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ABSTRACT 

This paper describes the application of 
object-oriented programming to the design of a 
multiprocessor ESM teetbed. The ESM testbed 
uses an object-oriented development environment 
which integrates Smalltalk and C language tools 
with the Harmony real-time operating system in a 
shared memory multiprocessor. All development 
for an application Is done using personal 
computer6 which are themselves processors in the 
real-time testbed. We first discuss two aspects 
of the ESM testbed: a framework for 
investigating ESM signal processing algorithms 
based on an object-oriented emitter database and 
blackboard objects which implement probabilistic 
reasoning; and an object-oriented ESM simulation 
environment which illustrates the use of 
object-oriented techniques for the development 
of complex real-time systems. In the second 
part of the paper we describe our software 
engineering approach and tools. Throughout the 
paper, the role played by object-oriented 
programming in the design of hybrid 
multiprocessors is highlighted. 

1.0 INTRODUCTION 

An Electronic Support Measures (ESM) system is 
used to receive and identify signals from 
various sources. Using this data it is possible 
to construct an accurate and timely picture of 
the current tactical situation. All of this 
information will be displayed for an operator 
and/or transmitted to other systems. In this 
paper we describe a testbed for prototyping new 
signal processors intended for naval ESM 
applicatfons. 

Object-oriented techniques play a central role 
in both the design and implementation of this 
system. Signal processing algorithms and 
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control software are being implemented in a 
highly modular, anthropomorphic style [Gentleman 
81 85, Thomas 85 871 inspired by the Actor model 
of programming [Hewitt 771. An integrated 
development and test environment based on 
object-oriented languages provide6 software 
support for program design and generation, as 
well as performance monitoring and debugging. A 
Smalltalk based simulation environment has been 
developed to support the design process. ESM 
system libraries are being redesigned to use 
emitter object6 rather than conventional data 
records. Signal analysis is baaed on 
interactions between data objects, blackboard 
objects (which hold the current status of 
analysis and inferencing procedures), and the 
ESM libraries. Object6 provide the mechanism 
for combining these diverse elements into a 
single Integrated package. 

2.0 THE USE OF OBJECTS IN ESM TESTBED 
APPLICATIONS 

2.1 BACKGROUND 

A radar ESM system is a type of defence 
equipment used to intercept and identify SigIUdS 
from radio frequency emitters such as radars and 
jammers. By correlating these emitters with the 
ships and aircraft on which they are normally 
fitted, it Is possible to construct an accurate 
and timely picture of the current tactical 
situation. The "front end" of an ESM system 
typically consists of an antenna/receiver 
combination, which converts intercepted radar 
signals into digital pulse descriptor word6 
which describe the measured parameters of the 
intercepted signals. Pulse_descriptor words are 
then fed to some combination of digital 
processors which sort and deinterleave trains of 
pulses, measure other signal parameters, and try 
to associate pulse trains with known emitter 
types stored in the ESM system libraries. 
Usually, the ESM system will also try to track 
emitters which have been identified 60 as to 
determine the relative bearings of their 
associated platforms, and, if possible, 
calculate their positions. 

The front end of an ESM system using a modem 
wide-band receiver can produce tens of megabyte6 
of digital data per second, far exceeding the 
processing capacity of a conventional processing 
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FIG. 2: MULTIPROCESSOR NODE CONFIGURATION 

system employs a loosely coupled network of 
multiprocessor computers (Figure 11, each of 
which consists of a filter subsystem and a 

number of single board computers &th associated 
memory (Figure 2). Physically, each 
multiprocessor node corresponds to a VME bus 
chassis; the single board computers are based on 
the Motorola MC68020 CPU. Incoming data is 
processed by a digital preprocessor, and is 
directly accessible by the single board 
computers. 

2.1 SIGNAL PROCESSING AND ANALYSIS WITH OBJECTS 

Technology and techniques are constantly 
evolving in response to a changing signal 
environment. As new radars with increasingly 
complex signal characteristics are developed, 
existing signal processing techniques must be 
improved or replaced to maintain the ESM 
system's capability to accurately identify the 
emitters in the electromagnetic environment. 
Consequently, ESM system software must be 
designed so as to support continual growth. 
Objects provide a natural solution for this 
requirement, offering the modularity and robust 
response to change that is needed. 

One of the new approaches to ESM signal 
processing being investigated with the 
multiprocessor testbed is an attempt to combine 
symbolic reasoning with more traditional 
numerical signal processing algorithms. There 
are two key elements in this approach: an 
object-oriented emitter library and a data 
analysis system based on Shafer-Dempster belief 
functions. As indicated in the introduction, 
ESM systems include libraries of signal 
characteristics; traditionally, databases which 
sre no more than a collection of data records 
have been used for this purpose. The database 
is usually accessed with a collection of 
customized search, retrieval and update 
procedures which have detailed knowledge of the 
internal record structure. Naturally, it is 
difficult to 5specialize the record structures 
for individual cases because of the wide ranging 
impact this could have on other application 
modules. 

As long as the data structures are reasonably 
static, one can cope with this limitation by 
providing a field in every record for all known 
kinds of emitter information. A field which 
corresponds to information which is not 
applicable or available for a particular emitter 
can be filled by a coded entry which indicates 
this. Problems appear quickly, though, once the 
database is required to support sophisticated 
algorithms based on rule-based and 
knowledge-based processing. These procedures 
require a great deal of "soft" (i.e., poorly 
structured) data such as tactics, recent 
platform movements, and conjectures concerning 
radar design and function. Such algorithms will 
almost certainly be designed to make use of any 
specific features of particular radar systems 
which might make them easier to identify. 
Representfn this kind of information within the 
f&a~yy~~~g~ ~~edpp&'cf~~al ES!! database 

With the emitter class libraries, data can be 
accessed by sending messages to the emitter 
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objects in the library. Since each class of 
object has its own table of associations between 
message selectors and procedures, each object 
can have its own tailor-made procedures which 
are used to answer access requests. In the case 
of traditional emitter libraries, a common query 
to the library is "Does the signal just observed 
match any emitter type in the library?" It is 
the responsibility of the algorithm performing 
the query to understand and manipulate all data 
structures in the library in order to determine 
if a match exists. In such a class library, 
each entity in the library would be asked "Could 
you have produced the observed signal?". The 
library entity, in this case, is responsible for 
determining which aspects of itself and those of 
the observed signal are important and constitute 
the criteria for matching. 

The second main element of the data-driven 
approach is the Shafer-Dempster data analysis 
system. The Shafer-Dempster Theory of Evidence 
is based on a generalization of probability 
[Shafer 761. Based on preliminary measurements 
of intercepted signal characteristics, candidate 
emitters will be identified by the library as 
potential sources for the observed data. Single 
candidate emitters and groups of candidate 
emitters will be assigned numbers between 0 and 
1 called masses. The support or belief for the 

'-proposition that a particular emitter is the 
true source is the mass assi.gned to it; the 
plausibility of the proposition is the sum of 
the masses assigned at all groups of emitters 
containing that emitter. Shafer-Dempster Theory 
provides mathematically consistent rules for 
assigning masses, and computing supports and 
plausibilities. 

A classification system for emitters which is 
based solely on characteristics of the emitter 
which can be measured by an ESM receiver has 
been developed. Blackboard objects use this 
classification scheme to assign the candidate 
emitters, which were identified by the library, 
to groups with similar characteristics. These 
groups will correspond to particular types of 
emitters. Signal processing algorithms will be 
applied to the data to determine which emitter 
type describes the true source of the observed 
signal. Other procedures will be run to refine 
the actual values of measured parameters (for 
these procedures to perform optimally, it may be 
necessary to first establish the type of the 
observed emitter). The results produced by each 
algorithm will be used to redistribute the 
masses among the candidate emitters. Candidates 
with little or no mass may be withdrawn from 
consideration. This process continues until a 
clear winner emerges, or until only marginal 
gains are possible with additional processing. 

Object-oriented ESM signal processing provides a 
number of potential benefits within an elegant 
framework: it provides a mathematically 
consistent way to quantify ambiguity; the 
emitter classification system provides a 
mechanism for classifying unknown emitters; and 
a capability is offered to design parameter 
measurement algorithms which can be directed by 
information specific to an emitter or an emitter 

type. This last option raises the possibility 
of actually using the special features of 
complex radars to identify them. 

2.2 SIMULATION OF THE ESM SYSTEM 

An EW simulation environment has been developed 
to support both the design and implementation 
phases of the project [Barry 871. Complex 
systems such as the one we are developing 
quickly reach a point in the design cycle where 
no one individual has a sufficiently 
all-encompassing view of the design to reliably 
predict system performance. Simulations are a 
necessary part of the development environment, 
providing the feedback the design team needs to 
evaluate various versions of the system design, 
develop signal processing strategies, test 
algorithms, identify causes of poor response, 
and evaluate the cost-effectiveness of proposed 
modifications. 

Unfortunately, simulations of complex ESM 
systems have proven to be difficult to build and 
virtually impossible to thoroughly validate. As 
a consequence, most systems engineers tend to 
regard results derived from simulations with 
suspicion, preferring to rely instead on 
laboratory testing and field trials for 
performance evaluation. Consequently, we felt 
that new simulation approaches were required 
which would allow detailed simulations to be 
developed quickly by the members of the design 
group rather than by a team of programmers. 

The ESM simulation environment is based on the 
Smalltalk programming language. The environment 
supplies a large number of re-usable objects 
which can be used to model the basic 
subcomponents of ESM systems, as well as 
essential features of the electromagnetic 
environment. Additional objects Implement 
graphically oriented user interfaces. 
Simulations are constructed by assembling the 
appropriate building blocks taken from the 
library of ESM objects. Since the organization 
of the object library has been designed to 
reflect the problem domain, end-users find it 
much easier to understand and use. Our initial 
experience with the prototype environment 
suggests that detailed and understandable models 
of ESM systems can be designed and built in as 
little as 10% of the usual time required. 

The organization of the simulation is 
illustrated in Figure 3. In general, the 
simulation objects can be divided into two 
groups: those used to simulate ESM systems and 
the electromagnetic environment, and those used 
to construct user interfaces. The 
electromagnetic environment is described by a 
Scenario object. Scenarios are built around Map 
objects which provide the physical reference 
points for describing the motion of objects in 
the Scenario. A Scenario has associated with it 
lists of Platforms, Emitters, and ENSystems. 
Platform and Emitter objects hold the state 
information needed to describe their activity in 
the Scenario (e.g., platform motion, emitter 
on/off times, etc.>. Heuristically, one tends 
to think of emitters as being a collection of 
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FIG. 3: ORGANIZATION OF SIMULATION OBJECTS 

independent objects acting in parallel, 
suggesting that emitters should be modeled by a 
number of asynchronous processes. 
Unfortunately, this generates more computational 
overhead than can be easily managed with our 
current implementation. The solution we adopted 
was to include in the simulation an abstract 
actor called a ScenarioManager, whose function 
is to provide an interface between the emitters 
and any ESM receiver models in the Scenario. 
The other principal actors in the current 
implementation are Receivers, DataBuses, and 
Processors. 

Receiver objects are associated with one of the 
platforms in a Scenario; they receive pulse data 
from a ScenarioManager. Signal processing 
within a Receiver is modeled by a 
SignalFlowNet: when the Receiver receives a 
Pulse object from a ScenarioManager, it 
sends a "process this pulse" message to the 
SignalFlowNet. A Pulse object is essentially a 
list of parameter values, specifying the RF 
(radio frequency), TOA (time of arrival), Ew 
(pulse width), DOA (direction of arrival), 
PA (pulse amplitude), and source emitter for a 
pulsed signal. The SignalFlowNet is a network 
of abstract devices: Filters, Detectors, 
Digitizers, Limiters, Transformers, and 
BusTerminators. By interconnecting a number of 
these abstract devices we can quickly build 
functional models of most receivers. 

The main objects used to simulate multiprocessor 

computing systems are DataBuses, Processors, 
Tasks, and Messages. A DataBus has a collection 
of BusTerminators and BusAdaptors; its function 
is to model the movement of data on a bus 
according to some bus arbitration protocol. 
Each Processor has a unique identifying number, 
a boot block which contains initialization 
information, priority queues for tasks and 
messages, and pointers to the currently 
executing task and the last received message. 
Message objects have state which records the 
sender and receiver of the message, the times 
sent and received, a message type symbol, and 
the body of the message (which can, in 
principal, be any object). Task objects model 
Harmony tasks (Harmony will be described in the 
next section); they are independent processes 
which communicate and synchronize with 
message-passing. A particular task in a 
multitasking system is modeled by creating a 
subclass of Task which includes the appropriate 
protocol for the task being modeled. 

As shown in Figure 3, the user interface is a 
collection of software tools which are designed 
to interact with specific classes of simulation 
objects. Since these tools are themselves 
objects, they can be easily modified to support 
new requirements, and the tool set can be 
expanded, with no danger that unexpected 
interactions would render existing software 
unusable. We are using two types of interface 
objects at the moment, Browsers and Monitors. 

Both provide access to the state of simulation 
objects: browsers support extensive off-line 
(i .e., while the simulation is not running) 
interaction between the browsed object and the 
user, while monitors are used during the running 
simulation to examine the state of dynamically 
changing simulation objects. 

ScenarioBrowsers provide an electromagnetic 
scenario generation and analysis capability 
(Figure 41, while ReceiverBrowsers permit the 
user to create receiver models directly from 
system block diagrams. The ActorMonitor is a 
kind of "generic" interface designed to inspect 
the state of any actor; Processor-Monitors are a 
subclass designed specifically for inspecting 
Processor objects. ActorMonitors show the time 
on the actor's local clock and the message state 
(i.e., Send, Receive, Reply). In addition, a 
capability to intercept and display all messages 
to and from the actor is provided. Outgoing 
messages can be edited by the user before being 
forwarded. ProcessorMonitors can display 
additional information about the internal state 
of the processor, such as the currently 
executing task and the priority queues. 

In the simulation environment every effort is 
made to communicate with the user in the 
language of the application. Two objects which 
illustrate how this can be designed into a 
simulation are LimitedChoiceViews and 
DimensionedNumbers. The parameter values 
associated with most objects in a typical EW 
simulation are known to lie within certain 
specified limit,. Such facts as the maximum 
speed of a ship, the stalling speed of an 
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aircraft, and the design of a radar all impose 
limits on the values of associated parameters. 
LimitedChoiceViews provide a "sliding scale" 
display which allows the user to select 
parameter values by moving an indicator; the 
endpoints of the scale are defined by the known 
limits on the parameter values. Moreover, 
parameter values are usually represented as 
DimensionedNumbers, which store both a magnitude 
and the unit of measurement. Atithmetic 
operations performed on DimensionedNumbers check 
the units of measurement and generate an error 
when dimensionally incorrect operations are 
invoked. Whenever the parameter value is 
displayed, its associated units are displayed as 
well. 

The objects which comprise the simulation 
environment provide the systems engineer with 
powerful tools which focus on model-building 
rather than program-building. In the next 
section, we will see that objects also play an 
integral role in the testbed's software 
development environment. 

3.0 SOFTWARE ENGINEERING METHODOLOGY AND TOOLS 

3.1 IN SEARCH OF AN OBJECT-ORIENTED DESIGN 
METHODOLOGY 

While much has been written recently about 
object-oriented programming [Cox 861, there is 
no well established software engineering 
methodology for using powerful tools like 
Smalltalk and Objective-C. Our problem was 
further complicated by the fact that none of the 

existing structured methodologies addressed the 
issue of multiprocessor system design. In the 
sections that follow we assume the reader is 
familiar with the object-oriented design of 
sequential programs. We describe our current 
approach for organizing collections of 
cooperating tasks in the multiprocessor. 

3.2 THE HARMONY MESSAGE PASSING REALTIME RERNEL 

Harmony is a portable real-time multiprocessing 
kernel designed for applications such as 
robotics and command and control. It implements 
the send, reply, and receive constructs 
developed in the Thoth [Cheriton 82, Gentleman 
811 family of real-time operating systems. The 
rationale for blocking aend, blocking receive 
and asynchronous reply are well described by 
Cheriton [Cheriton 821. Harmony supports both 
multiprocessing and multitasking with 
priorities, using light weight tasks. Any task 
can send a message to any other task in the same 
or a different processor. Since both local and 
remote tasks are referenced in the same way, 
tasks can be moved to different or other 
processors without modifying the application 
software. The tasks which are executed in a 
given processor are determined at configuration 
time. Any number of instances of a task can be 
created and destroyed at runtime. 

A task can communicate with any other task on 
any processor in the system. The "send* message 
causes the executing task to block or suspend 
until it receives a "reply"; "receive" causes 
the executing task to become blocked until a 
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corresponding request has been received. This 
simple and straightforward protocol is augmented 
by two special forms which implement a 
non-blocking receive and interrupts. Additional 
primitives for creating and terminating tasks 
and supporting stream-oriented input/output are 
also provided. 

3.3 USING ACTORS TO ORGANIZE MULTIPROCESSOR 
APPLICATIONS 

We use an object-oriented design philosophy 
which has its roots in the Actor model of 
programming, often referred to as 
Anthropomorphic Programming. In our system, an 
actor may be thought of as a Harmony task which 
has a list of subtasks to perform (its 
"script"). Actors synshronize their activities 
and communicate by sending one another 
messages. Designers tend to assign actors 
personified roles such as servers, clients, 
administrators, workers, couriers, etc. Actors 
have local state variables, but there is no 
global state in the usual sense. Until 
recently, the intuitive appeal of the actor 
model has been offset by concerns that it would 
lead to designs which would entail prohibitive 
overhead, especially in real-time systems. 
Harmony provides a robust, industrial strength 
vehicle for realizing actor-based designs. 

The usual steps when designing such as system 
(as outlined, for example, by Hewitt [Hewitt 
771) are: 

1. Decide on the natural kinds of actors to 
have in the system. 

2. Decide what messages an actor receives. 
3. Decide what actions each kind of actor 

should perform when it receives each kind 
of message. 

Actors are consequently defined by their 
behaviour or function. One of the actions 
permitted an actor is to simply forward the 
message to another actor; this process, called 
delegation [Lieberman 861, allows an actor to 
share the responsibility for performing an 
action with one or more other actors. In 
addition, in our system, actors can be 
decomposed into a number of "lower level" 
objects. These lower level objects may 
communicate directly with each other; however, 
to send messages to objects outside the actor's 
domain of definition, they must communicate via 
the actor. This discipline leads to "modularity 
in the large" which complements the "modularity 
in the small" provided by object-oriented 
programming languages. In this way, actors 
encourage encapsulation, permitting the system 
designer to create abstractions which hide 
detail and separate specification from 
implementation. 

Given the above facilities to create and 
communicate with active objects, it is possible 
to develop some generic actors which will prove 
useful for a wide number of applications. 
Typical examples include clients, servers, 
workers, eouriers and notifiers [Gentleman 851. 
Clients are actors which make requests on servers 

using a normal message send. Servers are 
objects which encapsulate a shared resource; 
this resource might be a hardware device, data, 
or perhaps knowledge about how to perform some 
action. The default behaviour of a server actor 
is to create its worker and courier objects 
(which report for work) and then to loop 
awaiting client requests. Servers can be 
designed as straightforward state machines which 
manage computations carried out on their behalf 
by worker actors. Sometimes it is necessary for 
a server to itself request something from 
another server actor. A courier is simply a 
vehicle for sending a request to another server; 
it avoids blocking the sending server while work 
is being performed by the second server (Figure 
5). 

Blocked- 

Blocked Workers 

FIG. 5: SEW’IB-SERVER COMMUNICATIONS USING 
MESSENGERS (COURIERS) 

When created, a worker/courier begins execution 
by sending a message to the server indicating 
that it is waiting for a reply containing the 
work to be performed. The server upon receiving 
this message keeps track of the available 
workers/couriers and dispatches work to them 
using the reply primitive. When a server 
receives a request from a client, it finds an 
available worker and replies to it with some 
operation required for that client. In this 
way, servers do not stay blocked for any request 
(Figure 6). 

Our design approach is derived from the 
Smalltalk model, with delegation replacing 
inheritance; servers play the role of objects, 
and workers are identified with methods. As in 
Smalltalk, servers are organized as a hierarchy 
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of software objects, as opposed to the "flat" 
system space generated by current Harmony 
applications. A typical server will have a 
supervisor (server), a number of workers, and a 
number of subordinates (servers). Workers will 
only execute "sends* to servers; servers will 
only execute "replies" and "receives" to and 
from workers. Servers which communicate 
directly with one another but do not have a 
subordinate/supervisor relationship are referred 
to as colleagues; colleagues may be thought of 
as servers in the same design module which share 
a common purpose. Each server has a service 
dictionary which describes all of the services 
it provides. Each item in a service dictionary 
is an association between the message(s) which 
invokes a service and the actor responsible for 
providing it. 

Requests for service can either be satisfied by 
one of the server's worker actors, or they 
can be delegated. Three kinds of delegation are 
possible: service requests which appear in the- 
service dictionary can be assigned to a 
subordinate or referred to a colleague, while 
requests which the server cannot find are 
referred to its supervisor. On first glance, it 
might seem that the additional message sends 
required to implement delegation in a real-time 
system would be prohibitive. Fortunately, there 
is a simple mechanism available to cope with 
this. When a worker which requests a service is 
redirected, it can record the "route" It took to 
reach its final destination. Moreover, the 
worker can "remember" this routing so that 
future requests for the same service can be made 
directly to the provider. Thus far, it is our 
experience that most actors will be relatively 

long-lived. In such cases, delegation can 
provide encapsulation without significant 
overhead. 

The hierarchical server organization, when 
combined with delegation, provides a mechanism 
for controlling inter-task communication without 
imposing undue restrictions on the system 
designer. The package defined by a server, its 
workers and its subordinates can be treated by 
the rest of the system as a single object. 
Extensive changes can be made to a server's 
functionality without impacting on the rest of 
the system. The design becomes much easier to 
understand and document, since at each level In 
the hierarchy there should only be a few 
colleague servers. The approach encourages 
top-down design: one first identifies the 
general functions and protocols of a few 
colleague servers, after which, as more detail 
is added, the servers can be decomposed Into 
workers and subordinate servers. In this way, 
system designers can defer decisions as to how 
work will actually be performed until the later 
stages of the design cycle. 

3.4 OBJECT-ORIENTED DEVELOPMRRT AND TEST SYSTEM 

A software development environment designed to 
realize hybrid object-oriented software has been 
developed for the ESM testbed [Thomas and Wilson 
871. The software is "hybrid" in the sense that 
two object-oriented languages are used 
concurrently: a version of Smalltalk modified 
to support the Actor concept which we call Actra 
[Thomas et. al.], and Objective-C, an object- 
oriented dialect of the C language [Cox 861. 
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Smalltalk is used for simulating, prototyping, 
monitoring, debugging, and testing system 
software. In addition, software tools to 
support object-oriented design and configuration 
management are under development. Objective-C 
Is used to code tasks which must meet real-time 
performance criteria after they have been 
successfully prototyped in Actra. Software 
development is done using personal computers. 
The personal computers are directly connected to 
the YNE bus of one of the multiprocessor nodes 
In the testbed (Figure 7). 

rs232 

take place until a new message is received. 
Actra modifies this behaviour to allow an Actor 
to reply a value to the Actor which invoked it, 
without terminating its own execution. At some 
later point, it can then make itself available 
to receive new messages by executing an 
end-method bytecode. This terminates the 
current computation, and puts the Actor in a 
receive-blocked state. This is the user's view 
of the Actra model. 

Macintosh 

HD-20 

Dy-4 VME bus card cage with: 
2 DVME-134 68020processors 
DVME-750 Ethernet controller 
SVME-3282MBmemorycard 
MacVe-eVMEbusinterface 

bus level interface 

I 11111111111111111 I 

FIG. 7: OBJECT-ORIENTED UEVELOPMENT AND TEST SYSTEM CONFIGURATION 

Smalltalk processes provide traditional 
co-routine based uniprocessor multitasking with 
semaphore synchronization. Unfortunately 
in Smalltalk, processes are not first class 
objects. They can't be sent messages or 
specialized like other objects. They are 
created from blocks. While this approach is 
adequate for Smalltalk's requirements 
(simulation and window management), it fs 
insufficient for structuring large numbers of 
independent processes or handling true multi- 
processing. 

Actra's high-level multiprocessing model is 
based on the concept of Actors. In the 
Smalltalk context, Actors are objects (i.e., 
instances of class Actor or its subclasses) 
which have the capability to execute 
concurrently. To implement this, the Smalltalk 
model of message passing has been extended In 
the following way. In Smalltalk, when an object 
sends a message to some other object it is 
suspended, until the receiving object returns 
some value. In' Actra, we maintain this 
hehaviour. However, in Smalltalk, from the 
point of view of the receiving object, once a 
value has been returned, no further actions can 

From the implementation standpoint, the Actor 
mechanism is supported by the Harmony kernel as 
follows: associated with each Actor is a 
Harmony task. This task is essentially a copy 
of the Actra interpreter, which executes the 
bytecodes - that is, the (Actra) Smalltalk code 
- for the Actor. In fact, all Actors share the 
same code, but each executes it as a separate 
task. Under Harmony, the message passing 
mechanism allows synchronous send, synchronous 
receive, and asynchronous reply operations. 
Calling a Harmony receive causes the associated 
task to suspend, putting the Actor which is 
executing in a receive-blocked state. Calling a 
Harmony send causes the task to suspend until it 
receives a reply; consequently, when the 
executing Actor sends a message it will block 
until the receiving Actor replies a value. 
Obviously, this is exactly what we want to 
support Actors. 

When an Actor sends a message, its interpreter 
decides whether or not the message Is intended 
for another Actor. If not, as is the case for 
most messages, it is simply sent to the receiver 
object using the standard Smalltalk message 
passing mechanism. However, when a message is 
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to another Actor, the message and any other 
required information is packaged in a Harmony 
message and sent to It using the RTOS. This 
allows Actors to reside on multiple processors. 
An important goal when we were designing the 
software development environment was to provide 
a consistant Interface between Harmony tasks 
written in C or Objective-C, and Actors in the 
Smalltalk world. Given this facility, it is 
possible to write time critical, real-time 
applications while still maintaining access to 
the user-interface facilities of Smalltalk. In 
the ESM testbed, C language support has been 
provided both by a package of C-to-Smalltalk 
communication primitives, and by high-level C 
code debugging facilities accessible from the 
Smalltalk environment. 

The software development environment provides 
support for high-level debugging, and direct 
manipulation of C language code, using a family 
of classes for accessing C data structures. 
Class Struct contains several methods for 
directly accessing memory locations anywhere on 
the development system's own microprocessor or 
on the VME bus. It also contains methods for 
accessing the standard C language data types 
(chars, short ints, ints, unsigneds, etc.), 
which are built ou top of the memory accessing 
routines. Finally, the class implements a 
general framework for describing arbitrary C 
stnlcts. Subclasses of this class can use these 
routines to describe speciffc C structs. By 
creating instances of these subclasses, it is 
possible to shadow arbitrary C structs anywhere 
in memory on the VME bus. 

Using this facility we are able to use Smalltalk 
as our symbolic debugger: Class Structlnspector 
and class StructInspectorView, together, 
constitute a generic C struct inspector facility 
which allows C structures to be inspected 
exactly like Smalltalk objects. Accessing 
fields in the inspector actually access the real 
memory of the struct, and "accept"ing new values 
causes them to be written into memory. For 
example, Class TaskDescriptor is a subclass of 
Struct which describes the struct used to 
describe a Harmony task descriptor 03). 
Instances behave exactly as if they were the TD 
struct. The interpretation of the various 
fields of the struct is managed internally, so 
that, for example accessing a field which should 
contain a pointer to another TD actually returns 
another instance of TaskDescriptor which 
describes it. Similarly, accessing the STATE 
field will return a symbolic representation of 
the current Harmony state of the associated 
task, while modification of this field can be 
performed by using direct entry of the state 
name, or by menu selection. 

Given the above facilities, any C struct can be 
described from within the development 
environment, and then accessed using the full 
power of the Smalltalk programming environment. 
ESM testbed nodes are interconnected to other 
nodes and various hosts and workstations using 
ethernet. It is well known that TCP/IP based 
communication can be very expensive and is 
therefore frequently avoided for embedded 

systems. However, the use of a custom protocol 
has the disadvantage of isolating the testbed 
from post-processing hosts and development 
facilities. To solve this problem we have 
implemented an intersystem protocol based on UDP 
envelopes. The testbed supports the address 
resolution protocol (ARP) for TCP/IP, thereby 
allowing host programs to easily communicate 
with the testbed using standard UDP sockets. 
The protocol and drivers allow both remote 
Smalltalk and C programmers to send and receive 
messages from the ESM nodes. 

We are in the process of developing methodology 
and tools to support configuration management of 
large object-oriented systems during the entire 
development cycle. Programming guidelines have 
been developed aimed at standardizing both 
Smalltalk and Objective-C code. We use macros 
to improve the readability of the C code, and to 
supply a common organization for procedural code 
in server, courier and worker actors. This 
facilitates porting software between the two 
languages. We aqe.currently experimenting with 
automated design allds which diagram the 
functional relationships between servers and 
workers. Unfortunately, the OOPS community 
lacks standard diagramming conventions. This Is 
especially frustrating for those who see how 
easy it is to support SADT type diagramming in 
Smalltalk. An active data dictionary facility 
is being implemented to provide consistent 
naming in multiuser environments. 

Object-oriented projects require change 
management systems competitive with those 
offered in the traditional Unix environment 
[SCS, RCS]. In an environment with SO much 
freedom, we need tools to be able to manage 
groups of programmers. We are investigating a 
system which associates a class manager with 
every class. It requires us to define a set of 
base classes which can be relied upon by all 
programmers. In order to share code between 
workstations, we assume the class manager to 
have ownership for the class, including the 
source code, object code and changes. 

4.0 CONCLUSION 

We have presented an overview of an Integrated 
testbed for prototyping ESM signal processing 
systems. Object-oriented programming and 
object-oriented design have played a key role in 
the success of this undertaking, by providing 
the conceptual building blocks which allow us to 
manage the complexity of the application and its 
multiprocessor environment. The result is a 
vertically integrated system which, witNn a 
single uniform framework, can encompass the 
entire development cycle. Beginning with tools 
and methodologies which support the design 
process, continuing with extensive simulation 
and prototyping facilities, and following 
through with support for programming and 
testing, the testbed provides a more productive 
and reliable development environment for ESM 
systems engineers. 
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