Symholics sof tware release. (5) 

W h a t  is obJect-orlentod programm/ng? 

We view object-oriented programming as a techn/que for 
organizing very large programs. This technique makes it 
practical to deal with programs that would otherwise be 
impossibly complex. 

An object-oriented program consists of a set of objects and 
a set of operations on those objects. These entities are 
not de/'med in a monolithic way. Instead, the dei'mitions 
of the operations are distributed among the various 
objects that they can operate upon. At the same time, 
the definitions of the objects are distributed among the 
various facets of their behavior. An object-oriented 
programming system is an organizations] framework for 
combining these distributed definitions and managing the 
interactions among them. 

Object-oriented programming is also an abstract/on 
mechanism. A program that manipulates an object uses 
certain defined operations to manipulate it. These 
operations serve as an interface, and the program does 
not need to know how the object implements the 
operations. The implementation of one operation can be 
different for different kinds of objects. At the same time, 
an object's behavior can be divided into several facets, 
which need not know each other's internal detaiLs. 

Goa ls  o f  Flavors 

There are many possible and useful styles of object- 
oriented programming. Flavors adopts an approach aimed 
at these goals: 

* Encourage program modularity. By this we mean that 
Flavors should make it easier to construct programs 
out of existing parts, to modify the behavior of 
existing programs without massively rewriting them, 
to understand programs one piece at a time, and to 
identify interfaces between modules. 

• Ease development of large, complex programs. In 
addition to encouraging modularity, Ravors should 
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allow programs to be constructed incrementally, make 
it possible to change data representations and program 
organization while the program is running, and 
provide tools for analyzing programs. 

• Provide high efficiency at run-time. The CPU time and 

page fault rate associated with object-oriented 
operations should not be very much larger than that 
associated with ordinary function calling and data 

manipulation. This must be accomplished without 
compromising other goals. 

. Be compatible with the previous Flavors system. By this 
we mean tools and backward-compatibility features to 
ease conversion of programs written with the old 

Flavors to run with the new Flavors. Compatibility 
features are not discussed in this paper. 

Later sections discuss how these goals are met. We first 
present the concepts of Flavors. 

B a s i c  Flavors Concepts  

It is often convenient to organize programs around objects, 
which model real-world things. Each real-world object is 
modelled by a single Lisp object. Each object has some 
state and a set of operations tha t  can be performed on it. 
A Flavors program is built  around: 

Flavors 

Each kind of object is implemented as a flavor. A 
flavor is an abstraction of the characteristics tha t  all 
objects of this flavor have in common. It is a new 
aggregate data type. For example, this form defines a 
flavor tha t  represents  ships: 

(defflavor ship 

(x-velocity y-velocity mass) 

() 

: readable-instance-variables 

: writ able-instance-variables 

: init able-inst ance-variables) 

Instances of a flavor 
Each object is implemented as an instance of a flavor. 
For example, here we create and initialize an instance 
of the ship flavor: 

(setq my-ship 

(make-instance 'ship :mass 14 

:x-velocity 24 

:y-velocity 2) ) 

Instance variables 

This is a set  of named variables with separate values 
for each instance. The values of the instance 
variables represent  the state of each object. The 
instance variables of the c h i p  flavor are x - v e l o c i t y ,  
y-velocity, and mass. The :readable-lnstance- 
variables option generates accessor functions for 
reading the values of instance variables; for example: 

(ship-mass my-ship) 

--> 14 

Similarly, the : writ able- inst ance-veriable s 

option allows us to al ter  the value of an instance 
variable: 

(setf (ship-mass my-ship) i00) 

--> 100 

Generic functions 
The operations tha t  are performed on objects are 
known as generic functions. 

Methods 
The Lisp function that  performs a generic function on 
instances of a certain flavor is called a method. The 
instance variables are accessible by name inside the 
body of a method. Often, one generic function has 
several methods defined for it, attached to different 
flavors. An example method: 

(defmethod (ship-speed ship) () 

(sqrt (+ (expt x-velocity 2) 

(expt y-velocity 2)))) 

Gener ic  Func t ions  

A generic function operates on an object by selecting one 
or more methods tha t  implement the generic operation in 
a specialized way for tha t  object. One of the arguments  
(usually the first) to a generic function is the object: the 
available methods are those attached to its flavor. Generic 
functions are the interface between objects. They provide 
abstraction and isolation between modules. 

Figure I shows the differences between ordinary Lisp 
functions and generic functions. 

Ordinary Func~ons 

Have a s i n g l e  definition. 

Interface i s  s p e c i f i e d  

by  defun. 

Do not treat flavor 

instances specially. 

Implementation is the 

same whenever the 

function is called. 

Gener/~ Func~ons 

Have a d i s t r i b u t e d  d e f i n i t i o n .  

I n t e r f a c e  can  be s p e c i f i e d  

by  d e f g e n e r l c  o r  d e f m e t h o d .  

First argument is usually 

an i n s t a n c e  of a flavor. 

Implementation varies £rom 

c e i l  t o  c a l l ,  d e p e n d i n g  on 

the flavor of the first 

argument. 

Figure I 

Differences between ordinary and generic Lisp functions. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Generic functions are smoothly integrated into the Lisp 
environment. Ordinary functions and generic functions are 
called with the same syntax. Making generic functions 
syntactically and semantically compatible with ordinary 
functions has the following advantages: 
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• The caller of a function need not know whether i t  is 
generic. 

• The Common Lisp package system (4) can be used to 
isolate modules and to distinguish between public and 
private interfaces by e x p o r t i n g  the names of public 
generic functions. 

• Debugging tools such as t r a c e  can be used on generic 
functions. 

• Program-development tools tha t  get the argument  list 
or documentation of a function work equally well on 
generic functions. 

Mixing F l a v o r s  

A typical flavor is defu~d by combining several other 
flavors, called its components. The new flavor inheri ts  
instance variables, methods, and additional component 
flavors from its components. In a well-organized program, 
each component flavor is a module that  defines a single 
facet of behavior. When two types of objects have some 
behavior in common, they each inheri t  i t  from the same 
flavor, ra ther  than duplicating the code. When flavors are 
mixed together, Flavors organizes and manages the 
interactions between them. This multiple inheritance is a 
key aspect of the design of Flavors;, the mechanism is 
described in the following sections. 

Order ing  F lavor  Componen t s  

When a flavor is defined with one or more component 
flavors, Flavors chooses an ordering of its components, 
including both the direct components and the inherited 
components. Components a t  the beginning of the 
ordering are the most specific and those at  the end are 
the most general. The ordering is important because it 
controls how a flavor's methods are inherited from 
components and how components earlier in the ordering 
specialize the behavior of those later  in the ordering. 
The details of method inheritance are explained in a later  
section, but first the way the ordering is chosen must  be 
understood. 

Each flavor defines certain constraints on the ordering of 
itself and its direct components. Taken together, these 
constraints determine a partial ordering of all of the 
components of s favor. Flavors computes a total ordering 
that  is consistent with the partial ordering. Three rules 
control the ordering of flavor components: 

• A flavor alwoys precedes its own components. 

• The local ordering of components of  a flavor is 
preserved. This is the order of components given in 
the clef f l a v o r  form. 

• Duplicate flavors are eliminated from the ordering. If  a 
flavor appears more than once, it is placed as close to 
the beginning of the ordering as possible, while still 
obeying the other rules. 

The goal of ordering flavor components is to preserve the 
modularity of programs. A favor  should be treated as an 
intact  unit, with well-defined characteristics and behavior; 
it is essential tha t  mixing flavors together does not al ter  
the internal  details of any of the component flavors. This 
makes i t  easier to assemble a program from pieces by 
combining pre-existing flavors. The rules for ordering 
components support this by ensuring that  a flavor's 
components will be in the same order when that  flavor is 
par t  of another  as they are when it stands alone. 

Here is an example of ordering components. The third 
subform of d ~ f f l a v o r  is the list of direct components. 

defflavor pie () (apple cinnamon)) 

defflavor apple () (fruit)) 

defflavor cinnamon () (spice)) 

defflavor fruit () (food)) 

defflavor spice () (food)) 

defflavor food () (.)) 

The result ing ordering of flavor components for p i e  is: 

(pie apple fruit: cinnamon spice food vanilla) 

vanAlla is the flavor tha t  is always included, to provide 
default behavior. 

Programmers are not allowed to mix together flavors with 
incompatible constraints. When no ordering of components 
can satisfy all of the constraints, Flavors lists the 
conflicting constraints  and requires t h e  programmer to 
take corrective action. For example: 

(defflavor splce-cake () (spice pie)) 

produces the error  message: 

Cannot order the components of SPICE-CAKE: 

No ordering of SPICE, PIE, CINNAMON works: 

SPICE-CAKE has SPICE and PIE as 

direct components in that order. 

PIE depends directly on CINNAMON. 

CINNAMON depends directly on SPICE. 

However SPICE, PIE, CINNAMON have 

no conflicting methods. 

In s t ance  Var iable  I nhe r i t ance  

The instance variables of a flavor are the union of the 
instance variables of its components. I f  several 
components define instance variables with the same name, 
they are combined into one instance variable. Thus 
instance variables can be used for communication between 
component flavors ff the programmer so chooses. A 
method can access inherited instance variables by name. 
The variable s e l f  is scoped like an instance variable but 
its value is the instance itself. 

Programmers often employ a convention that  only certain 
methods access a given instance variable. These methods 
are considered to be inside the module that  owns that  
instance variable. All other usage of tha t  instance 
variable is by applying a generic function to s e l f ,  which 
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provides a more abstract  interface. This convention is 
allowed but  not enforced by Flairs. The particular 
conventions for each instance variable in a program 
depend on the design of tha t  program. This is similar to 
the way Lisp allows but  does not enforce a convention 
that  private functions of a module should only be called 
from inside tha t  module. 

Initialization of an instance variable is controlled by the 
most specific flavor tha t  specifies an initialization. Often 
an instance variable is initialized by the flavor tha t  
defines it, but  sometimes initializing an inherited instance 
variable is a useful way to customize inherited behavior. 

Method I n h e r i t a n c e  

When a generic function is applied to an object of a 
particular flavor, methods for tha t  generic function 
attached to tha t  flavor or to one of its components are 
available. From this set of available methods, one or 
more are selected to be called. If more than one is 
selected, they must  be called in some particular order and 
the values they re turn  must  be combined somehow. 

The simplest form of method inheritance is to use the 
method of the most specific flavor that  provides one, and 
to ignore methods of more general flavors. This is often 
useful, but  is not sufficient for all cases. Sometimes good 
program modularity requires tha t  different parts of the 
implementation be specified by multiple methods, which 
must  then be combined. 

Method  Combina t ion  

The selection and combination of methods for a (generic 
function, flavor) pair is controlled by a method- 
combination type. The programmer can specify the name 
of a type and optional parameters  when defining a flavor, 
allow it to be inherited from a component flavor, specify 
it when defining a generic function, or simply allow the 
default type to be used. Several method-combination 
types are built in and programmers are encouraged to 
define additional types of their own. 

The method-combination type sorts the available methods 

according to the component ordering, thus identifying 

more specific and less specific methods. It then chooses a 

subset of the methods (possibly all of them). It controls 

how the methods are called and what is done with the 
values they return by constructing Lisp code that calls 

the methods. Any of the functions and special forms of 
the language may be used. The resulting function is 

called a combined method. 

Some examples of butt-in method-combination types are: 

* Call only the most specific method. 

• Call all the methods, most-specific in-st or in the 
reverse order. 

* Try each method, s tar t ing with the most specific, unti l  
one is found tha t  re turns  a value other than n i l  

• Collect the values of the methods into a list. 

• Compute the ari thmetic sum of the values of the 
methods. 

• Divide the methods into three categories: primary 
methods, before-daemons, and after-daemons. Call all 
the before-daemons, then call the most specific 
primary method, then call all the after-daemons. 

• Use the second argument  to the generic function to 
select one of the methods. 

Declara t ive  Cont ro l  of Method  Combina t i on  

Programmers  control method combination separately from 
the definition of the methods themselves. They control it 
by declaring a method-combination type and constraints 
on the ordering of component flavors. The details of how 
this declarative specification is implemented as executable 
code in the combined method can be ignored most of the 
time. 

When defining a method, the programmer only thinks 
about what tha t  method must  do itself, and not about 
details of its interaction with other methods that  a ren ' t  
part  of a defined interface. When specifying a methed- 
combination type, the programmer only thinks about how 
the methods will interact, and not about the internal  
details of each method, nor about how the method- 
combination type is implemented. Programming an 
individual method and programming the combination of 
methods are two different levels of abstract io~ Keeping 
them separate promotes modularity. 

Def ining New Method-Combina t ion  Types  

Programmers can easily define new method-combination 
types. Flavors provides macros tha t  accept a largely 
declarative specification of method sorting, filtration, and 
combination, and automatically produce the detailed cede 
to combine the methods. The full details are beyond the 
scope of this paper, but  the following examples of built-in 
types should convey the philosophy. 

This defines a methed-combination type named :mum that  
calls all the methods and passes thei r  values as 
arguments  to the + function. The generic function 
re turns  the sum of the numbers  returned by the methods: 

(define-simple-method-combination :sum +) 

This defines the method-combination type mentioned 
earlier tha t  calls daemon methods before and after  the 
primary method: 

( d e f i n e - m e t h o d - c o m b i n a t i o n  :daemon () 
;; Select three subsets of methods 
; ; by pattern-matchlng 
((before "before" :every 

:most-speciflc-first (:before)) 
(primary "primary" :first 

:most-specific-first ()) 
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{after "after" :every 

:most-specific-last (:after))) 

;; A Lisp form that calls the methods 

• (mult ipl e-value-progl 

(progn , (call-component-methods before) 

, (call-component-method primary) ) 

, (call-component-methods after))) 

The pattern-matohing specifications bind the variables 
b e f o r e  and a f t e ~  to lists of all the daemon methods 
and bind the variable pr~ffiary to the most specific 
primary method. The backquoto expression then 
generates the Lisp code tha t  calls all the methods in the 
desired order and re turns  the values of the primary 
method. 

Encourag ing  P r o g r a m  Modula r i ty  

No programming system can guarantee program 
modularity or eliminate the need for careful design of a 
program's structure. However, a programming system can 
make it  easier  to build modular programs. Flavors 
provides organizational techniques for writing programs in 
a modular way and keeping them modular as they evolve. 

Inheritance of methods encourages modularity by allowing 
objects tha t  have similar behavior to share code. Objects 
tha t  have somewhat different behavior can combine the 
generalized behavior with code tha t  specializes it. 

Multiple inheri tance fur ther  encourages modularity by 
allowing object types to be built  up from a toolkit of 
component parts. 

Interfaces between modules are typically defined as 
generic functions. Using any kind of function as an 
interface lends some abstraction. Using a generic 
function has the additional advantage that  there can be 
several modules conforming to the same interface but 
each implementing it  in a different way. 

A common technique is to mix flavors so tha t  a single 
object is composed of several modules. The modules 
communicate through generic functions applied to s e l f ,  
combination of methods (such as before- and after- 
daemons) belonging to different modules, and shared 
instance variables. 

Eas ing  Development  of  Large,  Complex P r o g r a m s  

The encouragement of modularity outlined above is a key 
feature when developing large programs. In addition, 
Flavors makes it easy to change design decisions at  any 

time and provides tools to assist  the programmer in 
understanding and modifying the s tructure of the 
program. 

The flexibility to change parts of a program quickly and 
easily is useful in the development stage. Flavors enables 
you to redefine flavors, methods, and generic functions at  
any time, even while the program is running. To do so, 
you need only evaluate a new definition, which replaces 

the old. When a flavor is changed, the system propagates 
the changes to any flavors of which it is a direct or 
indirect component. It is also possible to erase a 
definition without replacing it with a new one. 

Changing the data representation is jus t  as easy. If  you 
redefine a flavor, to add or remove instance variables, old 
instances of the flavor automatically convert themselves 
to the new format the next time they are accessed. 

You can redefine a generic function to be an ordinary 
function, or an ordinary function to be a generic function, 
without having to recompile its callers. 

Program Development  TooLs 

The Symbolics programming environment offers a variety 
of tools for analyzing Flavors.based programs. These tools 
can be invoked through the command processor or by 
pointing the mouse at  displayed instances, flavor names, 
or method names. 

Show Flavor Components 
Answers: What  is the order of flavor components, and 
why did Flavors pick that  order? 

Show Flavor Dependents 
Answers: What  flavors inheri t  from this one? 

Show Flavor Instance Variables 
Answers: What  s tats  is maintained by instances of 
this flavor? 

Show Flavor Operations 
Answers: What  generic functions are supported by this 
flavor? 

Show Flavor Methods 
Answers: What  methods are defined for this flavor or 
inherited from its component flavors? 

Show Flavor Initializations 
Answers: How are new instances of this flavor 
initialized? 

Show Flavor Differences 
Answers: What  are the differences between two 
flavors? 

Show Generic Function 
Answers: What  flavors provide a method for this 
generic function? 

List/Edit Methods 
View or edit the source code of all methods for this 
generic function. 

Show Flavor Handler 
Answers: When a given generic function is applied to 
an instance of a given flavor, what methods implement 
the operation? What  is the actual Lisp code produced 
to combine these methods? 

List/Edit Combined Methods 
View or edit the source code of the methods that  
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implement a given generic function on an instance of 
a given flavor. 

Show Effect of Definition 
Answers: I f  I evaluate this definition (text in the 
editor), or erase it, what changes would take place? 
For example, changing the order of a flavor's 
components might  change which inherited method i t  
uses for a particular generic function. 

By pointing the mouse at  a displayed object, the 
programmer can view: 

• Names of the arguments  and re turn  values of a 
generic function. If  not explicitly declared, these are 
deduced from the methods. 

• Documentation for a flavor or a generic function. 

• Source code of a flavor, a genetic function, or a 
method. 

Eff iciency Considerationm 

Efficiency can be defined in many ways. We are 
concerned with four dimensions of efficiency: 

• Efficient use of the programmer 's  time. 

• CPU time. 

• Page fault rate. 

• Virtual  memory occupied. 

We optimize the programmer 's  time through declarative 
mechanisms, powerful tools, the flexibility to redefine 
pieces of the program, and a complex implementation that  
allows the programmer 's  own programs to remain simple. 

The efficiency philosophy of Flavors is to optimize run- 
time speed to the maximum extent tha t  does not 
compromise other  goals, such as the flexibility to redefine 
anything while the program is running. In addition to 
Flavors.related goals, general Symbelics system goals, such 
as full run-time error  checking, avoiding widespread use 
of declarations, and providing the best  functionality, must  
not be compromised for the sake of efficiency, 

Run.time speed is important  because applications, 
including the development tools themselves, are typically 
built  on several layers of Flavors.based substrate. The 
Flavors approach is to use a complex, machine-dependent 
implementation of relatively simple-appearing features, 
such as generic functions and instance variables. 

Programmers  enjoy the efficiency benefit  of this 
implementation without having to write their own 
programs in a complex machine-dependent way. 

CPU time and page fault  rate determine response time, so 
they are more important  than virtual  memory size, which 
only consumes inexpensive disk storage. Consequently 
F/st, ors maintains multiple copies of information when tha t  
improves vir tual  memory locality or execution speed. 
Keeping those multiple copies consistent slows down 

program development operations, especially when 
modifying flavors tha t  have hundreds of dependents. This 
tradeoff is acceptable, since development operations need 
not be faster than human speeds (several seconds), while 
run-time operations must  operate at  computer speeds 
(microseconds). Speeding up the run-time operations also 
speeds up the development tools built  on them. 

The key areas tha t  are important  to optimize in an object- 
oriented programming system are: 

• Selection of one or more methods when a generic 
function is called 

• Instance variable access from a method 

• Instance creation 

The following sections discuss how Flavors implements 
these operations. 

Implementation of Method  Selection 

The first  time a flavor is instantiated, or during 
compilation of the program ff so directed, a handler 
function is precomputod for each generic function that  the 
flavor supports. The method-combination procedure 
selects a set  of methods and produces Lisp code that  
combines them. If  the code can be optimized into calling 
a single method, tha t  method is the handler. Otherwise a 
combined method is generated, compiled to machine code, 
and used as the handler. The combined method calls the 
methods with ordinary Lisp function calls. 

The results  of this precomputation are saved in a handler 
tab/e associated with the flavor, keyed by the generic 
functiorL Thus when a generic function is called, the 
method selection process consists of finding the instance's  
flavor, looking in the handler table, and calling the 
handler. (See figure 2.) The handler  table is a hash 
table whose structure is optimized to exploit the pipelined 
characteristics of the 3600's memory bus. 

Subsequent changes to the program such as adding 
methods, removing methods, declaring a different method 
combination type, or changing a flavor's components 
incrementally update all affected handler  tables, compiling 
new combined methods when necessary. For this purpose 
each flavor is linked to the flavors tha t  depend on it and 
each combined method records how it  was generated. 

Imp lemen ta t i on  of  I n s t a n c e  Var iable  Access 

An instance is a represented as a block of storage whose 
first  word references the flavor and whose remaining 
words contain values of instance variables. Methods that  
access instance variables cannot  contain constant  offsets 
of instance variables within the instance. These offsets 
are variable a t  run  time, depending on the flavor of the 
instance, which can be any flavor tha t  has the method's 
flavor as a component. Multiple inheri tance makes it 
impossible to allocate fixed offsets to instance variables, 
because two flavors using the same offset might  la ter  be 
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mixed together and one of them would have to change. 

The solution is to use indirect addressing. Each entry in 
a handler  table includes a mapping table, which contains 
instance variable offsets. (See figure 2.) A method 
receives a mapping table as an argument. Offsets into the 
mapping table are compiled into methods. These offsets 
don't  change, because when two flavors are mixed 
together each has i ts own mapping table. Accessing an 
instance variable fetches the offset from the mapping 
table, adds it to the address of the instance, and 
references that  memory location. 

When a combined method calls another  method, i t  
supplies a mapping table fetched from its own mapping 
table. Thus mapping tables actually form a tree structure 
parallel to the tree s tructure of flavor components. 

In principle every flavor needs a separate mapping table 
for each component, and the total number  of mapping 
tables could be proportional to the square of the number  
of flavors. In practice the average number  of components 
of a flavor is small and only components that  have 
instance variables need mapping tables. Thus the average 
number  of mapping tables per flavor is only 4.1 and the 
total memory occupied by mapping tables is negligible. 

Fleztble Represen ta t ion  of l swtanees  

Redefining a flavor in a way that  changes the 
representation of instances, such as adding or deleting an 
instance variable, arranges for existing instances to be 
updated automatically. It  makes a new flavor (with the 
same name) and changes the old flavor's handler table so 
that  all generic functions rearrange the instance, change 
its flavor reference to the new flavor, and retry the 
operation. If  the new instance representation is larger, 
rearranging the instance allocates new storage, copies the 
instance variable values into it, and deposits forwarding 
addresses with a special tag into the old storage. The 
instance variable accessing instructions and the garbage 
collector recognize this special tag. 

Implementation of Instance Creation 

The fu-st time a flavor is instantiated, the initialization 
information from all its components is combined and 
saved in a convenient form. Subsequent instantiations 
consist of allocating storage, copying a template instance,  
initializing any instance variables whose initial values are 
not constant, and invoking initialization methods if  any 
have been defined. 

T lm in f  M e a s u r e m e n t s  

These measurements  were performed on a Symbolics 3640 
using the bets . test  version of Release 7.0. Absolute 
t iming measurements  vary depending on hardware 
configuration, software version, and measurement 
methodology, so the most meaningful information here is 
the ratios. 

Calling a generic function with two arlFiments takes 
twice as long as calling an ordinary function with two 
arguments;  13 microseconds versus 7, Times include 
computing trivial arguments,  the actual call, executing a 
trivial function body, and the r e t u r ~  

The first  instance variable accessed by a method takes 
about 5 microseconds; succeeding instance variables take 
2.2 microseconds. For comparison, accessing a lexical 
variable in a closure takes 1.1 m/craseconds and accessing 
a =Im¢£a l  variable takes 1.7 microseconds. 

Creating an  instance with two instance variables using 
i ~ak i - lna t l lnce ,  the most general mechanism, takes 353 
microseconds, 6.1 times as long as creating a d ls fat ruct :  
structure with two slots. Using a Flavors constructor 
function, analogous to a d~fa tcuc¢ constructor, takes 
165 microseconds i f  keyword arguments are used or 68 
microseconds with positional arguments, reducing the 
ratio to 2.8 or 1.2. 

These t iming measurements  suggest that  programming 
with Flavors is not substantially less efficient than now 
object-oriented programming. In fact, i t  can be more 
efficient: 

• A Flavors instance is smeller than a d s f s t z m c t  
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structure with the same number of slots, by one word. 

• Dispatching on object types with typeca=, ,  takes 
about 15 times as long for a typical case as a generic 
function call. 

Directions for Fu ture  Research 

The following less wall-understood aspects of object. 
oriented programming are good directions for future 
research: 

• Protecois--Formallzing the notion of a generic 
interface, and further separating the contract of an 
object from the implementation of the object. 

• Flavors for Non.lnstances-.Integrating the built-in data 
types of the Lisp language into the Flavors framework. 

• Methods for Primitive Functions--Making c a r  or + 
applied to an instance turn into a generic function 
and invoke a method, without slowing down the 
common non-object-oriented case. 

• Higher.level Tools..Programmere of very large 
programs need all the help they can get. 
Programming tools that incorporate a model of the 
programming process, rather than just  answering one 
question at a time, work better when the program is 
structured around a framework they understand. 
F / a ~  could be one such framework. 

• Database..lntegrating object-oriented programming 
with the persistent, reliable, data.independent 
structure of a database. 

• Multiadic Operations-Generic functions that use more 
than one of their ar~zrnents to select methods are 
easy to implement, but a coherent and useful 
framework for organizing programs that work this way 
needs to be developed. 
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