
Object-Oriented Programming with Flavors

David A. Moon
Symbelics, Inc.

Abstract

This paper describes Symbolics' newly redesigned object-
oriented programming system, Flavors. Ravors encourages
program modularity, eases the development of large,
complex programs, and provides high efficiency at run
time. Flavors is integrated into Lisp and the Symbelics
program development environment. This paper describes
the philosophy and soma of the msjor characteristics of
Symbollcs' Flavors and shows how the above goals are
addressed. Full details of Flavors are le f t to the
programmers' manual, R e , fence Guile to 8ymboli~
Common Lisp. (5)

History of F/avora

The origulal Flavors system was developed by the /,fiT
Lisp Machine group in 1979. (I, 2, 3) It was used to build
a window system and later applied to other system
programming. In 1981, Symbel/cs designed a more
efficient implementation of Flavo~ Since that time, we
have made increasingly heavy use of Flavors in nearly
every aspect of the Symbelics 3600 software, such as I/O
streams, network control programs, the debugger, the
editor, and user interface facilities. Flavors permeate
beth the operating system and higher-level utilities. The
same Flavors tools used in-house are fully documented and
are used by most SymbeLics customers to build their
application programs.

Five years' experience with Flavors has pointed out the
strengths and weaknesses of the original design. In 1985
we undertook a thorough redesign of Flavors to solve the
problems that we had identified. The result is a new
Flavo~ system that has been implemented at Symbelics
and has been used in-houas to develop several complex

Permission to copy without fee all or pen of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computin$ Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-204-7/86/0900-0001 75¢

programs. This newly-designed Flavors is the version
described in this paper. It will be released with the next
Symholics sof tware release. (5)

W h a t is obJect-orlentod programm/ng?

We view object-oriented programming as a techn/que for
organizing very large programs. This technique makes it
practical to deal with programs that would otherwise be
impossibly complex.

An object-oriented program consists of a set of objects and
a set of operations on those objects. These entities are
not de/'med in a monolithic way. Instead, the dei'mitions
of the operations are distributed among the various
objects that they can operate upon. At the same time,
the definitions of the objects are distributed among the
various facets of their behavior. An object-oriented
programming system is an organizations] framework for
combining these distributed definitions and managing the
interactions among them.

Object-oriented programming is also an abstract/on
mechanism. A program that manipulates an object uses
certain defined operations to manipulate it. These
operations serve as an interface, and the program does
not need to know how the object implements the
operations. The implementation of one operation can be
different for different kinds of objects. At the same time,
an object's behavior can be divided into several facets,
which need not know each other's internal detaiLs.

Goa ls o f Flavors

There are many possible and useful styles of object-
oriented programming. Flavors adopts an approach aimed
at these goals:

* Encourage program modularity. By this we mean that
Flavors should make it easier to construct programs
out of existing parts, to modify the behavior of
existing programs without massively rewriting them,
to understand programs one piece at a time, and to
identify interfaces between modules.

• Ease development of large, complex programs. In
addition to encouraging modularity, Ravors should

September 1986 OOPSLA '86 Proceedings 1

allow programs to be constructed incrementally, make
it possible to change data representations and program
organization while the program is running, and
provide tools for analyzing programs.

• Provide high efficiency at run-time. The CPU time and

page fault rate associated with object-oriented
operations should not be very much larger than that
associated with ordinary function calling and data

manipulation. This must be accomplished without
compromising other goals.

. Be compatible with the previous Flavors system. By this
we mean tools and backward-compatibility features to
ease conversion of programs written with the old

Flavors to run with the new Flavors. Compatibility
features are not discussed in this paper.

Later sections discuss how these goals are met. We first
present the concepts of Flavors.

B a s i c Flavors Concepts

It is often convenient to organize programs around objects,
which model real-world things. Each real-world object is
modelled by a single Lisp object. Each object has some
state and a set of operations tha t can be performed on it.
A Flavors program is built around:

Flavors

Each kind of object is implemented as a flavor. A
flavor is an abstraction of the characteristics tha t all
objects of this flavor have in common. It is a new
aggregate data type. For example, this form defines a
flavor tha t represents ships:

(defflavor ship

(x-velocity y-velocity mass)

()

: readable-instance-variables

: writ able-instance-variables

: init able-inst ance-variables)

Instances of a flavor
Each object is implemented as an instance of a flavor.
For example, here we create and initialize an instance
of the ship flavor:

(setq my-ship

(make-instance 'ship :mass 14

:x-velocity 24

:y-velocity 2))

Instance variables

This is a set of named variables with separate values
for each instance. The values of the instance
variables represent the state of each object. The
instance variables of the c h i p flavor are x - v e l o c i t y ,
y-velocity, and mass. The :readable-lnstance-
variables option generates accessor functions for
reading the values of instance variables; for example:

(ship-mass my-ship)

--> 14

Similarly, the : writ able- inst ance-veriable s

option allows us to al ter the value of an instance
variable:

(setf (ship-mass my-ship) i00)

--> 100

Generic functions
The operations tha t are performed on objects are
known as generic functions.

Methods
The Lisp function that performs a generic function on
instances of a certain flavor is called a method. The
instance variables are accessible by name inside the
body of a method. Often, one generic function has
several methods defined for it, attached to different
flavors. An example method:

(defmethod (ship-speed ship) ()

(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2))))

Gener ic Func t ions

A generic function operates on an object by selecting one
or more methods tha t implement the generic operation in
a specialized way for tha t object. One of the arguments
(usually the first) to a generic function is the object: the
available methods are those attached to its flavor. Generic
functions are the interface between objects. They provide
abstraction and isolation between modules.

Figure I shows the differences between ordinary Lisp
functions and generic functions.

Ordinary Func~ons

Have a s i n g l e definition.

Interface i s s p e c i f i e d

by defun.

Do not treat flavor

instances specially.

Implementation is the

same whenever the

function is called.

Gener/~ Func~ons

Have a d i s t r i b u t e d d e f i n i t i o n .

I n t e r f a c e can be s p e c i f i e d

by d e f g e n e r l c o r d e f m e t h o d .

First argument is usually

an i n s t a n c e of a flavor.

Implementation varies £rom

c e i l t o c a l l , d e p e n d i n g on

the flavor of the first

argument.

Figure I

Differences between ordinary and generic Lisp functions.

.

Generic functions are smoothly integrated into the Lisp
environment. Ordinary functions and generic functions are
called with the same syntax. Making generic functions
syntactically and semantically compatible with ordinary
functions has the following advantages:

2 OOPSLA '86 Proceedings September 1986

• The caller of a function need not know whether i t is
generic.

• The Common Lisp package system (4) can be used to
isolate modules and to distinguish between public and
private interfaces by e x p o r t i n g the names of public
generic functions.

• Debugging tools such as t r a c e can be used on generic
functions.

• Program-development tools tha t get the argument list
or documentation of a function work equally well on
generic functions.

Mixing F l a v o r s

A typical flavor is defu~d by combining several other
flavors, called its components. The new flavor inheri ts
instance variables, methods, and additional component
flavors from its components. In a well-organized program,
each component flavor is a module that defines a single
facet of behavior. When two types of objects have some
behavior in common, they each inheri t i t from the same
flavor, ra ther than duplicating the code. When flavors are
mixed together, Flavors organizes and manages the
interactions between them. This multiple inheritance is a
key aspect of the design of Flavors;, the mechanism is
described in the following sections.

Order ing F lavor Componen t s

When a flavor is defined with one or more component
flavors, Flavors chooses an ordering of its components,
including both the direct components and the inherited
components. Components a t the beginning of the
ordering are the most specific and those at the end are
the most general. The ordering is important because it
controls how a flavor's methods are inherited from
components and how components earlier in the ordering
specialize the behavior of those later in the ordering.
The details of method inheritance are explained in a later
section, but first the way the ordering is chosen must be
understood.

Each flavor defines certain constraints on the ordering of
itself and its direct components. Taken together, these
constraints determine a partial ordering of all of the
components of s favor. Flavors computes a total ordering
that is consistent with the partial ordering. Three rules
control the ordering of flavor components:

• A flavor alwoys precedes its own components.

• The local ordering of components of a flavor is
preserved. This is the order of components given in
the clef f l a v o r form.

• Duplicate flavors are eliminated from the ordering. If a
flavor appears more than once, it is placed as close to
the beginning of the ordering as possible, while still
obeying the other rules.

The goal of ordering flavor components is to preserve the
modularity of programs. A favor should be treated as an
intact unit, with well-defined characteristics and behavior;
it is essential tha t mixing flavors together does not al ter
the internal details of any of the component flavors. This
makes i t easier to assemble a program from pieces by
combining pre-existing flavors. The rules for ordering
components support this by ensuring that a flavor's
components will be in the same order when that flavor is
par t of another as they are when it stands alone.

Here is an example of ordering components. The third
subform of d ~ f f l a v o r is the list of direct components.

defflavor pie () (apple cinnamon))

defflavor apple () (fruit))

defflavor cinnamon () (spice))

defflavor fruit () (food))

defflavor spice () (food))

defflavor food () (.))

The result ing ordering of flavor components for p i e is:

(pie apple fruit: cinnamon spice food vanilla)

vanAlla is the flavor tha t is always included, to provide
default behavior.

Programmers are not allowed to mix together flavors with
incompatible constraints. When no ordering of components
can satisfy all of the constraints, Flavors lists the
conflicting constraints and requires t h e programmer to
take corrective action. For example:

(defflavor splce-cake () (spice pie))

produces the error message:

Cannot order the components of SPICE-CAKE:

No ordering of SPICE, PIE, CINNAMON works:

SPICE-CAKE has SPICE and PIE as

direct components in that order.

PIE depends directly on CINNAMON.

CINNAMON depends directly on SPICE.

However SPICE, PIE, CINNAMON have

no conflicting methods.

In s t ance Var iable I nhe r i t ance

The instance variables of a flavor are the union of the
instance variables of its components. I f several
components define instance variables with the same name,
they are combined into one instance variable. Thus
instance variables can be used for communication between
component flavors ff the programmer so chooses. A
method can access inherited instance variables by name.
The variable s e l f is scoped like an instance variable but
its value is the instance itself.

Programmers often employ a convention that only certain
methods access a given instance variable. These methods
are considered to be inside the module that owns that
instance variable. All other usage of tha t instance
variable is by applying a generic function to s e l f , which

September 1986 OOPSLA '86 Proceedings 3

provides a more abstract interface. This convention is
allowed but not enforced by Flairs. The particular
conventions for each instance variable in a program
depend on the design of tha t program. This is similar to
the way Lisp allows but does not enforce a convention
that private functions of a module should only be called
from inside tha t module.

Initialization of an instance variable is controlled by the
most specific flavor tha t specifies an initialization. Often
an instance variable is initialized by the flavor tha t
defines it, but sometimes initializing an inherited instance
variable is a useful way to customize inherited behavior.

Method I n h e r i t a n c e

When a generic function is applied to an object of a
particular flavor, methods for tha t generic function
attached to tha t flavor or to one of its components are
available. From this set of available methods, one or
more are selected to be called. If more than one is
selected, they must be called in some particular order and
the values they re turn must be combined somehow.

The simplest form of method inheritance is to use the
method of the most specific flavor that provides one, and
to ignore methods of more general flavors. This is often
useful, but is not sufficient for all cases. Sometimes good
program modularity requires tha t different parts of the
implementation be specified by multiple methods, which
must then be combined.

Method Combina t ion

The selection and combination of methods for a (generic
function, flavor) pair is controlled by a method-
combination type. The programmer can specify the name
of a type and optional parameters when defining a flavor,
allow it to be inherited from a component flavor, specify
it when defining a generic function, or simply allow the
default type to be used. Several method-combination
types are built in and programmers are encouraged to
define additional types of their own.

The method-combination type sorts the available methods

according to the component ordering, thus identifying

more specific and less specific methods. It then chooses a

subset of the methods (possibly all of them). It controls

how the methods are called and what is done with the
values they return by constructing Lisp code that calls

the methods. Any of the functions and special forms of
the language may be used. The resulting function is

called a combined method.

Some examples of butt-in method-combination types are:

* Call only the most specific method.

• Call all the methods, most-specific in-st or in the
reverse order.

* Try each method, s tar t ing with the most specific, unti l
one is found tha t re turns a value other than n i l

• Collect the values of the methods into a list.

• Compute the ari thmetic sum of the values of the
methods.

• Divide the methods into three categories: primary
methods, before-daemons, and after-daemons. Call all
the before-daemons, then call the most specific
primary method, then call all the after-daemons.

• Use the second argument to the generic function to
select one of the methods.

Declara t ive Cont ro l of Method Combina t i on

Programmers control method combination separately from
the definition of the methods themselves. They control it
by declaring a method-combination type and constraints
on the ordering of component flavors. The details of how
this declarative specification is implemented as executable
code in the combined method can be ignored most of the
time.

When defining a method, the programmer only thinks
about what tha t method must do itself, and not about
details of its interaction with other methods that a ren ' t
part of a defined interface. When specifying a methed-
combination type, the programmer only thinks about how
the methods will interact, and not about the internal
details of each method, nor about how the method-
combination type is implemented. Programming an
individual method and programming the combination of
methods are two different levels of abstract io~ Keeping
them separate promotes modularity.

Def ining New Method-Combina t ion Types

Programmers can easily define new method-combination
types. Flavors provides macros tha t accept a largely
declarative specification of method sorting, filtration, and
combination, and automatically produce the detailed cede
to combine the methods. The full details are beyond the
scope of this paper, but the following examples of built-in
types should convey the philosophy.

This defines a methed-combination type named :mum that
calls all the methods and passes thei r values as
arguments to the + function. The generic function
re turns the sum of the numbers returned by the methods:

(define-simple-method-combination :sum +)

This defines the method-combination type mentioned
earlier tha t calls daemon methods before and after the
primary method:

(d e f i n e - m e t h o d - c o m b i n a t i o n :daemon ()
;; Select three subsets of methods
; ; by pattern-matchlng
((before "before" :every

:most-speciflc-first (:before))
(primary "primary" :first

:most-specific-first ())

4 OOPSLA '86 Proceedings September 1986

{after "after" :every

:most-specific-last (:after)))

;; A Lisp form that calls the methods

• (mult ipl e-value-progl

(progn , (call-component-methods before)

, (call-component-method primary))

, (call-component-methods after)))

The pattern-matohing specifications bind the variables
b e f o r e and a f t e ~ to lists of all the daemon methods
and bind the variable pr~ffiary to the most specific
primary method. The backquoto expression then
generates the Lisp code tha t calls all the methods in the
desired order and re turns the values of the primary
method.

Encourag ing P r o g r a m Modula r i ty

No programming system can guarantee program
modularity or eliminate the need for careful design of a
program's structure. However, a programming system can
make it easier to build modular programs. Flavors
provides organizational techniques for writing programs in
a modular way and keeping them modular as they evolve.

Inheritance of methods encourages modularity by allowing
objects tha t have similar behavior to share code. Objects
tha t have somewhat different behavior can combine the
generalized behavior with code tha t specializes it.

Multiple inheri tance fur ther encourages modularity by
allowing object types to be built up from a toolkit of
component parts.

Interfaces between modules are typically defined as
generic functions. Using any kind of function as an
interface lends some abstraction. Using a generic
function has the additional advantage that there can be
several modules conforming to the same interface but
each implementing it in a different way.

A common technique is to mix flavors so tha t a single
object is composed of several modules. The modules
communicate through generic functions applied to s e l f ,
combination of methods (such as before- and after-
daemons) belonging to different modules, and shared
instance variables.

Eas ing Development of Large, Complex P r o g r a m s

The encouragement of modularity outlined above is a key
feature when developing large programs. In addition,
Flavors makes it easy to change design decisions at any

time and provides tools to assist the programmer in
understanding and modifying the s tructure of the
program.

The flexibility to change parts of a program quickly and
easily is useful in the development stage. Flavors enables
you to redefine flavors, methods, and generic functions at
any time, even while the program is running. To do so,
you need only evaluate a new definition, which replaces

the old. When a flavor is changed, the system propagates
the changes to any flavors of which it is a direct or
indirect component. It is also possible to erase a
definition without replacing it with a new one.

Changing the data representation is jus t as easy. If you
redefine a flavor, to add or remove instance variables, old
instances of the flavor automatically convert themselves
to the new format the next time they are accessed.

You can redefine a generic function to be an ordinary
function, or an ordinary function to be a generic function,
without having to recompile its callers.

Program Development TooLs

The Symbolics programming environment offers a variety
of tools for analyzing Flavors.based programs. These tools
can be invoked through the command processor or by
pointing the mouse at displayed instances, flavor names,
or method names.

Show Flavor Components
Answers: What is the order of flavor components, and
why did Flavors pick that order?

Show Flavor Dependents
Answers: What flavors inheri t from this one?

Show Flavor Instance Variables
Answers: What s tats is maintained by instances of
this flavor?

Show Flavor Operations
Answers: What generic functions are supported by this
flavor?

Show Flavor Methods
Answers: What methods are defined for this flavor or
inherited from its component flavors?

Show Flavor Initializations
Answers: How are new instances of this flavor
initialized?

Show Flavor Differences
Answers: What are the differences between two
flavors?

Show Generic Function
Answers: What flavors provide a method for this
generic function?

List/Edit Methods
View or edit the source code of all methods for this
generic function.

Show Flavor Handler
Answers: When a given generic function is applied to
an instance of a given flavor, what methods implement
the operation? What is the actual Lisp code produced
to combine these methods?

List/Edit Combined Methods
View or edit the source code of the methods that

September 1986 OOPSLA '86 Proceedings 5

implement a given generic function on an instance of
a given flavor.

Show Effect of Definition
Answers: I f I evaluate this definition (text in the
editor), or erase it, what changes would take place?
For example, changing the order of a flavor's
components might change which inherited method i t
uses for a particular generic function.

By pointing the mouse at a displayed object, the
programmer can view:

• Names of the arguments and re turn values of a
generic function. If not explicitly declared, these are
deduced from the methods.

• Documentation for a flavor or a generic function.

• Source code of a flavor, a genetic function, or a
method.

Eff iciency Considerationm

Efficiency can be defined in many ways. We are
concerned with four dimensions of efficiency:

• Efficient use of the programmer 's time.

• CPU time.

• Page fault rate.

• Virtual memory occupied.

We optimize the programmer 's time through declarative
mechanisms, powerful tools, the flexibility to redefine
pieces of the program, and a complex implementation that
allows the programmer 's own programs to remain simple.

The efficiency philosophy of Flavors is to optimize run-
time speed to the maximum extent tha t does not
compromise other goals, such as the flexibility to redefine
anything while the program is running. In addition to
Flavors.related goals, general Symbelics system goals, such
as full run-time error checking, avoiding widespread use
of declarations, and providing the best functionality, must
not be compromised for the sake of efficiency,

Run.time speed is important because applications,
including the development tools themselves, are typically
built on several layers of Flavors.based substrate. The
Flavors approach is to use a complex, machine-dependent
implementation of relatively simple-appearing features,
such as generic functions and instance variables.

Programmers enjoy the efficiency benefit of this
implementation without having to write their own
programs in a complex machine-dependent way.

CPU time and page fault rate determine response time, so
they are more important than virtual memory size, which
only consumes inexpensive disk storage. Consequently
F/st, ors maintains multiple copies of information when tha t
improves vir tual memory locality or execution speed.
Keeping those multiple copies consistent slows down

program development operations, especially when
modifying flavors tha t have hundreds of dependents. This
tradeoff is acceptable, since development operations need
not be faster than human speeds (several seconds), while
run-time operations must operate at computer speeds
(microseconds). Speeding up the run-time operations also
speeds up the development tools built on them.

The key areas tha t are important to optimize in an object-
oriented programming system are:

• Selection of one or more methods when a generic
function is called

• Instance variable access from a method

• Instance creation

The following sections discuss how Flavors implements
these operations.

Implementation of Method Selection

The first time a flavor is instantiated, or during
compilation of the program ff so directed, a handler
function is precomputod for each generic function that the
flavor supports. The method-combination procedure
selects a set of methods and produces Lisp code that
combines them. If the code can be optimized into calling
a single method, tha t method is the handler. Otherwise a
combined method is generated, compiled to machine code,
and used as the handler. The combined method calls the
methods with ordinary Lisp function calls.

The results of this precomputation are saved in a handler
tab/e associated with the flavor, keyed by the generic
functiorL Thus when a generic function is called, the
method selection process consists of finding the instance's
flavor, looking in the handler table, and calling the
handler. (See figure 2.) The handler table is a hash
table whose structure is optimized to exploit the pipelined
characteristics of the 3600's memory bus.

Subsequent changes to the program such as adding
methods, removing methods, declaring a different method
combination type, or changing a flavor's components
incrementally update all affected handler tables, compiling
new combined methods when necessary. For this purpose
each flavor is linked to the flavors tha t depend on it and
each combined method records how it was generated.

Imp lemen ta t i on of I n s t a n c e Var iable Access

An instance is a represented as a block of storage whose
first word references the flavor and whose remaining
words contain values of instance variables. Methods that
access instance variables cannot contain constant offsets
of instance variables within the instance. These offsets
are variable a t run time, depending on the flavor of the
instance, which can be any flavor tha t has the method's
flavor as a component. Multiple inheri tance makes it
impossible to allocate fixed offsets to instance variables,
because two flavors using the same offset might la ter be

6 OOPSLA '86 Proceedings September 1986

mixed together and one of them would have to change.

The solution is to use indirect addressing. Each entry in
a handler table includes a mapping table, which contains
instance variable offsets. (See figure 2.) A method
receives a mapping table as an argument. Offsets into the
mapping table are compiled into methods. These offsets
don't change, because when two flavors are mixed
together each has i ts own mapping table. Accessing an
instance variable fetches the offset from the mapping
table, adds it to the address of the instance, and
references that memory location.

When a combined method calls another method, i t
supplies a mapping table fetched from its own mapping
table. Thus mapping tables actually form a tree structure
parallel to the tree s tructure of flavor components.

In principle every flavor needs a separate mapping table
for each component, and the total number of mapping
tables could be proportional to the square of the number
of flavors. In practice the average number of components
of a flavor is small and only components that have
instance variables need mapping tables. Thus the average
number of mapping tables per flavor is only 4.1 and the
total memory occupied by mapping tables is negligible.

Fleztble Represen ta t ion of l swtanees

Redefining a flavor in a way that changes the
representation of instances, such as adding or deleting an
instance variable, arranges for existing instances to be
updated automatically. It makes a new flavor (with the
same name) and changes the old flavor's handler table so
that all generic functions rearrange the instance, change
its flavor reference to the new flavor, and retry the
operation. If the new instance representation is larger,
rearranging the instance allocates new storage, copies the
instance variable values into it, and deposits forwarding
addresses with a special tag into the old storage. The
instance variable accessing instructions and the garbage
collector recognize this special tag.

Implementation of Instance Creation

The fu-st time a flavor is instantiated, the initialization
information from all its components is combined and
saved in a convenient form. Subsequent instantiations
consist of allocating storage, copying a template instance,
initializing any instance variables whose initial values are
not constant, and invoking initialization methods if any
have been defined.

T lm in f M e a s u r e m e n t s

These measurements were performed on a Symbolics 3640
using the bets . test version of Release 7.0. Absolute
t iming measurements vary depending on hardware
configuration, software version, and measurement
methodology, so the most meaningful information here is
the ratios.

Calling a generic function with two arlFiments takes
twice as long as calling an ordinary function with two
arguments; 13 microseconds versus 7, Times include
computing trivial arguments, the actual call, executing a
trivial function body, and the r e t u r ~

The first instance variable accessed by a method takes
about 5 microseconds; succeeding instance variables take
2.2 microseconds. For comparison, accessing a lexical
variable in a closure takes 1.1 m/craseconds and accessing
a =Im¢£a l variable takes 1.7 microseconds.

Creating an instance with two instance variables using
i ~ak i - lna t l lnce , the most general mechanism, takes 353
microseconds, 6.1 times as long as creating a d ls fat ruct :
structure with two slots. Using a Flavors constructor
function, analogous to a d~fa tcuc¢ constructor, takes
165 microseconds i f keyword arguments are used or 68
microseconds with positional arguments, reducing the
ratio to 2.8 or 1.2.

These t iming measurements suggest that programming
with Flavors is not substantially less efficient than now
object-oriented programming. In fact, i t can be more
efficient:

• A Flavors instance is smeller than a d s f s t z m c t

St ick FTirl~I InltlltKe Fl lvot

I I - - ~. ,vo,, , , , j t t I
c,~,1 L i.v. o-,-r j ' J

vo,,ob~. L ,v o.o,. j
~ t =.r . I - - ~

- J ' w " ' " ' J C . , T~'~ ""'"~b"t
~ L ,.v. o,,.., j " 1

| I.v. oe./~t] ~cy J : Gc,~ic Fu, ction
Val~e ~ Com#ined Me¢~
VSluet ~ lUfLIppi~ Teblc

FhM,.e 2
Flavors]mplemenl~t lon

September 1986 OOPSLA '86 Proceedings 7

structure with the same number of slots, by one word.

• Dispatching on object types with typeca=, , takes
about 15 times as long for a typical case as a generic
function call.

Directions for Fu ture Research

The following less wall-understood aspects of object.
oriented programming are good directions for future
research:

• Protecois--Formallzing the notion of a generic
interface, and further separating the contract of an
object from the implementation of the object.

• Flavors for Non.lnstances-.Integrating the built-in data
types of the Lisp language into the Flavors framework.

• Methods for Primitive Functions--Making c a r or +
applied to an instance turn into a generic function
and invoke a method, without slowing down the
common non-object-oriented case.

• Higher.level Tools..Programmere of very large
programs need all the help they can get.
Programming tools that incorporate a model of the
programming process, rather than just answering one
question at a time, work better when the program is
structured around a framework they understand.
F / a ~ could be one such framework.

• Database..lntegrating object-oriented programming
with the persistent, reliable, data.independent
structure of a database.

• Multiadic Operations-Generic functions that use more
than one of their ar~zrnents to select methods are
easy to implement, but a coherent and useful
framework for organizing programs that work this way
needs to be developed.

References

1. D. Weinrab, D. Moon, Lisp Machine Manual, MIT AI
Lab, 1981, Chapter 20.

2. I-L I. Cannon, "Flavors: A non.hierarch/eal approach to
object-oriented programming", 1982.

3. I t D. Greenblatt, et el., "The LISP Machine',
lateroetive I ~ u m m ~ Enviroame~, D.K Barstew, H.E.
Shrobo, E. Sandewal], eds. McGraw-H/l], 1984.

4. G. L. Steele, Common Lisp tl~ Langu~e, Digital Press,
1984.

5. Reference Guide to 8ymbolics Common L~p: Language
Concepts, Symbolics Release 7 Document Set, 1986.

8 OOPSLA ~6 Proceedings September 1986

