
Reuse: Truth or Fiction
(PANEL)

Paul McCullough (Moderator)

Bob Atkinson, Microsoft Corporation

Adele Goldberg, ParcPZace Systems

Martin Griss, Hewlett-Packard Laboratories

John Morrison, Technology Transfer International, Inc.

Overview

On the basis of papers at conferences, the trade
press, and vendor presentations, software reuse
and object-oriented technology are linked hand
in hand. What is it about objects that excites
discussion about reuse? Operating systems
are heavily reused but are not typically written
in object-oriented languages. Subroutine
libraries (such as the Statistical Package for
the Social Sciences) have been in use for years
to construct programs; again most are not
written in an object-oriented language. So
reuse has been around for a long time: Do
objects provide better reuse? Why or why
not?

There are many models for software reuse:
source code libraries, class libraries, compiled
libraries, operating systems, and so on. What
drives these models of reuse? Practicality
concerns? Fears of complexity? Social
aspects? Financial? If you’re allowed to
change the source code is that reuse or is it
something else ? What are the impediments to
the realization of further reuse? License fees?
Programmers who just like to write code?
What is it that makes something reusable? Is
reuse talked about more than it is practiced?

Bob Atkinson
Code reuse is important. Effective reuse of
code is perhaps one of the most important
factors in being able to deliver the right
software product at the right time. There are
many possible ways that a piece of existing
code might find its way into another piece of
software in a manner that might be called
“reuse.” Code can be copied and pasted, code
can be inherited a la C++, source files can be
maintained in two simultaneous versions using
conditional compilation, code libraries can be
linked in (dynamically or statically), and so
on. It is our experience, however, that the
only eflective way that code can be shared
between multiple clients is in compiled form:
without this approach, the unencapsulated
source is simply too tempting to programmers.

In order that code can be shared in compiled
form, it is critical that the functionality on
which the sharing is based be precisely
articulated; the programmer must be
consciously aware of what he can rely upon
and what he cannot. We did this in the past
with function libraries relatively easily: we
documented the function signatures along with
a description of the function semantics.

The reason that object-orientation brings an
interesting twist to reuse is we can now con-
sider multiple clients and multiple implemen-
tations, not just one implementation as with
subroutine libraries. So long as an object
agrees to support certain functionality, it can
be used polymorphically with other implemen-
tations of the same functionality. A significant
problem to date is that object-oriented lan-
guages and development approaches have not
focused on articulating these interfaces on
which reuse is based. Inheritance is not by it-

self a solution to the problem. In fact, inheri-
tance of implementation is a significant imped-
iment: it is extremely difficult when using
implementation inheritance to maintain the
mental discipline of being precise about what
your subclasses can rely on and what they
cannot. This is more than just tagging meth-
ods as protected or private; the sequencing of
the calls to “self’ is an intimate part of the
specification of the object. To my knowledge,
no significant application framework has ever
accomplished this precision: they all ship their
source code, not insignificantly because this is
the only actual documentation of their seman-
tics. (don’t get me wrong: implementation in-
heritance is valuable, just not as a technique
for reuse, but instead as a technique for quick
initial development.)

Is there a way that we can effectively and
polymorphically reuse code? Yes: the key lies
in divorcing (in the source code) the interfaces
supported by an object that can be relied on for
reuse, from the internal implementation of
those interfaces. Historically, modules have
similarly been divided into public and private
pieces; what is different here is the dynamic
binding of the functions being invoked
according to the object instance in question.

Microsoft has very successfully employed
such an approach to reuse in its Object
Linking and Embedding (OLE) compound
document architecture. For example,
Microsoft Word for Windows version 2
supports OLE; it can contain embedded
objects. As a result, the graphing and charting
feature of Word could be implemented by
simply including unchanged in the Word retail
package the Microsoft Graph application that
was originally built for Microsoft PowerPoint.

Bob Atkinson has been diddling in software
much of his adult Life, most of it in object-
oriented software of one form or another.
Currently he is one of the main designers of
Microsoft’s OLE 2 project.

Adele Goldberg
Effective reuse has to be planned as part of the
software development process model. For the
most part, few companies have a formal
approach to reuse but there are good examples
of promising approaches. When a formal
process is in place, reuse regardless of the

underlying technology helps create long term
cost savings.

Adele Goldberg is Chairman of ParcPlace
Systems. ParcPlace Systems provides a broad
range of object-oriented technologies and
services, including development tools for
Smalltalk and for C+ +, that serve the applica-
tion development needs of corporate pro-
grammers. Before that, she managed a re-
search laboratory at Xerox PARC. She has
written several books, Smalltalk-80: The Lan-
guage with Dave Robson, and Smalltalk-80:
The Interactive Programming Environment,
and led the effort to make Smalltalk- avail-
able on standard microprocessors. She is
editor of the book The History of Personal
Workstations.” She was President of the ACM
1984-86, helped form ACM Press, jointly
received the ACM Software System Award
(1987), and PC Magazine’s Lifetime
Achievement Award (1990). She has a Ph.D.
(Information Sciences, University of Chicago,
1973).

Martin Griss
It is widely believed that systematic
application of reuse to prototyping,
development, and maintenance is one of the
most effective ways to significantly improve
the software process, shorten time-to-market,
improve software quality and application
consistency, and reduce development and
maintenance costs. While many companies
are developing proprietary software libraries,
software reuse is not yet a major force in most
corporate software development. The reuse
community is now beginning to understand
that this is largely because effective reuse
depends on more socioeconomic than
technical factors, while most workers have
concentrated on library or language
technology. While (improved) object-oriented
technology seems to be a very promising
vehicle for realizing the dream, and recent
work in domain analysis, object-oriented
methods, library technology and architectural
frameworks should lead to a consistent
methodology for domain-specific reuse, there
remains a significant effort in these non-
technical areas. People need to learn the most
effective way of using, investing in and
performing cost/benefit analysis on the
technology, in setting up new processes, and
providing incentives that encourage
appropriate change.

42

Since 1984, Hewlett-Packard (HP) has had
several visible software reuse projects in divi-
sions and laboratories. Some use DBMS and
library systems to store and distribute software
components. Others use Objective-C or C++
to develop class libraries (for UI, data-struc-
tures and instrument sub-systems). Several li-
braries have been widely distributed within
HP, and some outside. More recently, several
HP entities have started multi-division domain
analysis to develop common architectures,
components and libraries, for instrument
firmware and for chemical and medical system
software, producing frameworks and major
components to be used in several products.

In 1990, HP initiated a Corporate Engineering
Software Reuse program aimed at making
software reuse a more significant part of HP’s
software process. This is a broad, well
coordinated effort involving a significant
management, process, education, and
technology infrastructure. We are not building
a single Corporate reuse library, nor do we
stress a single language, but instead assist
divisional efforts to set up and improve their
customized reuse infrastructure and processes.
Most of our processes, methods, training and
tools are largely independent of particular
languages, but OOA/OOD derived methods
for domain analysis and component design
seem destined to play a significant role.

The program consists of a core team involved
in: reuse assessment, and metrics; the
development of processes and methods for
developing, using and managing reusable
work products; the collection of reuse best
practices and guidelines in a reuse handbook;
and consulting, training, and workshops. To
develop and demonstrate a viable economic
model, and to provide early validation of
methods and benefits of reuse within HP, we
have set up several pilot projects in the
divisions to help bootstrap and evaluate
systematic reuse programs. We provide
additional people, funding, and consulting,
assist in getting management support, and
supply appropriate training.

More recently, we established an HP
Laboratories software reuse research program,
to explore how component-based software
construction processes can be better supported
by technology such as hypertext-based reuse
library management tools, collaborative work
environments, application frameworks,

software-bus architectures, generators, and
object-oriented analysis and design methods.

Martin L. Griss is a principal laboratory
scientist at Hewlett-Packard Laboratories,
Palo Alto. He leads research on software
reuse, software-bus frameworks, and
hypertext-based reuse tools. He works closely
with HP Corporate Engineering to
systematically introduce software reuse into
HP’s software development processes. He
was previously director of HP’s Software
Technology Laboratory, researching expert
systems, object-oriented databases,
programming technology, human-computer
interaction, and distributed computing. He
serves on HP software engineering councils
and is a consultant to HP management on
software engineering. Before that he was an
associate professor of Computer Science a the
University of Utah, working on computer
algebra and portable LISP systems. He has
published numerous papers, and was an ACM
national lecturer. He has a Ph.D. (Physics,
University of Illinois, 1971).

John Morrison
Based on a recent study of Japanese software
factories which showed high levels of reuse,
we conclude the following:

. Currently, Japanese software factories
implement systematic reuse using non-object-
oriented production technology. However,
these same companies are experimenting with
object-oriented technology and may adopt it in
the future if they are convinced that (1) object-
oriented technology is mature; and (2) the
investment in re-tooling is worth it.

. A “parts-oriented” or “library-ori-
ented” view of reuse is incomplete. Making
reuse work depends on a number of
management and engineering factors which
impact multiple levels of an organization, and
all phases of the development lifecycle.

The impact of systematic reuse can be
&unified in terms of productivity and product
quality.

. Software reuse is a key technology
area supported by collaborative funding from
the Japanese government and industry in order
to achieve strategic competitive goals.

43

John Morrison (Lt. Cal., USAF, ret.) is Presi-
dent and founder of Technology Transfer In-
ternational, Inc. In concert with Adele Gold-
berg, Professor Michael Cusumano, author of
Japan’s Software Factories, and Lawrence
Putnam, CEO of Quantitative Soflware Man-
agement (QSM) he recently completed the
Japan phase of a world-wide Market Research
and Field Study of Software and Information
Factories. The report, Software Reuse in
Japan, was published in June, 1992. lTI is
planning two follow-on projects: an evalua-
tion of software production in Europe
(focusing on object-oriented development of
large scale systems) and software production
in Russia (focusing on sources of low-cost,
high-competence software production in Rus-
sia, Byeloruss and the Ukraine).

Mr. Morrison was formerly the Director of
System Engineering and Development for the
National Test Bed (NTB) Program, a $550
million Strategic Defense Initiative project
developing supercomputer simulations of the
Strategic Defense System. During a previous
assignment he was the U.S. Joint Command,
Control and Communications (C3) Advisor to
the Saudi Arabian Ministry of Defense and
Aviation, responsible for Kingdom-wide C3
integration. Other Air Force assignments
included responsibilities for strategic and
tactical battle management; operational
intelligence and intelligence fusion at the
national and tactical levels; interoperability of
automated systems and telecommunications;
and systems acquisition. He has a Master of
Science in Systems Technology (C3) from the
Navel Postgraduate School (1980).

44

