
USING OBJECTS TO DESIGN AND BUILD RADAR ESM SYSTE4'iS

Brian M. Barrv
John R. Altof;

Defence Research Establishment Ottawa
Ottawa, Ontario KlA OK2

CANADA

D.A. ThOIMlS

Mike Wilson
School of Computer Science

Carleton University
Ottawa, Ontario KlS 5B6

CANADA

ABSTRACT

This paper describes the application of
object-oriented programming to the design of a
multiprocessor ESM teetbed. The ESM testbed
uses an object-oriented development environment
which integrates Smalltalk and C language tools
with the Harmony real-time operating system in a
shared memory multiprocessor. All development
for an application Is done using personal
computer6 which are themselves processors in the
real-time testbed. We first discuss two aspects
of the ESM testbed: a framework for
investigating ESM signal processing algorithms
based on an object-oriented emitter database and
blackboard objects which implement probabilistic
reasoning; and an object-oriented ESM simulation
environment which illustrates the use of
object-oriented techniques for the development
of complex real-time systems. In the second
part of the paper we describe our software
engineering approach and tools. Throughout the
paper, the role played by object-oriented
programming in the design of hybrid
multiprocessors is highlighted.

1.0 INTRODUCTION

An Electronic Support Measures (ESM) system is
used to receive and identify signals from
various sources. Using this data it is possible
to construct an accurate and timely picture of
the current tactical situation. All of this
information will be displayed for an operator
and/or transmitted to other systems. In this
paper we describe a testbed for prototyping new
signal processors intended for naval ESM
applicatfons.

Object-oriented techniques play a central role
in both the design and implementation of this
system. Signal processing algorithms and

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or tu republish, requires a fee and/
or specific permission.

control software are being implemented in a
highly modular, anthropomorphic style [Gentleman
81 85, Thomas 85 871 inspired by the Actor model
of programming [Hewitt 771. An integrated
development and test environment based on
object-oriented languages provide6 software
support for program design and generation, as
well as performance monitoring and debugging. A
Smalltalk based simulation environment has been
developed to support the design process. ESM
system libraries are being redesigned to use
emitter object6 rather than conventional data
records. Signal analysis is baaed on
interactions between data objects, blackboard
objects (which hold the current status of
analysis and inferencing procedures), and the
ESM libraries. Object6 provide the mechanism
for combining these diverse elements into a
single Integrated package.

2.0 THE USE OF OBJECTS IN ESM TESTBED
APPLICATIONS

2.1 BACKGROUND

A radar ESM system is a type of defence
equipment used to intercept and identify SigIUdS
from radio frequency emitters such as radars and
jammers. By correlating these emitters with the
ships and aircraft on which they are normally
fitted, it Is possible to construct an accurate
and timely picture of the current tactical
situation. The "front end" of an ESM system
typically consists of an antenna/receiver
combination, which converts intercepted radar
signals into digital pulse descriptor word6
which describe the measured parameters of the
intercepted signals. Pulse_descriptor words are
then fed to some combination of digital
processors which sort and deinterleave trains of
pulses, measure other signal parameters, and try
to associate pulse trains with known emitter
types stored in the ESM system libraries.
Usually, the ESM system will also try to track
emitters which have been identified 60 as to
determine the relative bearings of their
associated platforms, and, if possible,
calculate their positions.

The front end of an ESM system using a modem
wide-band receiver can produce tens of megabyte6
of digital data per second, far exceeding the
processing capacity of a conventional processing

0 1987 ACM 0-89791-247-O/87/0010-0192$1.50 System. The architecture for the testbed

192 OOPSLA ‘87 Proceedings October 4-8, 1987

FIG. 1: NEW PROCESSOR SYSTEM CONFIGURATION

Sianal Bus

4;

I

b

I Digital Preprocessor
I

r(A A)

Memory

t

LAN
Controller

?

v

Development
System

FIG. 2: MULTIPROCESSOR NODE CONFIGURATION

system employs a loosely coupled network of
multiprocessor computers (Figure 11, each of
which consists of a filter subsystem and a

number of single board computers &th associated
memory (Figure 2). Physically, each
multiprocessor node corresponds to a VME bus
chassis; the single board computers are based on
the Motorola MC68020 CPU. Incoming data is
processed by a digital preprocessor, and is
directly accessible by the single board
computers.

2.1 SIGNAL PROCESSING AND ANALYSIS WITH OBJECTS

Technology and techniques are constantly
evolving in response to a changing signal
environment. As new radars with increasingly
complex signal characteristics are developed,
existing signal processing techniques must be
improved or replaced to maintain the ESM
system's capability to accurately identify the
emitters in the electromagnetic environment.
Consequently, ESM system software must be
designed so as to support continual growth.
Objects provide a natural solution for this
requirement, offering the modularity and robust
response to change that is needed.

One of the new approaches to ESM signal
processing being investigated with the
multiprocessor testbed is an attempt to combine
symbolic reasoning with more traditional
numerical signal processing algorithms. There
are two key elements in this approach: an
object-oriented emitter library and a data
analysis system based on Shafer-Dempster belief
functions. As indicated in the introduction,
ESM systems include libraries of signal
characteristics; traditionally, databases which
sre no more than a collection of data records
have been used for this purpose. The database
is usually accessed with a collection of
customized search, retrieval and update
procedures which have detailed knowledge of the
internal record structure. Naturally, it is
difficult to 5specialize the record structures
for individual cases because of the wide ranging
impact this could have on other application
modules.

As long as the data structures are reasonably
static, one can cope with this limitation by
providing a field in every record for all known
kinds of emitter information. A field which
corresponds to information which is not
applicable or available for a particular emitter
can be filled by a coded entry which indicates
this. Problems appear quickly, though, once the
database is required to support sophisticated
algorithms based on rule-based and
knowledge-based processing. These procedures
require a great deal of "soft" (i.e., poorly
structured) data such as tactics, recent
platform movements, and conjectures concerning
radar design and function. Such algorithms will
almost certainly be designed to make use of any
specific features of particular radar systems
which might make them easier to identify.
Representfn this kind of information within the
f&a~yy~~~g~ ~~edpp&'cf~~al ES!! database

With the emitter class libraries, data can be
accessed by sending messages to the emitter

October 4-8,?987 OOPSIA ‘87 Proceedings 193

objects in the library. Since each class of
object has its own table of associations between
message selectors and procedures, each object
can have its own tailor-made procedures which
are used to answer access requests. In the case
of traditional emitter libraries, a common query
to the library is "Does the signal just observed
match any emitter type in the library?" It is
the responsibility of the algorithm performing
the query to understand and manipulate all data
structures in the library in order to determine
if a match exists. In such a class library,
each entity in the library would be asked "Could
you have produced the observed signal?". The
library entity, in this case, is responsible for
determining which aspects of itself and those of
the observed signal are important and constitute
the criteria for matching.

The second main element of the data-driven
approach is the Shafer-Dempster data analysis
system. The Shafer-Dempster Theory of Evidence
is based on a generalization of probability
[Shafer 761. Based on preliminary measurements
of intercepted signal characteristics, candidate
emitters will be identified by the library as
potential sources for the observed data. Single
candidate emitters and groups of candidate
emitters will be assigned numbers between 0 and
1 called masses. The support or belief for the

'-proposition that a particular emitter is the
true source is the mass assi.gned to it; the
plausibility of the proposition is the sum of
the masses assigned at all groups of emitters
containing that emitter. Shafer-Dempster Theory
provides mathematically consistent rules for
assigning masses, and computing supports and
plausibilities.

A classification system for emitters which is
based solely on characteristics of the emitter
which can be measured by an ESM receiver has
been developed. Blackboard objects use this
classification scheme to assign the candidate
emitters, which were identified by the library,
to groups with similar characteristics. These
groups will correspond to particular types of
emitters. Signal processing algorithms will be
applied to the data to determine which emitter
type describes the true source of the observed
signal. Other procedures will be run to refine
the actual values of measured parameters (for
these procedures to perform optimally, it may be
necessary to first establish the type of the
observed emitter). The results produced by each
algorithm will be used to redistribute the
masses among the candidate emitters. Candidates
with little or no mass may be withdrawn from
consideration. This process continues until a
clear winner emerges, or until only marginal
gains are possible with additional processing.

Object-oriented ESM signal processing provides a
number of potential benefits within an elegant
framework: it provides a mathematically
consistent way to quantify ambiguity; the
emitter classification system provides a
mechanism for classifying unknown emitters; and
a capability is offered to design parameter
measurement algorithms which can be directed by
information specific to an emitter or an emitter

type. This last option raises the possibility
of actually using the special features of
complex radars to identify them.

2.2 SIMULATION OF THE ESM SYSTEM

An EW simulation environment has been developed
to support both the design and implementation
phases of the project [Barry 871. Complex
systems such as the one we are developing
quickly reach a point in the design cycle where
no one individual has a sufficiently
all-encompassing view of the design to reliably
predict system performance. Simulations are a
necessary part of the development environment,
providing the feedback the design team needs to
evaluate various versions of the system design,
develop signal processing strategies, test
algorithms, identify causes of poor response,
and evaluate the cost-effectiveness of proposed
modifications.

Unfortunately, simulations of complex ESM
systems have proven to be difficult to build and
virtually impossible to thoroughly validate. As
a consequence, most systems engineers tend to
regard results derived from simulations with
suspicion, preferring to rely instead on
laboratory testing and field trials for
performance evaluation. Consequently, we felt
that new simulation approaches were required
which would allow detailed simulations to be
developed quickly by the members of the design
group rather than by a team of programmers.

The ESM simulation environment is based on the
Smalltalk programming language. The environment
supplies a large number of re-usable objects
which can be used to model the basic
subcomponents of ESM systems, as well as
essential features of the electromagnetic
environment. Additional objects Implement
graphically oriented user interfaces.
Simulations are constructed by assembling the
appropriate building blocks taken from the
library of ESM objects. Since the organization
of the object library has been designed to
reflect the problem domain, end-users find it
much easier to understand and use. Our initial
experience with the prototype environment
suggests that detailed and understandable models
of ESM systems can be designed and built in as
little as 10% of the usual time required.

The organization of the simulation is
illustrated in Figure 3. In general, the
simulation objects can be divided into two
groups: those used to simulate ESM systems and
the electromagnetic environment, and those used
to construct user interfaces. The
electromagnetic environment is described by a
Scenario object. Scenarios are built around Map
objects which provide the physical reference
points for describing the motion of objects in
the Scenario. A Scenario has associated with it
lists of Platforms, Emitters, and ENSystems.
Platform and Emitter objects hold the state
information needed to describe their activity in
the Scenario (e.g., platform motion, emitter
on/off times, etc.>. Heuristically, one tends
to think of emitters as being a collection of

194 OOPSIA ‘87 Proceedings October 4-8, 1987

*Platforms

Scenario Manager

I .

EW Signal Processor Model

EW Simulation

A

v

User
Interface

1 EwB~~~~~erl 1 paler 1

FIG. 3: ORGANIZATION OF SIMULATION OBJECTS

independent objects acting in parallel,
suggesting that emitters should be modeled by a
number of asynchronous processes.
Unfortunately, this generates more computational
overhead than can be easily managed with our
current implementation. The solution we adopted
was to include in the simulation an abstract
actor called a ScenarioManager, whose function
is to provide an interface between the emitters
and any ESM receiver models in the Scenario.
The other principal actors in the current
implementation are Receivers, DataBuses, and
Processors.

Receiver objects are associated with one of the
platforms in a Scenario; they receive pulse data
from a ScenarioManager. Signal processing
within a Receiver is modeled by a
SignalFlowNet: when the Receiver receives a
Pulse object from a ScenarioManager, it
sends a "process this pulse" message to the
SignalFlowNet. A Pulse object is essentially a
list of parameter values, specifying the RF
(radio frequency), TOA (time of arrival), Ew
(pulse width), DOA (direction of arrival),
PA (pulse amplitude), and source emitter for a
pulsed signal. The SignalFlowNet is a network
of abstract devices: Filters, Detectors,
Digitizers, Limiters, Transformers, and
BusTerminators. By interconnecting a number of
these abstract devices we can quickly build
functional models of most receivers.

The main objects used to simulate multiprocessor

computing systems are DataBuses, Processors,
Tasks, and Messages. A DataBus has a collection
of BusTerminators and BusAdaptors; its function
is to model the movement of data on a bus
according to some bus arbitration protocol.
Each Processor has a unique identifying number,
a boot block which contains initialization
information, priority queues for tasks and
messages, and pointers to the currently
executing task and the last received message.
Message objects have state which records the
sender and receiver of the message, the times
sent and received, a message type symbol, and
the body of the message (which can, in
principal, be any object). Task objects model
Harmony tasks (Harmony will be described in the
next section); they are independent processes
which communicate and synchronize with
message-passing. A particular task in a
multitasking system is modeled by creating a
subclass of Task which includes the appropriate
protocol for the task being modeled.

As shown in Figure 3, the user interface is a
collection of software tools which are designed
to interact with specific classes of simulation
objects. Since these tools are themselves
objects, they can be easily modified to support
new requirements, and the tool set can be
expanded, with no danger that unexpected
interactions would render existing software
unusable. We are using two types of interface
objects at the moment, Browsers and Monitors.

Both provide access to the state of simulation
objects: browsers support extensive off-line
(i .e., while the simulation is not running)
interaction between the browsed object and the
user, while monitors are used during the running
simulation to examine the state of dynamically
changing simulation objects.

ScenarioBrowsers provide an electromagnetic
scenario generation and analysis capability
(Figure 41, while ReceiverBrowsers permit the
user to create receiver models directly from
system block diagrams. The ActorMonitor is a
kind of "generic" interface designed to inspect
the state of any actor; Processor-Monitors are a
subclass designed specifically for inspecting
Processor objects. ActorMonitors show the time
on the actor's local clock and the message state
(i.e., Send, Receive, Reply). In addition, a
capability to intercept and display all messages
to and from the actor is provided. Outgoing
messages can be edited by the user before being
forwarded. ProcessorMonitors can display
additional information about the internal state
of the processor, such as the currently
executing task and the priority queues.

In the simulation environment every effort is
made to communicate with the user in the
language of the application. Two objects which
illustrate how this can be designed into a
simulation are LimitedChoiceViews and
DimensionedNumbers. The parameter values
associated with most objects in a typical EW
simulation are known to lie within certain
specified limit,. Such facts as the maximum
speed of a ship, the stalling speed of an

October 4-8, 1987 OOPSIA ‘87 Proceedings 195

--Maps

Edmonton
Kharkov
Kiev I

--Platforms--(--Equipment--

265 nmi @ 130 nmi

FIG. 4: SCENARIO BROWSER

aircraft, and the design of a radar all impose
limits on the values of associated parameters.
LimitedChoiceViews provide a "sliding scale"
display which allows the user to select
parameter values by moving an indicator; the
endpoints of the scale are defined by the known
limits on the parameter values. Moreover,
parameter values are usually represented as
DimensionedNumbers, which store both a magnitude
and the unit of measurement. Atithmetic
operations performed on DimensionedNumbers check
the units of measurement and generate an error
when dimensionally incorrect operations are
invoked. Whenever the parameter value is
displayed, its associated units are displayed as
well.

The objects which comprise the simulation
environment provide the systems engineer with
powerful tools which focus on model-building
rather than program-building. In the next
section, we will see that objects also play an
integral role in the testbed's software
development environment.

3.0 SOFTWARE ENGINEERING METHODOLOGY AND TOOLS

3.1 IN SEARCH OF AN OBJECT-ORIENTED DESIGN
METHODOLOGY

While much has been written recently about
object-oriented programming [Cox 861, there is
no well established software engineering
methodology for using powerful tools like
Smalltalk and Objective-C. Our problem was
further complicated by the fact that none of the

existing structured methodologies addressed the
issue of multiprocessor system design. In the
sections that follow we assume the reader is
familiar with the object-oriented design of
sequential programs. We describe our current
approach for organizing collections of
cooperating tasks in the multiprocessor.

3.2 THE HARMONY MESSAGE PASSING REALTIME RERNEL

Harmony is a portable real-time multiprocessing
kernel designed for applications such as
robotics and command and control. It implements
the send, reply, and receive constructs
developed in the Thoth [Cheriton 82, Gentleman
811 family of real-time operating systems. The
rationale for blocking aend, blocking receive
and asynchronous reply are well described by
Cheriton [Cheriton 821. Harmony supports both
multiprocessing and multitasking with
priorities, using light weight tasks. Any task
can send a message to any other task in the same
or a different processor. Since both local and
remote tasks are referenced in the same way,
tasks can be moved to different or other
processors without modifying the application
software. The tasks which are executed in a
given processor are determined at configuration
time. Any number of instances of a task can be
created and destroyed at runtime.

A task can communicate with any other task on
any processor in the system. The "send* message
causes the executing task to block or suspend
until it receives a "reply"; "receive" causes
the executing task to become blocked until a

1% OOPSLA ‘87 Proceedings October 4-8. 1987

corresponding request has been received. This
simple and straightforward protocol is augmented
by two special forms which implement a
non-blocking receive and interrupts. Additional
primitives for creating and terminating tasks
and supporting stream-oriented input/output are
also provided.

3.3 USING ACTORS TO ORGANIZE MULTIPROCESSOR
APPLICATIONS

We use an object-oriented design philosophy
which has its roots in the Actor model of
programming, often referred to as
Anthropomorphic Programming. In our system, an
actor may be thought of as a Harmony task which
has a list of subtasks to perform (its
"script"). Actors synshronize their activities
and communicate by sending one another
messages. Designers tend to assign actors
personified roles such as servers, clients,
administrators, workers, couriers, etc. Actors
have local state variables, but there is no
global state in the usual sense. Until
recently, the intuitive appeal of the actor
model has been offset by concerns that it would
lead to designs which would entail prohibitive
overhead, especially in real-time systems.
Harmony provides a robust, industrial strength
vehicle for realizing actor-based designs.

The usual steps when designing such as system
(as outlined, for example, by Hewitt [Hewitt
771) are:

1. Decide on the natural kinds of actors to
have in the system.

2. Decide what messages an actor receives.
3. Decide what actions each kind of actor

should perform when it receives each kind
of message.

Actors are consequently defined by their
behaviour or function. One of the actions
permitted an actor is to simply forward the
message to another actor; this process, called
delegation [Lieberman 861, allows an actor to
share the responsibility for performing an
action with one or more other actors. In
addition, in our system, actors can be
decomposed into a number of "lower level"
objects. These lower level objects may
communicate directly with each other; however,
to send messages to objects outside the actor's
domain of definition, they must communicate via
the actor. This discipline leads to "modularity
in the large" which complements the "modularity
in the small" provided by object-oriented
programming languages. In this way, actors
encourage encapsulation, permitting the system
designer to create abstractions which hide
detail and separate specification from
implementation.

Given the above facilities to create and
communicate with active objects, it is possible
to develop some generic actors which will prove
useful for a wide number of applications.
Typical examples include clients, servers,
workers, eouriers and notifiers [Gentleman 851.
Clients are actors which make requests on servers

using a normal message send. Servers are
objects which encapsulate a shared resource;
this resource might be a hardware device, data,
or perhaps knowledge about how to perform some
action. The default behaviour of a server actor
is to create its worker and courier objects
(which report for work) and then to loop
awaiting client requests. Servers can be
designed as straightforward state machines which
manage computations carried out on their behalf
by worker actors. Sometimes it is necessary for
a server to itself request something from
another server actor. A courier is simply a
vehicle for sending a request to another server;
it avoids blocking the sending server while work
is being performed by the second server (Figure
5).

Blocked-

Blocked Workers

FIG. 5: SEW’IB-SERVER COMMUNICATIONS USING
MESSENGERS (COURIERS)

When created, a worker/courier begins execution
by sending a message to the server indicating
that it is waiting for a reply containing the
work to be performed. The server upon receiving
this message keeps track of the available
workers/couriers and dispatches work to them
using the reply primitive. When a server
receives a request from a client, it finds an
available worker and replies to it with some
operation required for that client. In this
way, servers do not stay blocked for any request
(Figure 6).

Our design approach is derived from the
Smalltalk model, with delegation replacing
inheritance; servers play the role of objects,
and workers are identified with methods. As in
Smalltalk, servers are organized as a hierarchy

October 4-8,1987 OOPSLA ‘87 Proceedings 197

Client Task

FIG. 6: CLIENT-SERVW-WORWIL TASK STRUCTURE

of software objects, as opposed to the "flat"
system space generated by current Harmony
applications. A typical server will have a
supervisor (server), a number of workers, and a
number of subordinates (servers). Workers will
only execute "sends* to servers; servers will
only execute "replies" and "receives" to and
from workers. Servers which communicate
directly with one another but do not have a
subordinate/supervisor relationship are referred
to as colleagues; colleagues may be thought of
as servers in the same design module which share
a common purpose. Each server has a service
dictionary which describes all of the services
it provides. Each item in a service dictionary
is an association between the message(s) which
invokes a service and the actor responsible for
providing it.

Requests for service can either be satisfied by
one of the server's worker actors, or they
can be delegated. Three kinds of delegation are
possible: service requests which appear in the-
service dictionary can be assigned to a
subordinate or referred to a colleague, while
requests which the server cannot find are
referred to its supervisor. On first glance, it
might seem that the additional message sends
required to implement delegation in a real-time
system would be prohibitive. Fortunately, there
is a simple mechanism available to cope with
this. When a worker which requests a service is
redirected, it can record the "route" It took to
reach its final destination. Moreover, the
worker can "remember" this routing so that
future requests for the same service can be made
directly to the provider. Thus far, it is our
experience that most actors will be relatively

long-lived. In such cases, delegation can
provide encapsulation without significant
overhead.

The hierarchical server organization, when
combined with delegation, provides a mechanism
for controlling inter-task communication without
imposing undue restrictions on the system
designer. The package defined by a server, its
workers and its subordinates can be treated by
the rest of the system as a single object.
Extensive changes can be made to a server's
functionality without impacting on the rest of
the system. The design becomes much easier to
understand and document, since at each level In
the hierarchy there should only be a few
colleague servers. The approach encourages
top-down design: one first identifies the
general functions and protocols of a few
colleague servers, after which, as more detail
is added, the servers can be decomposed Into
workers and subordinate servers. In this way,
system designers can defer decisions as to how
work will actually be performed until the later
stages of the design cycle.

3.4 OBJECT-ORIENTED DEVELOPMRRT AND TEST SYSTEM

A software development environment designed to
realize hybrid object-oriented software has been
developed for the ESM testbed [Thomas and Wilson
871. The software is "hybrid" in the sense that
two object-oriented languages are used
concurrently: a version of Smalltalk modified
to support the Actor concept which we call Actra
[Thomas et. al.], and Objective-C, an object-
oriented dialect of the C language [Cox 861.

193 OOPSLA ‘87 Proceedings October 48, 1987

Smalltalk is used for simulating, prototyping,
monitoring, debugging, and testing system
software. In addition, software tools to
support object-oriented design and configuration
management are under development. Objective-C
Is used to code tasks which must meet real-time
performance criteria after they have been
successfully prototyped in Actra. Software
development is done using personal computers.
The personal computers are directly connected to
the YNE bus of one of the multiprocessor nodes
In the testbed (Figure 7).

rs232

take place until a new message is received.
Actra modifies this behaviour to allow an Actor
to reply a value to the Actor which invoked it,
without terminating its own execution. At some
later point, it can then make itself available
to receive new messages by executing an
end-method bytecode. This terminates the
current computation, and puts the Actor in a
receive-blocked state. This is the user's view
of the Actra model.

Macintosh

HD-20

Dy-4 VME bus card cage with:
2 DVME-134 68020processors
DVME-750 Ethernet controller
SVME-3282MBmemorycard
MacVe-eVMEbusinterface

bus level interface

I 11111111111111111 I

FIG. 7: OBJECT-ORIENTED UEVELOPMENT AND TEST SYSTEM CONFIGURATION

Smalltalk processes provide traditional
co-routine based uniprocessor multitasking with
semaphore synchronization. Unfortunately
in Smalltalk, processes are not first class
objects. They can't be sent messages or
specialized like other objects. They are
created from blocks. While this approach is
adequate for Smalltalk's requirements
(simulation and window management), it fs
insufficient for structuring large numbers of
independent processes or handling true multi-
processing.

Actra's high-level multiprocessing model is
based on the concept of Actors. In the
Smalltalk context, Actors are objects (i.e.,
instances of class Actor or its subclasses)
which have the capability to execute
concurrently. To implement this, the Smalltalk
model of message passing has been extended In
the following way. In Smalltalk, when an object
sends a message to some other object it is
suspended, until the receiving object returns
some value. In' Actra, we maintain this
hehaviour. However, in Smalltalk, from the
point of view of the receiving object, once a
value has been returned, no further actions can

From the implementation standpoint, the Actor
mechanism is supported by the Harmony kernel as
follows: associated with each Actor is a
Harmony task. This task is essentially a copy
of the Actra interpreter, which executes the
bytecodes - that is, the (Actra) Smalltalk code
- for the Actor. In fact, all Actors share the
same code, but each executes it as a separate
task. Under Harmony, the message passing
mechanism allows synchronous send, synchronous
receive, and asynchronous reply operations.
Calling a Harmony receive causes the associated
task to suspend, putting the Actor which is
executing in a receive-blocked state. Calling a
Harmony send causes the task to suspend until it
receives a reply; consequently, when the
executing Actor sends a message it will block
until the receiving Actor replies a value.
Obviously, this is exactly what we want to
support Actors.

When an Actor sends a message, its interpreter
decides whether or not the message Is intended
for another Actor. If not, as is the case for
most messages, it is simply sent to the receiver
object using the standard Smalltalk message
passing mechanism. However, when a message is

October 4-8, 1987 OOPSLA ‘87 Proceedings 199

to another Actor, the message and any other
required information is packaged in a Harmony
message and sent to It using the RTOS. This
allows Actors to reside on multiple processors.
An important goal when we were designing the
software development environment was to provide
a consistant Interface between Harmony tasks
written in C or Objective-C, and Actors in the
Smalltalk world. Given this facility, it is
possible to write time critical, real-time
applications while still maintaining access to
the user-interface facilities of Smalltalk. In
the ESM testbed, C language support has been
provided both by a package of C-to-Smalltalk
communication primitives, and by high-level C
code debugging facilities accessible from the
Smalltalk environment.

The software development environment provides
support for high-level debugging, and direct
manipulation of C language code, using a family
of classes for accessing C data structures.
Class Struct contains several methods for
directly accessing memory locations anywhere on
the development system's own microprocessor or
on the VME bus. It also contains methods for
accessing the standard C language data types
(chars, short ints, ints, unsigneds, etc.),
which are built ou top of the memory accessing
routines. Finally, the class implements a
general framework for describing arbitrary C
stnlcts. Subclasses of this class can use these
routines to describe speciffc C structs. By
creating instances of these subclasses, it is
possible to shadow arbitrary C structs anywhere
in memory on the VME bus.

Using this facility we are able to use Smalltalk
as our symbolic debugger: Class Structlnspector
and class StructInspectorView, together,
constitute a generic C struct inspector facility
which allows C structures to be inspected
exactly like Smalltalk objects. Accessing
fields in the inspector actually access the real
memory of the struct, and "accept"ing new values
causes them to be written into memory. For
example, Class TaskDescriptor is a subclass of
Struct which describes the struct used to
describe a Harmony task descriptor 03).
Instances behave exactly as if they were the TD
struct. The interpretation of the various
fields of the struct is managed internally, so
that, for example accessing a field which should
contain a pointer to another TD actually returns
another instance of TaskDescriptor which
describes it. Similarly, accessing the STATE
field will return a symbolic representation of
the current Harmony state of the associated
task, while modification of this field can be
performed by using direct entry of the state
name, or by menu selection.

Given the above facilities, any C struct can be
described from within the development
environment, and then accessed using the full
power of the Smalltalk programming environment.
ESM testbed nodes are interconnected to other
nodes and various hosts and workstations using
ethernet. It is well known that TCP/IP based
communication can be very expensive and is
therefore frequently avoided for embedded

systems. However, the use of a custom protocol
has the disadvantage of isolating the testbed
from post-processing hosts and development
facilities. To solve this problem we have
implemented an intersystem protocol based on UDP
envelopes. The testbed supports the address
resolution protocol (ARP) for TCP/IP, thereby
allowing host programs to easily communicate
with the testbed using standard UDP sockets.
The protocol and drivers allow both remote
Smalltalk and C programmers to send and receive
messages from the ESM nodes.

We are in the process of developing methodology
and tools to support configuration management of
large object-oriented systems during the entire
development cycle. Programming guidelines have
been developed aimed at standardizing both
Smalltalk and Objective-C code. We use macros
to improve the readability of the C code, and to
supply a common organization for procedural code
in server, courier and worker actors. This
facilitates porting software between the two
languages. We aqe.currently experimenting with
automated design allds which diagram the
functional relationships between servers and
workers. Unfortunately, the OOPS community
lacks standard diagramming conventions. This Is
especially frustrating for those who see how
easy it is to support SADT type diagramming in
Smalltalk. An active data dictionary facility
is being implemented to provide consistent
naming in multiuser environments.

Object-oriented projects require change
management systems competitive with those
offered in the traditional Unix environment
[SCS, RCS]. In an environment with SO much
freedom, we need tools to be able to manage
groups of programmers. We are investigating a
system which associates a class manager with
every class. It requires us to define a set of
base classes which can be relied upon by all
programmers. In order to share code between
workstations, we assume the class manager to
have ownership for the class, including the
source code, object code and changes.

4.0 CONCLUSION

We have presented an overview of an Integrated
testbed for prototyping ESM signal processing
systems. Object-oriented programming and
object-oriented design have played a key role in
the success of this undertaking, by providing
the conceptual building blocks which allow us to
manage the complexity of the application and its
multiprocessor environment. The result is a
vertically integrated system which, witNn a
single uniform framework, can encompass the
entire development cycle. Beginning with tools
and methodologies which support the design
process, continuing with extensive simulation
and prototyping facilities, and following
through with support for programming and
testing, the testbed provides a more productive
and reliable development environment for ESM
systems engineers.

OOPSLA ‘87 Proceedings October 4-8, 1987

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions
of the Advanced ESM Multiprocessor Design Group
at DREO, the Actra Project Team at Carleton, The
Dy-4 Systems Harmony Team, and the Harmony Group
at NRC.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Barry, Brian M., 1987. "Object-Oriented
Simulation of Electronic Warfare Systems".
To appear in Proceedings of the Summer
Computer Simulation Conference (Montreal,
July).

Thomas, D.A., 1987. "Object-Oriented
Design of Multiprocessor Software Using the
Harmony Operating System", Dy-4 Systems
Design Note.

Hewitt, Carl, 1977. "Viewing Control
Structures as Patterns of Passing
Messages", Artificial Intelligence 8:
323-364.

Gentleman, W. Morven, 1981. "Message
Passing between Sequential Processes: the
Reply Primitive and the Administrator
Concept", Software Practice and Experience,
11: 435-466.

Gentleman, W. Morven, 1985. "Using the
Harmony Operating System", National
Research Council of Canada Report
No. 24685. National Research Council of
Canada, Ottawa, Canada (May).

Cheriton D.R., 1982. The Tboth System:
Multi-process Structuring and Portability,
American Elsevier.

Lieberman, Henry, 1986. "Using
Prototypical Objects to Implement Shared
Behaviour in Object-Oriented Systems", ACX
SIGPLAN Notices, Vol 2l, No. 11.

Cox, Brad J., 1986. Object-Oriented
Programming: An Evolutionary Approach.
Addison-Wesley Publishing Company, Don
Mills, Ontario.

Thomas, D.A., 1985. "Supporting
Interpretive Programming Languages on a
Harmony Based Multiprocessor", DY-4 Systems
Design Note.

Thomas, D.A. and M. Wilson, 1987. "An
Object-Oriented Development and Test
System", DREO Contract Report.

Thomas, D.A., W. Lalonde and John Pugh,
1986. "A Multitasking/Multiprocessing
Smalltalk", SCS-TR-92, School of Computer
Science, Carleton University, Ottawa,
Canada (May).

Shafer, G., 1976. A Mathematical Theory of
Evidence, Princeton University Press.

October 4-8,1987 OOPSIA ‘87 Proceedings 201

