
Objects

in

Concurrent Logic Programming Languages
Kenneth Kahn, Eric Dean Tribble, Mark S. Miller, Daniel G. Bobrow

Knowledge Systems Area

Intelligent System Laboratory

Xerox Palo Alto Research Center

Abst rac t

Concurrent Prolog supports object-oriented
programming with a clean semantics and additional
programming constructs such as incomplete messages,
unification, direct broadcasting, and concurrency
synchronization [Shapiro 1983a]. While it provides
excellent computational support, we claim it does not
provide good notation for expressing the abstractions
of object-oriented programming. We describe a
preprocessor that remedies this problem. The
resulting language, Vulcan, is then used as a vehicle
for exploring new variants of object-oriented
progrlmmlng which become possible in this
framework.

I n t r oduc t i o n

The concurrent logic programming languages cleanly
build objects with changeable state out of purely
side-effect free foundations. As in physics, a causal
chain of events with enough coherence over time can
be viewed as an object with stats.

The resulting system has all the fine-grained
concurrency, synchronization, encapsulation, and
open-systems abilities of actors. In addition, it
provides unification, logic variables, partially
instantiated messages and data, and the declarative
semantics of first-order logic.

Abstract machines and corresponding concrete
implementations support the computational model of
these languages, providing cheap, light-weight
processes, fast unification, and parallel architectures.
The implementations provide the equivalent of "tail
recursion optimization", so objects built on these
foundations have the same complexity measure as

Permission to copy without fee all or pan of this material is granted provided
that the copies are not made or distributed for direct commercial advanta~,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery To copy othe~vis¢, or to republish, requires a fee and/
or specific permission.

cG 1986 ACM 0-89791-204-7/86/0900-0242 75¢

objects implemented directly.

Since objects with state are not taken as a base
concept, but are built out of finer-grained material,
many variations on traditional notions of
object-oriented programming are possible. These
include object forking and merging, direct
broadcasting, message stream peeking, prioritized
message sending, and multiple message streams per
object.

In exploring these issues, we found that the notation
in which objects are expressed has some serious
problems. It is significantly more verbose and
awkward than that provided by traditional
object-oriented progrt.mm;ng languages. We remedy
this by providing a preprocessor with syntax
formalizing the cliches used for object-oriented
progromming in concurrent logic programming
languages. We call the resulting language "Vulcan"
because Vulcan is a fictional place characterized by a
community of actors behaving logically.

S u p p o r t f o r a p r o g r a m m i n g p a r a d i g m

A programming paradigm is a programming style.
Object-oriented programming, for example, is a
programm/ng style in which operations are grouped
together with structured objects. Descriptions of
operations and structure are collected together in
classes which share operations and structural
descriptions with their super-classes.

The support a programm/ng system gives to a
programm/ng paradigm includes linguistic, semantic,
execution, and environmental support.

Linguistic support.

The linguistic expression of a program should
correspond well with the intentions of the
prograramer. The system should support clear and
concise expression. Common programming cliches
should be supported.

242 OOPSLA '86 Proceedings September 1986

Clear semantics .

The basic constructs supporting a paradigm should
have a simple clean semantics. The underlying
semantics should be well-suited for both human
understanding of programs and machine analysis and
transformation of progr9m~.

Execut ion suppor t .

A system must be able to execute programs in the
paradigm efficiently. A programmer should not be
penalized unnecessarily for programming in a good
style.

Env i ronmenta l suppor t .

The system should support the debugging of programs
at the level of abstraction of the programming

paradigm. If, for example, a system is supporting
object-oriented programming then the tracing, editing
and browsing of programs should be in terms of
objects, methods, messages, classes, and instance
variables and not the underlying implementation
constructs.

In addition, if the system supports other programm/ng
paradigms these should be well-integrated.

O b j e c t - o r i e n t e d p r o g r a m m i n g in

C o n c u r r e n t P r o l o g

Shapiro and Takeuchi present Concurrent Prolog and
a set of programming cliches for programming in an
object-oriented style [Shapiro 1983a]. Here we
Snmmarize their findings and in the following sections
evaluate and extend their work. We use Concurrent
Prolog (CP) since it is a typical example of a
concurrent logic programming language. Most of the
ideas presented apply equally well to other concurrent
logic programming languages.

Concur ren t Prolog

As in Prolog, a program in Concurrent Prolog is a
collection of Horn clauses. A Horn clause is a logical
implication of the form

V(xt xk) Ao "- Al & A~ & AB

where the A's are atomic formula, n and k can be 0.
There are no variables occurring in the A's other than
xl through x~.

In CP and Prolog, clauses have the syntax:

/tO :- AI. A~I An.

and variables are normally denoted by constants
beg/rating with an upper case letter.

CP and Prolog programs can be read declaratively as
sets of logical implication& A single clause reads as
"for all xt through Xk Ae is true if AI through A, are all
true". A clause in which n is zero is read as "for all xl
through xk Ao is true". Clauses can also be read
procedurally as "to solve a goal matching Ao, solve the
subgoals As through A.".

Each of the A's is a term made from a functor and its
arguments. The functor of the term, plus(3. 4, X),
is plus, and the arguments are 3. 4, and x. The
specification ofa functor includes its arity, so foo(x. Y)
and foo(x.Y,Z) are distinguished. Constants are
0-arity functors. Arguments are themselves terms.
Sometimes the top-level terms (A's) are called atomic
literale and the functors of the literals are called
predicate symbols.

For Prolog, the list of clauses for the same predicate
symbol (including arity) define a procedure. A
procedure is interpreted as "to solve a goal, try the
clauses sequentially until one is successful. If another
solution is requsted, the procedure should try the
remaining clauses.

CP extends the syntax of clauses by adding the commit
operator "J". There is exactly one commit operator per
clause and it either replaces one of the commas in the
clause or i8 placed before As or after An. A clause
without "F has the commit before AI. One calls the
consequent Ao of a clause the head, the conjunction of
atomic formulas before the commit operator the guard
and the conjunction of formulas after the commit
operator the body.

A CP clause:
H : - G l 6m I Or. . . Ba

has a process or behavioral reading which says, "a
process matching H, can be reduced to the system of
processes Bt through Bn if the guard processes Gt
through G= successfully terminate". In CP atomic
formula are treated as processes while in Prolog they
are considered goals. A CP procedure is a collection of
clauses for the same predicate. I t is interpreted as "to
reduce a process, commit, if possible, with one of the
clauses and reduco the process to the processes
described in the clause body". We say that a process
can commit with a clause if the process unifies with
the head of the clause and the guard successfully
terminates. I f there is more than one clause which can
commit with a process then one is chosen
non-detsrministicly. If there are no clauses that can
commit then it fails. Unlike Prolog, CP is not capable
of backtracking or searching for all solutions. Correct
CP implementations are sound but incomplete

September 1966 OOPSLA '86 ProceedinGs 243

theorem provers (as are conventional Prologs),

An implementation of CP can be based upon
fine-grained parallelism. The search for a clause
which can commit can be performed in parallel. When
a clause commits it stops the processing of the other
clauses. This kind of parallelism is sometimes called
limited or-parallelism. Even more important is the
potential for and-parallelism in CP. And-parallelism
is the concurrent execution of each CP process. I t is
called and-parallelism since the set of processes
corresponds to a conjunction of atomic formula which
must be true for the query to be true.

Unification in CP is extended to interpret read-only
annotations on occurrences of variables (denoted by a
'~." at the end of the variable name). An attempt to
instantiate an uninstantiated variable with a
road-only annotation causes the process to suspend. I f
no clause of a process can commit, but at least one
clause suspended during the unification then the
process is s u s p e n d e d . Efficient implementations of CP
associate suspended processes with the variables
which caused the suspension. No attempts are made
to reduce a suspended process. A suspended process is
activated only when the variable it is waiting for is
instantiated. One can think about the read-only
annotation as saying "don't use this occurrence of the
variable until some other process running
concurrently gives it a value". From the point of view

of the declarative reading, the road-only annotations
are ignored.

Qu | ckso r t in C o n c u r r e n t Pre log.

/" Sort clauses have the form:
sort(UnsortedList,SortedLimt) *I

sort([] , []) .

sor t ([HIT] ,$or tsd) : -
par t | t ton(I'?,H.L,G),
sort(L?.LS),
sort(G?,SS).
concatenate(LS?.[ltlGS?],Sorted).

/~ Partition clauses haoe the form:
partition(UnsortedList,PartitionKey,

LesserList,GreaterList) */

p a r t t t t o n ([] , X , [] . []) .

par t i t~on([H lT] .X, [HIL] .G) :-
H (, X [p e r t i t t o n (T ? . X , L , G) .

par t t t ton([H IT] ,X .L . [H#G]) : -
H >- X ~ per t t t ion(T?,X,L.G).

/* Concatenate clauses have the form:
concatenate(FirstList,SecondList,

Concatenatedl, ist) */

concatenate([] .X,X).

concatenate([X I Xs],Y. [X I Zs]) :-
concatenate(Xs?,Y,Zs).

The first clause of sor t provides a base case for
rocursion: an empty list is already sorted. The second
clause reads: use the first element to partition the
remainder of the unsorted elements. This provides a
list of elements that will precede the first element in
the sorted list, and a list of elements to follow it.
Compute sorted versions of these two lists, then
construct a single list using concatenate. The
elements preceding the first unsorted element get
concatenated with a list made up of the first element
and the elements greater than it.

pa r t l t l on has a similar base case. The second
p s r t l t l o n clause commits only if the first element of
the UnaortedLtst iS less than or equal to the
Part | t lonKey. I f SO, it adds the element to the list of
elements to precede the Part i t i on Key, then partitions
the rest ofthe Unso rtedL I st. The third clause operates
similarly for elements greater than the Part i t i on Key.
Notice that if the tested element equals the
PartltlonKey, one of the two work clauses is chosen
non-deterministically.

Concatenate is a relation of three lists where the first
two concatenate to form the third.

CP has been used successfully to do serious system
programming and symbolic computing. An operating
system and programming environment called Logiz
has been built upon a subset of CP called Flat
Concurrent Prolog. [Silverman 85] The language has
a simple and clean semantics. Implementations of CP
provide very light-weight processes. Process

synchronization is accomplished by use of the commit
operator and the road-only annotations.

Objects In C o n c u r r e n t P ro log

The ephemeral processes in the sorting example
hardly posess the permanence and identity of objects.
CP associates this identity with a communication
channel earry/ng messages for consumption by an
ephemera] process. When the process receives a
message, it reduces to other processes. One of the
processes has the same functor as the original and
consumes the remainder of the message stream. CP
represents state changes by incarnating that process
with the new state instead of the old. This is so similar
to tail-recurs/on that it is often referred to as that.
Such continually reincarnated processes are called

244 OOPSLA '86 Proceedings Sepcem~¢ 1986

$or t ([Z.3.1] ,S) ~ p e r t ([3 , 1] . Z . L . G) ~ G - [3]
~ L - (I)

~ pset(t|t, ! .L$.G3) L3"G3"[]

~ s o r t (L 3 ? . L S 3) . LS3=[I
s o r t (L ? , L S) - ~ h - . _ ~

~sor t (G3?,GS3) - GS3-[]

~ " - - - - - c o n c (L S 3 ? . [t J G S 3 ?] , L S) LSo[I]

sortlG?,GS) , ~ GS2-[]

~ c o n c (L S Z ? , (3 1 G S 2 ?] , G S) ~ 6 S , [3]

Iconc(LS?,(21GS?] S) $-[11ZS1] ,, conc([] . [Z.3] ,Z$1) ZSt,[Z,3]

This is a simplified diagram of the process spawn tree of the computation for quicksort.
The nodes represent processes to be reduced, or bindings introduced by those processes.

perpetual processes. The communication channel
passed along from process to process provides the
identity of a perpetual process.

The communication channels of CP are simply shared
logical variables. Since logical variables cannot be
reset once they are set (instantiated), a
communication variable must instantiate to a pair of
the message transmitted and a new uninstantiated
logical variable for further messages. A process
waiting for a message suspends on the communication
variable (via read-only annotations) until it becomes
instantiated to such a pair, then executes the method
appropriate to the first element of the pair. Once the
pair contains a message, the new variable (second in
the pair) must be used for further communication
because the message part cannot be reset. This
write-once property requires the recursive process
creation scheme described above. Furthermore,
multiple suppliers cannot put messages onto the same
stream because one process would instantiate the
message before the second, so the second process would
fail. This problem will be dealt with later.

Since a communication channel - usually called a
stream - identifies an object, the logic variable
representing the channel is often treated and referred
to as the pointer to the object. This engenders our
variable naming convention: we name stream
variables for the kind of process interpreting the
message stream. We add the prefix 'New' to the name
of the variable representing the future messages to an
object (typically the variable used in the recursive
call). Whenever examples include two different
variables with the same name, numbers will be
appended to their names to distinguish.

Consider the following example CP program. I t
implements a simple bank account defined to respond

to t he messages depos t t , w i t h d raw, and b a l a n c e .

a c c o u n t ([d e p o s i t (A m o u n t) I N e w A c c o u n t] .
8aZence .Name) : -

/" [ncreo~e the b(z~nce by Amount "I
plus(Balance,Amount.NewBalance),
a c c o u n t (NewAccoun t ? , NewBa l a n c e ? , Name) .

a c c o u n t ([h a l a n c e (B a l a n c a)] NewAccount] ,
B a l a n c e . N a m e ) : -

a c c o u n t (NewAccoun t ? , a a l a n t e . Name) •

accoun t ([w t t hd rew(Amoun t) I NewAccount] ,
B a l a n c e . N a m e ) : -

/" S~btract Amount from the balence unieu the ba~nce
too low. "/

Ba lance >- Amount I
p 1us (amount. NawBal ance. 8a 1 ance) .
account(NawAccount? .NawBalenca, Name) .

account ([w t thd raw(Amount) I NewAccount] .
Balance.Name) : -

/" Leave balance untouched and report attemp~ to
overdr~w ~/

Balance (Amount I
repo r tOve rd rawn (Name. Ba 1 ance. Amount)
accoun t (NewAccoun t ? . Be1 anca. Name) .

The deposit clause increases the Balance b y t h e
given amount. The second clause simply instantiatee
the argument to the current 8al ante. The third clause
can only commit if the account contains at least Asoun t
in it. Otherwise the fourth clause reports the at tempt
to overdraw the account. The first two clauses each
correspond to a method in an object-oriented
programming system. The third and fourth clauses
together correspond to an ordinary method. All the
clauses have the same arguments. The first
represents the input message stream. When the
message stream of an account instantiates, it
attempts unification with the first argument from
each clause. Since all methods have the form

September 1986 OOPSLA '86 Proceedings 245

[NessagelVariable], the actual t4assage determines
which clause will successfully unify, so the message
dispatches properly. Nessage can be any log/cal term
and may include variables. Often those variables get
used to return values, as in the balance clause.

Consider the follow/ng transactions. The extra
arguments to the above definitions were extra
information attached to an account. For simplicity,
only the 8alance will be shown now.

account(A?.100),
A - [depos|t(100). balance(B), withdraw(200)

I NewAccount] .

The account process immediately suspends if it tries
to run. The second process runs, instantiating A to
[deposit(100), balance(B), withdraw(200) I
NewAccount]. Now the first process proceeds, unifying
[deposit(100)] with the first clause (none of the
others can succeed). I t reduces, leaving the following
processes:

plus(Salance,Amount. New8alancel),
account([balance(B), wt thdraw(Z00)

I NewAccount] .NewBalsncel?).

Taking the most pathological route, assume that
account keeps being reduced. The balance message
drops out immediately. I t succeeds, and the argument
will be instantiated when the p I us process completes.
I f any concurrrent operation attempts to use the value
of that variable, it will suspend because the variable is
read-only. Such is the case with the withdraw
message. I t unifies with the correct clause, but the
guard tries to compare an uninstantiated variable
with a number, so the comparison suspends. The
account process that looks at MnAccount also
suspends. Therefore the plus process will run since it
is the only remaining active process. I t computes the
new balance. The process doing the withdrawal
compares that balance to discover that the withdrawal
is legal, and so finally withdraws the money.

This sequence of reductions demonstrated the
pipelining ability, and the power of the simple
read-only annotations.

The declarative semantics of a perpetual process is
peculiar. Each clause can be read declaratively as
stating constraints on possible histories of messages
and the corresponding state. The first clause of
account, for example, can be read as "a history of
messages beg/nnlng with one matching
deposlt(Aelount) iS a val id balance history i f the
remainder of the history is valid in the state where the
sslance is the sum of the previous balance and the

AIount".

This peculiar declarative semantics can be a useful
basis of a debugger which keeps a pointer to the
history of messages and provides a convenient way to
browse the message history.

Special f ea tu res of C P Objects

Shapiro and Takeuchi claim that CP realizes objects in
the sense of Hewitt 's Actor model. [Clinger 1981] CP
objects have internal state, can be operated upon only
by message send/ng, and can exchange arbitrary
messages. Any number of instances can be created
from a definition of an object. Unlike Smalltalk,

Flavors, Loops and the llke, CP objects are not based
upon call/return message passing. CP objects have the
full control generality of actors. Call/return is just a
particular pattern of message passing in CP [Hewitt
1977].

In addition to the full generality of actors, CP objects
have special features not found in other
object-oriented programming systems. The streams
and processes of CP are side-effect free. Perpetual
processes seem to change because a process terminates
and causes a similar but different one to be created.
This lack of side-effects leads to a simpler, clearer
declarative semantics. The explicit manipulat/on of
streams is more flexible than the system-supported
message queues of actor systems [Clinger 1981].
Several objects can share a s tream of messages,
enabling direct broadcasting. A stream can be held
onto to provide a message history to inspect. A stream
of incoming messages is available for peeking ahead.
A perpetual process can consume multiple streams,
differing in cabability or priority.

C o n c u r r e n c y

The underlying model and motivation for CP is based
upon large-scale concurrency and simple, yet
adequate, synchronization prim/tires. CP defaults to
concurrency. I t achieves sequencing and
synchronization with the conun/t operator and
read-only annotations. Shapiro has shown CP to be
adequate for solving classical synchronization
problems llke multiple readers and writers and
addressing issues Hke starvation, fairness, and
deadlock. [Shapiro 1983b] CP progrRmmers have
found the commit operator and the read-only
annotations easy to use and reason about. Unification
and conun/t are thought of as atomic transactions.

Unlike Smalltalk, Flavors, Loops and the like, CP
objects are active. They can execute continually,
though by convention they normally suspend when

246 OOP$~ ~ Proceeo~ Septemt~" + ~

there are no messages to process. Like serialized
actors. CP objects process messages one at a time.
though unlike serialized actors the typical CP object
processes messages in a pipeline fashion. The body of
the clauses for an object by convention creates a new
process to receive subsequent messages. This process
is normally spawned concurrently with some of the
method computation. Consider the first clause of
account.

account ([dapos i t (Amount) I NewAccoun t] ,
Balance,Name) : -

plus (Salar ies,Amount. NewSalance) ,
account(NewAccount?.Newaalance?.Name).

When a depos it message is in the front of the stream
of incoming messages this clause commits and spawns
a process to add Amount to Salance and a process to
receive more messages. If the new account process
receives a message before the plus process has
terminated then the sal ante will be the
uninstantiated variable NewSalance. Since
NewSalance is read-only, it can only be instantiated by
the plus operation that runs concurrently with the
reeursive call. When another process actually tries to
use NewSalance it will suspend until plus finishes.

Logic Variables

The usefulness of the logic variable has been
repeatedly demonstrated in both Prolog and CP
programming. Unbound variables in logic
programming are "first class objects" in that they can
be passed around and embedded in structures. In
object-oriented programming in CP, this is frequently
exploited by a technique called incomplete messages.

Messages are sent which contain variables and
typically the recipient binds those variables. This is
the most common way of sending a message and
getting a reply. The second clause of account is an
example of this.

account([be 1 once(Be1 ance) [NewAccoun t] ,
Balance,Name) : -

account (NewAccoun t ?, 6al ance, Name) .

The sender of a b s 1 a n c • message requests the current
Salance of an object. Unlike call/return message
sending, the sender proceeds immediately. Frequently
the users of the response from an incomplete message
have read-only annotations to prevent those parts of
the computation from using the uninstantiated
variables of the response before the recipient fills them
in.

Another use of logic variables in CP objects is to leave
some state variables uninstantiated. We saw how this

could occur naturally in the pipeline style of message
processing. It is also possible to create objects with
parts left uninstantiated. The following processes
creates an account with an unknown Balance and use
a hal ance message to initialize it to 300.

account(A?.X. joe). A- [halance(300) I A1] .

This technique may be useful in creating objects which
need complex initialization.

Verbos lW,

The ms, or shortcoming of object-oriented
programming in Concurrent Prolog is its verbosity.
Each method must at the very least repeat the names
of the state variables in both the head of the method
and in the tail recursive call. Each method must
explicitly fetch the next method from the stream and
then recur on the stream ofrema/ning messages. Such
tedious repetition easily results in subtle mistakes.
The tail-recursive call requires a read-only annotation
on the stream of remaining messages, for example.
Without it, the process does not suspend, so unification
non-deterministically applies a clause (anything
unifies with a vat/able), setting the first element ofthe
stream to the message for that clause, then executing
its body. Logically, we queried, "What sequence of

messages could objects of this class have, starting from
the current state, and what would be the new state?"
Later message sends to the object would likely fail
because they would try to unify different message
terms. All this from leaving out one question mark!

[Shapiro 1983a] addresses the inconvenient necessity
of repeating the state variables by packaging up the
entire state into a single term and using special
predicates to access or create modified versions.
Consider the differences between the following two
ways of writing a move method for a window.

/* Version with multiple state variables "/
window([move(NewX, NewY) I NewWi ndow].

X,Y,Width. Hetght .Contents) :-
eraseRegion(X.Y.Width .Height) [
wtndow([showl NewWindow],

NewX ,NewY,Wtdth, Ha igh t ,Conten ts) .

/* Version with one state variable */
window([move(NewX.NewV)JNewWindow].State) :~

eraseRegion(State) ,

setWindowState(xy.NewX,NawY,State,NewState)i
wtndow([showlNewWindow].NewState),

t he re~uo~par to f thede f in i t i ono~se tWindowSto~e~
setWtndowState(xy. NewX.Naw¥.

wtndowStata(X.Y.Width.Height .Contents) .
wtndowStata(NewX.NewY.Width.

He igh t ,Conten ts)) .

September 1986 OOPSLA ~6 Pr0cssdings 247

Without sophisticated compile-time optimizations,
packaging requice significantly more t/me and space.
Also, setWtndowStetn and getWtndowStste clauses
must be defined/.or each collection o/.state variables.

A P r e p r o c e s s o r S o l u t i o n

A straightforward solution to the verbosity of
object~oriented programming in CP is to build a
preprocessor. User programs declare the state
variables once and methods are written in a concise
notation and expanded into ordinary CP. Vulcan is
such a preprocessor. It formalizes the cliches used/.or
object-oriented programming in Concurrent Prolog,
and in doing so, reduces their verbosity.

Vulcan operates on clauses for classes and methods.
Class clauses declare the names (and perhaps
properties) of" state variables for all the instances of'
the named class. Method clauses use the class
declarations to expand into operations invoked by
particular messages to the object.

class(window, [X.Y,Wtdth,Hetght,Contents]).

declares that all window methods have a message
stream, and all the named instance variables. It also
generates a make clause for creating instances.

make(window.[x.Y.Wtdth,Hetght.Contents],
Window) :-

/" This makes a process consumin 8 the stream Window "/
wtndow(Wtndow?.X.Y,Wtdth.Hs|oht,Contents).

A method for getting the pos i t ion of s window Can be
defined as

method(window.posttton(X.Y)).

Vulcan recognizes re/.erences to the variables declared
in the class, and generates code appropriately. The
obvious expansion which is shown below directly
un/fies the arguments o/" the message with the
appropriate state variables, just as the Vulcan code
ind/cated. Later d/scuseion shows that this only works
i/. x and y are terms and not streams to other objects.

w|ndow([pos|tton(X.Y) I NewWtndow].
X. Y.Vtdtb. Height,Contents) : -

wtndow(NewWlndow?.
x.Y,Wtdth.Hetght.Contents).

Since post t ion has no body to expand, the clause just
contains the head and the ta/l-recureive call. The
preprocessor would actually generate unique names
t'or variables rather than names like NewWindow that
might conflict with programmer defined variables.
These examples use the simpler names/'or readabili~.

The Vulcan expression/'or changing an object's state is

become((Vat1. value1). (Vat2, value2)) . T h i s

can be read as a parallel assignment statement. Thus,
a w i naow's position could be moved by:

method (i t ndow,moveBy(De 1tax, DelteY)) : -
plus(X.DsltaX,NswX)0
plus(Y,DeltsY,NewY),
become((X.NewX), (Y.NowY)).

which expands to

wtndow([moveBy(OsltsX,DeltsY) I NewWtndow],
X.Y.Vldth,Hs tght.Contsnts) : -

plus(X,DeltsX.NewX).
plus(Y,Oslta¥.NewY).
w t ndow(NowW t ndow?.

NswX?.NswY?,Wtdth.Height.Contents).

Message Sending

In CP one simply unties a stream variable with a pa/r
of a message and a new vat/able to send a message.
The Vulcan equivalent is
send(Rscstv tngObJect.Message). The
pseudo-variable Self refers to the receiver of a
message. Methods can treat Self as any other
message stream.

Since any method/.or an object can refer to or change
the object's state, becomes and messages to Self must
be serialized. Vulcan assumes that those operations
function on successive states of' the object. All
expressions lex/cally after a become or a send to Self
refer to the new state. Vulcan achieves sorialization
by uldng message queues. The usual CP manner of'
send/ng messages to self is to "preset" the message
stream on the recureive call. Vulcan packages any
expressions lexically after a send to Self into a
"continuation" method whose selector is preset onto
the message stream after the earlier messages.

The above definition of sovesy doesn~ erase or
red/splay the w I n dew. A more realistic vers/on is:

metflod(wtndow,move8y(OeltaX.OeltsY)) :-
send(Self,erase),
plus(X.OeltsX,NewX).
plus(Y.gsltaY.NswY).
become((X.NswX),(Y.NewY)),
send(Self,show).

Tilts t ranslates to:

wtndow([moveBy(DeltaX.DeltaY) I NewWindowl].
X.Y.W|dth,Hstght,Contents) :-

wtndow([erase.prtvateHoveSy(DelteX.DeltaY)
] NewW|ndowl?].

X.Y,W/dth.Hetght,Contents).

248 OOPSLA ~6 Proceedings Segtemt~¢ 1986

window([privateMoveBy(DeltaX.Del taY)
] NawWtndow2].

X.Y.Wtdth,Hetght,Contents) :-
plus(X,OaltaX.NewX).
plus(Y,OeltaY,NewY),
wihdow([show) NewWtndow2?].

NewX?,NewY?,Wtdth,Hetght,Contents).

Messages sent after the become (show) are interpreted
as occuring after the state change, and so are sent from
the continuation method.

Immutable streams vs. pointers to mutable
objects.

For object-oriented programming, CP fundamentally
differs from languages like Smalltalk in that CP does
not have pointers to objects. The message stream
malnta/ns the identity of CP or Vulcan objects. If two
processes send different messages on the same stream,
then the first process sends its message normally, but
the second process usually falls because its message
will typically not unify with the already-instant/areal
message variable. Two processes can only send
messages to the same object by merging the streams of
messages that they produce into the one stream
consumed by the object. This is also called splitting

the reference to the object. Pass/ng out the contents of
a state variable, or even a reference to Salf, requires
the splitting o£ the stream to the object. In CP, the
programmer must split message streams explicitly to
achieve object sharing. Neglecting to split a stream
can lead to non-obvious bugs when multiple processes
try to unify different messages with the front of" the
stream.

In general, a state variable can "point to another
object" (i.e. contain a stream being consumed by a
perpetual process) so the expansion must replace
references to state variables in the method clause w/th
one branch of the split of that state variable. The
other branch becomes the new state variable. This
gives the following definition of me rg e:

merge([MessagelMoreXs] ,Ys, [MsssagelMoreZs] : -
merge(MoreXs?,Ys,MoreZs).

merge(Xs, tMessage [HoraYs], [Message [MoreZs] :-
earge(Xs,MoreYs?.MoreZs).

These two clauses define the third argument as a
non-deterministic merge of the two streams. The CP
implementation must ensure that this merge is fa/r.
Messages sent to one of the first two arguments will be
sent to the third eventually.

A state variable doesn't necesarily contain a stream
being consumed by a process. It may simply contain a

term as a value. In order to deal with this uniformly,
we extend merge to simply share the term itself" by
unification.

merge(Term. Term,Term) :- otherwise I true.

This relies upon the special guard literal otherwise
which succeeds if all lexically preceding clauses fail.
Declaratively, otherwise operates as the conjunction
of negative literals corresponding to guards and
unifications of the preceding clauses. This clause will
succeed if none ofthe earlier clauses applies.

The pus t t ion method above:

method(window.pus f t ton(X, Y))

expands using me rge to:

wtndow([posttton(X|,¥1) [NewWtndow].
X.Y.Wtdth.Height.Contents) :-

merge(Xl,XZ,X),
merge(Yl,YZ,Y),
window(NewVtndow?.

X2,Y2,Wtdth,Hetght,Contents).

In Prolog and CP, [Message [MoraYs] is just s~tact ic
sugar for the term dot(Message,MoraYs) the
standard pairing funetiod. Similarly,
(Message1 .Message2] translates to
dot(Message[,dot(Messaga2,[])). Since lists are
actually terms, the above definition of merge cannot
distinguish between lists meant as message channels
and lists meant as terms. The preprocessor avoids this
problem by using a unique functor (like \stream) in
place of the dot functor. Similarly, [] gets replaced
by some unique constant like \endO/'Stream. Further
examples continue to use the list notation, though, for
readability.

Class Inheri tance.

Vulcan can implement inheritance at least two ways.
The first is the descript/on copying semantics
corresponding to subclassing. The second is
inheritance by delegation to parts.

For subclassing, class declarations include the
superclasses as the third argument. The subclass is
then created w/th source copies ot all methods
inherited from its superclasses. The superclassos field
can be a s/ngle class or a list o£ classes for multiple
inheritance.

class(labeledWtndow,[Lsbel],wtndow).

makes the preprocessor expand all window methods
w/th respect to labeledWindow. Below, the source from

September 1986 OOPSLA '86 Proceedings 249

the mersey method of window is copied to
1 ebeledWtndow:

method(labeledWtndow,moveSy(DelteX. De l taY)) :-
send(S e l f . e r a s e) .
p lus(X.Del taX,NewX),
p lus (Y .De l taY.NewY).
become((X,NewX), (Y.NewY)),
send(Sol f . show) .

expands to:

I abe ledVt ndow([moveBy(De 1 tax . Oa 1 taY)
I NewLabeledWtndow].

x .Y.Wtdth.He tgh t .Con ten ts .La l)e l) : -
labe ledWtndow([erase.

p r i va teMoveSy(Oe l tsX .De l taY) .
show [NewLabeledWtndow?],

NewX?,NewY?,Width,
Height .Contents, l .8001) .

S im i l a r l y . prtveteMoveBy is copied to 1 abeladWtndow.

If the programmer defines a new mersey method for
labe!edWindow, it overrides the automatically
generated one. As in Smailtaik, an overriding method
can access the inherited version: sendSoper(Messege)

tells the preprocessor to expand inline the inherited
method definition. (When the inherited method
doesn't correspond to a single clause, then the relevent
clauses can be copied with a unique predicate name,
and a call to that predicate substituted inline) The
show message from moveSy is a good example. It must
show the label, then do whatever windows do to show
their contents. The show definitions for the two
classes:

method(window.show) : -
send(Con t e n t s . d t s p l a y A t (X , Y)) .

method (labeledWtndow, show) : -
sendSuper(show).
s e n d (S e l f , d i s p l a y L a b e l) .

combine for lebeledWtndow to give:

method(labeledWtndow, show) : -

send (Con ten t s . d t sp 1 ayAt(X. Y)) .
s e n d (S e l f . d t s p l a y L a b e l) .

wh ich expands to:

lebe ledVtndow([show J NewLabeledVtndow].
X ,Y .V / i d th .He tgh t .Con ten ts .Labe l) :-

Contents - [d t s p l a y A t (X , Y) [NewContents].
labe ledWtndow([d tsp layLabe l

I NewLabeledWtndow?] ,
X .Y ,Wtd th .Hetgh t .NewConten ts .Labe l) .

i n h e r i t a n c e by d e l e g a t i o n to pa r t s .

Shapiro and Takeuchi achieve the sharing of' methods

and structure common in systems with class
inheritance by using delegation to parts. A
1 e be 1 edW I n dew contains a w i n dew as a par t . ra ther than

implicitly being a kind of window. The delegation code
for class 1 abe 1 edW t n dow is:

c18ss(1abeledWtndow.[Wtndow. Labe1]) .

A method not accepted explicitly by a I abe I edWi ndow is
delegated to the contained w t ndow (referenced through
a state variable) with a method of the form:

I a b e I edWl ndow([Me s s age [NewLabe I edWi ndow] ,
Wtndow. Label) : -

o the rw ise J /* no earlier methodm were applbcable */
Wtndow • [Mes sage J NewWt ndow].

1 abe 1 adW t ndow(NewLabe 1 edW t ndow?. NewW t ndow?.
Label) .

Since the delegation does not pass along the
lsbeledVtndow with the message, the inherited
method can only refer to the window. For example, a
lsbeledWtndow delegates mersey messages to its
window part. The show message to Self in the above
implementation of movasy gets sent directly to the

wtn0ow, so the label does not get displayed along with
the rest of the window (as discussed in [Bobrow 1985]).
This problem can be solved by including in the
delegation message a stream on which the
labeledWtndow will interpret messages sent to itself
[Lieberman 1986]. This stream is called Sale because
the class of the object it represents is unknown, and its
only property is that it supplies the overall identity.
The w t ndow is the proxy for the 1 abe ledV i ndow, since it
performs operations for it. The labeledVtndow is
called Sel f because it represents the outer object being
processed.

I abe I edWi ndow([Message J NewLabel edW t ndow].
Window.Label) : -

o therw ise J
Window -

[hand] e(Messege.Sel f . NewLabeledWtndow)
I NewWtndow].

labeledWtndow(Self?.NewWtndow?.Label).

This clause essentially sends a special message to its
window part that asks it to execute the message
normally, except to direct all sends to self to the
labeledWindow instead of the window. The
1 • O t 1 e dW t n dew recur8 On So 1 ¢ ra the r than

NewLebel edt/t ndow So that it receives messages sent in
the delegation before those sent externally (just as in
send to Self). The handle method must eventually
make NewWtndow a ta i l o f Se l f (Se i r -

[Msgl:Msg2 [NewWtndow]).

250 OOPSLA ~ ~ i n g s ~ 1966

Delegation can be explicitly used in places other than
the automatic delegation method. The delegation
version of the s how method for] abe] sdVt ndow is just:

method(labeledWtndow,show) :-
dslegateTo(Window,show),
send(Se l f ,d tsp layLabe l).

This translates to

laheledWindow([show I NewLabeledVtndow],

Vtndow, Label) : -
Window -

[hand lo (show,Se l f , [d t sp layLabs l
I NewLsbsledWindow])

I NewWtndow].
labsledWtndow(Self?, NewWtndow?, Label) .

Properly demonstrating that the CP code described
above actually supports reentrant, state changing
delegation involves quite long and complicated
examples, and so lies beyond the scope of this paper.

These two implementations of inheritance are
compatible, allowing selection of an inheritance
scheme suited to the problem.

In t r icacies of Send

In most object-oriented systems, mutable and
immutable objects are programmed in a uniform
manner. To get the first element era list one sends the
list the same message independent of whether it is
immutable or not. CP preserves this
interchangeability and code-sharing between different
implementations of an object when computing with
perpetual processes.

Logical terms, however, are not interchangeable with
streams to perpetual processes. Logical terms are
created and accessed by unification. They are much
simpler and more efficient than CP mutable objects.
Logical terms can be incrementally filled in since they
can contain logical variables to be instantisted later.
Terms cannot, however, be the basis of object-oriented
programming since they are "write-once". A term can
represent a window of a particular size and location
but cannot continue to represent that window as it
moves and grows. Message sending must be extended
to work with terms.

We have been sending messages to objects in CP by
simply open-coding a unification of the message
stream with the message and a new tail. In order to

generalize message sending to apply to terms as well,
we introduce a send predicate:

send(ins s s age I NewObj ect] , His sage, NewOb j ect).

Acall to send

send (Vt ndow.move(3,42). NewVi ndow)

is equivalent to

Wtndow~- [move(3.42) I NewWindow].

The definition must be extended to handle terms, as
was merge. The following clause is added.

send(X,Nessage.X) :-
o therwise [
sendToTerm(X,Nsssage).

sendToTsrm actually does the requisite operations,
rather than just queuing messages, so it is named
appropriately. Suppose we have both immutable and
mutable line segments in a graphics package.
Immutable line segments are terms of the form
] tne(StsrtPotnt,VndPotnt) while mutable line
segments are defined by:

c l a s s (l t n e , [S t s r t P o i n t . E n d P o i n t]) .

A method for d/splaying mutable lines can be specified
as follows.

method(l ine ,d isp lay) :-
drawLtne(Stsr tPotn t . EndPoint) .

send can be extended for displaying immutable lines
as f o l l o v ~

sendToTerm(11ne(StartPotnt .EndPotnt) .dtsplsy) : -

drawL t ns (S ta r tPo tn t , EndPotnt).

The above can be written as follows.

msthod(11no(Star tPotnt , EndPoint) , d i sp lay) : -
d rawLtne(Star tPo ia t ,EndPotn t) .

Thus, the same syntax defines methods for both
mutable objects and immutable terms.

The correspondence should go both ways.
Unfortunately, CP objects cannot be used where terms
are used. Unification of CP objects is impossible since
there are no pointers to the objects. Unification
between streams to CP objects simply constrains the
streams to have the same messages. Also, low-level
primitives for arithmetic and the like deal only with
terms.

Closing s t r e ams and re fe rence count ing.

A stream to a perpetual process can be closed by
Vulcan. Stream closing requires that every class
definition add a clause of the following form.

C 1 sssNama([] , StstsVsr I StateVarN) : -
c loseSt ream(Sta teVar l) .

c 1oseSt ream(S ta toYs rN).

Where closeStream is defined as

September 1986 (~OPSLA '86 Proceedings 251

closeStream([]) .
closeStream(X) : -o the rw ise J true.

me rge needs to be extended by the following clauses.

merge([],Stream,Stream).
merge(Strbam.[].Stream).

The effect is that when one of the input streams of a
merge process is closed off, the merge process simply
unifies the other input stream to the output stream,
and then goes away.

There are two reasons why it is of value to explictly
close a stream. One reason is that it can be more
efficient than waiting for the garbage collector to
collect streams and associated suspended processes
which are not accessible from the active processes.
Depending upon the implementation of merge, many
merge processes can terminate if streams are explicitly
closed. The second reason for closing streams is to
avoid the semantic difficulties with perpetual
processes. What does it mean if all the active
processes terminate but some perpetual processes are
left suspended? If the expansions of Vulcan methods
close streams then the objects can be realized as nearly
perpetual processes. A nearly perpetual process is
active until it explictly terminates.

Since streams are always split, no stream should ever
be shared. Consequently it is safe for any object to
close a stream to which it no longer intends to send
messages. Typically this will remove one of the
streams being merged before being consumed by the
perpetual process. If the stream is being consumed
directly, then the perpetual process actually receives
[], and typically terminates.

A terminating perpetual process should close all
streams contained in its state. Likewise, the update of
state variables should close any newly unroferenced
streams. Thus, Vulcan must insert calls to
closeStream when expanding methods with become.

The analogy between stream spl i t t ing and
incrementing a reference count and stream closing
and decrementing a reference count is very strong. As
with reference counting, stream closing is not a full
substitute for garbage collection since there can be
cycles of object references which are disconnected from
all the active processes.

A very odd fact about Vulcan is that all processes will
term/nate only in programs for which an object
reference count collector recovers all garbage.
Programs which create cyclic object references and
then drop all references to the cycle will have
processes that never terminate.

A Send that does not rely on Merge

In CP and Vulcan sharing of streams is handled by
calls to merge. Alternatively, send could search for the
uninstantiated tail of the stream, instantiating it to
the message/new-tail pair. This search can be easily
implemented using the low-level CP primitive var
which is true if its argument is currently unbound.

search|ngSend(Stream,Message.NewStream) :-
var(Straam) [
Stream • [Message[NewStreem].

searchtngSand([OtharMessaga[StreemRematnder],
Message, NawSt ream) :-

otherwise [
saarchtngSand(StreamRama|nder.

Has sage. NewSt ream).

search tngSand(x.Message, X) : -
otherwise [
sendToTerm(X.Message).

The semantics of vat is unclear and its
implementation is problematic on a distributed
system. The use of vat can be avoided if a unique
token is included inevery message. The first clause of
search I ngSend could then be rewritten as follows.

searchtngSend([HesssgoiNewStraam],
Message. NewStream).

SearchtngSend has some unpleasant performance
characteristics. The overhead ofsending a message on
a stream is proportional to the number of messages
sent to the object since the last transmission from this
reference to the stream. The average cost of sending a
message on a shared stream is proportional to the
number of references to the stream. If there is a
reference to a stream that is rarely used it will prevent
the garbage collector from collecting the history of old
messages on that stream. I t is possible for anyone
sharing a stream to close it down by binding the
variable in the tail to a constant.

I t is for these reasons that Vulcan expands methods
into clauses which call merge whenever a new
reference to a stream is released. There is one case,
however, in which the preprocessor cannot generate
the appropriate calls to merge. If a state variable of a
perpetual process contains a term which contains
streams then the term can get passed out without the
contained streams being split. Users of that term can
then get multiple references to the contained stre_am_~,
Vulcan alleviates this problem by using stream
splitting when possible and falling back on searching
send to recover gracefully from those situations in
which streams were not split when needed. In the
normal case, the stream splitting will prevent

252 OOPSLA ~86 Proceedings Sq~smbw 1986

multiple references to a stream and there is no
overhead to the searching send.

With a naive implementation of merge as given
earlier, the overhead of a message transmission can, in
the worst case, be linear in the number of references to
a stream. The best implementation in CP of stream
merging is logarithmic [Shapiro 1984]. [Shapiro 1986]
and the Logix implementation of FCP [Silverman
1985] implements stream merging primitively so that
it has a small constant cost. Vulcan can exploit these
primitives to maintain a constant cost of a message
transmission (on an implementation on a sequential
machine).

Reliance on searching send is inconsistent with the
above claims about reference counting. This is
because it is only safe for Vulcan to generate stream
closing code when it can tell from static analysis that
the stream is unshared. Cleaning up this conflict is an
area for future research.

More esoteric object-oriented p rogramming
features.

The streams consumed by perpetual processes are
ordinary CP terms. As such it is possible for several
perpetual processes to be consuming the same stream.
When a message is put on the stream it is directly
broadcast to all the objects sharing that stream. To be
able to send to beth individuals and groups the stream
being consumed can be split into a shared
broadcasting stream and a private stream. The
following clause for making windows maintains the
shared stream called E t h e r .

mskeVtndow(InitValues,Ether,PrtvNewOhject) :-
make(wtndow,InttValues,NewObJect).
merge(PrtvNewObJect?,Ether?,NewObject).

The caller ofmakeWlndow gets a private channel to the
newly created object which is consuming a stream
which is the merger of the Ether and the private
channel. InttValues contains initial values for the
state variables.

One can broadcast on the Ether by sending messages
just like any other message sending. For example,
send(Ether.redlspiay.NewEther) will cause all
windows to redisplay themselves. If the message is
incomplete, for example,
send(Ether,postttons(Postttons),NewEther), then
one can arrange to get the bag of responses by using
"open-ended" lists. Open-ended lists are lists whose
last tail is always an uainstantiated variable. If one is
interested in just the first answer (as in the Actor r a c e

construct), then one waits for just the head of the list.

If one is interested all the elements, the short-circuit
technique of [Takeuchi 1983] described in [Shapiro
1986| can be used to tell when they're all present.

Various object-oriented programming systems support
features such as classes as objects, meta-classes, and
method combination [Bobrow 1986]. These features
can be incorporated into the Vulcan framework.
Given some support for global naming of processes
(e.g. the module feature of Logix [Silverman 1985]) it
is possible to support classes as objects. If the Vulcan
preprocessor itself was built in an object-oriented
fashion then different meta-classes could process
class and method specifications differently. Method
combination is normally implemented as a define-time
process. The Vulcan preprocessor could be extended to
combine pieces of methods and expand the
combinations into ordinary CP clauses.

There are some unique capabilities of objects in CP
because the communication channels are explicit. A
method can, for example, peek ahead in the message
stream to see if some particular message is pending.
The following method does nothing if there is an undo
message of the same sort pending. The example is
inspired by the time warp system for discrete
simulations. [Jefferson 1982]

method(t tmeVsrpObject, do(X)) : -
pendingNessage(undo(X).Self) [t rue.

m e t h o d (t i m e W a r p O b j e c t , d o (X)) : -
otherwise l doHairyComputat ion(X.Self) .

where pend t ngNes sage iS defined as

pendtngNessage(Message,Stream) : -

v a t (S t r e a m) I f a l se .

pendtngNessage(Nessage. [Nessage INoreNsgs]) : -
otherwise I true.

pendtngNessage(Message.
[OtherNessageJNoreNsgs]) : -

o t h e r w i s e I
pendlngNessege(Nessage.NoreNsgs).

It is only by convention that messages to perpetual
processes are put on streams. The structure being
consumed can be any term. It might be useful to
sometimes communicate via priority queues or binary
trees. This interesting avenue of research has not
been explored.

The objects of CP are really sequences of process
reductions that we choose to view as an object with
identity and permanence. By convention a process
representing an object reduces to a collection of
processes one of which has the same predicate and the
same state variable values unless they have been

September 1966 OOPSLA ~6 Proceedings 253

explicitly changed. It is worthwhile exploring the
usefulness of occasionally breaking this convention.
An object can become an object of another type or
become several objects which perhaps share some state
or channel¢ If some useful cliches involving identity
forking or changing are discovered they may be
supportable in Vulcan as variants or extensions of the
become statements.

Comparisons with other work

There have been several approaches to merging the
logic programm/ng and object programming
paradigms. Components of the logic programm/ng
paradigm are: terms, clauses, goals, logic variables,
unification, etc. Components of the object
programming paradigm are: objects, classes, methods,
messages, message sending, instance variables (slots,
acquaintances), object references, continuations,
inheritance, etc. The different approaches to merging
these paradigms can be roughly categorized according
to how they draw correspondences between their
respective components.

A straightforward way to embed objects in Prolog is for
an object to consist of a set of unit-clauses asserted in
the database. Consider.

name(symO003, bob).
$pecies(symOOO3,human).
age(symO003,24).
mother(symOOO3,symO002).

parent(X.Y) :-
mother(X,Y).

psrant(X,Y) :-
fa ther(X,Y) .

In object~oriented terminology, symO003 is an object
reference to an object with instance var/ables name,
age, etc., and that responds to the message parent.
Each unit clause stating a property of such an
identifier serves as the storage for an instance
variable of that object. In this framework, the user
makes no distinction between stored and computed
values, i.e., between instance variables and methods.
It is also natural in this scheme to have methods
defined on individuals, or on classes whose
membership is based on some computed quality (e.g.
all humans with a parent named fred). The approach
taken by [Gullichsen 1985] is essentially similar to
this.

There are disadvantages with this approach. One is
its heavy reliance on the non-logical assert and
retract: they must be used to change the value of
instance variables, and even to create new instances

(something that is pure in most other systems).
Because these objects exist as assertions in the
database, garbage collecting them is also hard. Also
there is no encapsulation so any program can inspect
or update the state of an object without sending it a
message.

LM-Prolog [Kahn 1984], CommonLog (a logic
programming extension to CommonLoops [Bobrow
1986]), Tao [Okuno 1984], and Uniform [Kahn 1981]
directly support employing user defined objects as
terms. Unification of primitive term types like
symbols and conses is handled primitively as in any
Prolog. Unification of user defined objects causes
unification messages to be sent, so that the objects can
unify according to their abstract properties. This
supports the abstraction power of object-oriented
languages. In contrast, standard Prologe only support
unification of syntact/c representations. If these
user-defined objects also have changeable state (as in
CommonLog and Tao), then the declarative semantics
of unification are lost. This approach doesn't merge
the notions of changeable state and logic
programming, it just allows them to eo-ex/st uneasily.

Prolog-with-Equality [Kornfeld 1983] represents a
similar approach in which regular Prolog syntactic
terms are able to serve as user defined objects. When
the Prolog interpreter fails to syntactically unify
terms A and s, it instead attempts to satisfy the goal
eq-als(A,S). I/'this goal succeeds, then the two terms
are considered to be un/fied, with the bindings
introduced by the equality proof in effect. In this
approach, the clauses defined for equal s correspond to
unify methods, and functors of terms typically
correspond to classes. This approach also deals only
with object-oriented abstraction, and not with
changeable state.

A weakness of Vulcan in comparison to some of the
above approaches is the inability to unify Vulcan
objects. This could be dealt with by extending the
underlying Prolog to send equals messages when
attempting to unify objects. This would not work in
the standard concurrent logic programming
languages, since messages cannot be sent from the
guard.

Several people have suggested the following approach
for dealing with changeable state within the logic
framework: A term corresponds to the state of an
object at a given moment in time. An object consists of
the list of such states, represtenting the object's
history. An object reference consists of a pointer into
this list. The current state of the object is the state
immediately before the currently uninstantiated tail

254 OOPSLA 1~6 Proceedings September 1986

of this list. The searching-send technique is used to
find this state. Any state changes to the object are
represented by further instantiating the object's
history list. From the logic point of view, the object's
state isn't being changed, more of its history is being
discovered. Searching send could avoid actual search
if implemented primitively. The semantics of this
approach are suspect since a memory cell is being
simulated by using the mete-logical vet predicate to
reveal the otherwise hidden side-effect in unification.
This approach also does not support object
encapsulation.

Mandala is perhaps most similar in approach to
Vulcan. Mandala objects are also perpetual processes
consuming streams, built on a concurrent logic
programming language. Unlike Vulcan, all object
references are indirect by name through a name server
object, which binds names to streams. The individual
Mandala object contains its own set of clauses, which
are processed meta-interpretively when the object
processes a message. This mete-interpretive set of
clauses is reminicent of Logix modules. There are
currently unresolved efficiency issues with this
approach: the name server is a central bottleneck in
the system, and garbage collection is hard since all
objects are refered to by name. It is hoped that the
interpretive overhead can be removed through partial
evaluation.

An Evaluat ion of Vulcan as an object-or iented
p r o g r a m m i n g language

As discussed in the introduction, a system supports
object-oriented programming well if it provides good
linguistic, execution, and environmental support and
has a clear semantics. In addition, the paradigm
should be supported in a way that coexists smoothly
with other supported paradigms.

Linguistic suppor t .

The primary advantage of Vulcan over CP is the clear,
concise, and mnemonic manner of defining methods.
One can program as if one had real pointers to objects.
Class definitions provide a more declarative means of
dsfin/ng creation and initialization methods. Common
cliches such as inheritance and method specialization
are supported.

Execut ion pe r fo rmance .

The performance of Vulcan programs should be
comparable with the equivalent CP programs since
the Vulcan programs are translated into CP. The
translated Vulcan may call merOe more often than the
hand-coded equivalent program. This can be

alleviated by state variable declarations in the class.
The support for interchangeability of terms and
streams to perpetual processes does require a simple
run-time test in merge and send. Again declarations

can be used to alleviate this overhead.

Envi ronmenta l suppor t .

The environmental support of Vulcan has yet to be
developed but no fundamental obstacles are expected.
Normally it is difficult to debug the execution of
translated programs (e.g. debugging compiled
programs) since the program being executed is so
different from its source. The declarative information
in the class definitions is necessary for good browsing
tools. Tracing can be accomplished by having Vulcan
leave behind extra code in methods that saves or
prints the relevant state. More relevant error
messages such as "message not understood'* can be
produced by automatically generating for every class a
final clause to catch the error. Declarative debugging
systems [Shapiro 1982] should be modifiable to
provide an object-oriented view.

Semantics .

The operational and declarative semantics of Vulcan
programs is given in terms of their translation to CP.
So long as this translation is straight-forward this is
acceptable. The semantics of CP is on a sound footing
[Shapiro 1983b]. The programs can be viewed as
logical axioms and the execution viewed as controlled
deduction. The semantics of perpetual processes is an
active area of research and does not appear
problematic. There are no side-effects in CP and yet
via tail-recursion optimizations there are no
performance penalties for avoiding side-effects. The
CP clause which is the expansion of a Vulcan method
definition is a Horn clause partially defining the
permissible histories an object can have. [Shapiro
1983b]

Peaceful coexis tence with o the r pa rad igms .

Vulcan can be the basis of a single paradigm system,
in that it can be used as just an object-oriented
language. I t does coexist with CP which is based upon
both a logic programming paradigm and a process
reduction paradigm. A potential source of trouble in
mixing Vulcan and CP in a program is that Vulcan is
based upon very strong conventions of CP
programming. The user writing CP may easily violate
these conventions when, for example, manipulating a
stream being consumed by an Vulcan process. A
problem which is easy to fix is that Vulcan generates
predicates whose names are the names of the classes.
These should be made unique since they may conflict

Sel~ember 1986 OOPSLA '86 Proceedings 255

with user predicates and they are never called
explicitly by user programs. These interactions of CP
and Vulcan have not been explored in depth.

Directions for Future Research

Although research groups in Japan, Israel, England,
and other countries have been actively programming
in an object-oriented style in CP and related
languages, there is no experience yet with using
Vulcan for a serious application. This experience is
necessary to evaluate the system and to discover its
strengths and weaknesses.

CP is a well-known instance of a growing class of
concurrent logic programming languages. Very little
in Vulcan depends upon the special features of CP. It
should be the case that only small changes are
necessary to change Vulcan to translate into Guarded
Horn Clauses (GHC) [Ueda 1985], P-Prolog, or Parlog
[Clark 1984]. CP and GHC have "flat" versions that
restrict the guards to calls to simple predicates. Some
rewriting of Vulcan is necessary to produce FCP or
FGHC programs.

The Vulcan language provides at least as much basic
functionality as most object-oriented programming
languages do. Exploring new functionality such as
message stream peeking, direct broadcasting, multiple
streams per object (for capabilities and perspectives),
and object forking looks very exciting. Also trying to
absorb the ideas of multi-methods and recta-objects of
C o m m o ~ p e [Bobrow 1986] into Vulcan may be
worthwhile.

A promising avenue of research being pursued in the
logic programming context is to provide language
extensions by writing extended meta interpreters and
use partial evaluation to remove the cost of the extra
layer of interpretation. Vulcan implementation was
not conceived of as an interpreter written in CP, but
instead as a translator to CP. The meta-interpreter
approach combined with partial evaluation provides a
means of experimenting with variants of Vulcan
without paying a performance penalty.

The expansion of Vulcan code, when read
declaratively in the underlying logic programming
language, is a description of the permissible history of
the object's behavior. In this, the expansion of a
Vulcan program resembles the actor semantics
[Clinger 1981] of an actor program. This leads to the
interesting possibility that we may have here a good
representation language for reasoning about, and
proving properties of, programs with side effects. The
CP interpreter itself (being a sound, though
incomplete, theorem prover) can serve as the proof

engine.

There is the interesting question of how well
languages like this can make effective use of highly
parallel hardware. It seems quite plausible that the
simple reduction process of an FCP interpreter is well
adapted for execution on fine-grained SIMD machines
like the Connection Machine. Techniques like
broadcast streams may correspond directly to constant
time operations on such hardware. Towards this end
we have started exploring Vulcan programs that seem
to express this style. In particular, some publi~.hed
Connection Machine programs [Hillis 1985] seem to be
expressible quite naturally in Vulcan.

Summary

Concurrent Prolog is a suitable base for
object-oriented programming. Unadorned, it suffers
some syntactic problems of awkwardness and
verbosity. We have presented a design for Vulcan, a
syntactic sugaring for CP that remedies these
problems. The result is a language in which logic
programming and object.oriented programming are
smoothly integrated. The language supports, in
addition to the usual object-oriented constructs,
concurrency, unification, and incomplete messages.
This framework facilitates the exploration of
variations on object-oriented programming including
message stream peeking, direct broadcasting, and
object forking.

Acknowledgements

The authors would like to thank Curtis Abbott, Peter
Deutsch, Stan Lanning, and Mark Stefik for their
comments on earlier drafts.

References.

[Bobrow 1985] Bobrow, D. G. '~fProlog is the Answer,
What is the Question?, or What it Takes to Support AI
Programming Paradigms" IEEE Transactions on
Software Engineering, November 1985

[Bobrow 1986]" Bobrow, D.G., Kahn, K., Kicsales, G.,
Masinter, L., Stefik, M., and Zdybel, F. ComrnonLoops:
Merging Common Lisp and Object-oriented
programming. ACM Conference on Object.Oriented
Programming Systems, Languages and Applications,
Portland Oregon, September 1986.

[Clark 1984] Clark K., Gregory S., "PARLOG:
Parallel Programming in Logic", Research report DOC
84/4, Dept of Computing, Imperial College, London,
1984

[Clinger 1981] Clinger, W." 'Toundations of Actor
Semantics", MITAI-TR-633, May 1981

256 oopstA ~e ~ = s s e ~ $eptemb¢ 1Me

[Gullichsen 1985] Gullichsen E., "BiggerTalk:
Object-Oriented Prolog", STP-125-85, MCC-STP,
Austin, TX, Nov 1985

[Hewitt 1977] Hewitt C., %'iewing Control
Structures as Patterns of Passing Messages",
Artificial Intelligence, Volume 8, pp. 323-363, 1977

[Hillis 1985] Hillis W.D., The Connection Machine,
MIT Press, 1985

[Jefferson 1982] Jefferson D., Sowizral H., "Fast
Concurrent Simulation using the Time Warp
Mechanism, Part 1: Local Control", N-1906-AS Rand
Corporation, December 1982

[KAhn 1981] Kahn, K., "Uniform -- A Language based
upon Unification which unifies (much of) Lisp, Prolog,
and Act 1", Proceedings of the Seventh lntern~tioncd
Joint Conference on Artificial Intelligence, PP.
933-939, Vancouver, Canada, 1981

[Kaim 1982] Kahn, K., "Intermission - Actors in
PROLOG" in Logic Programming, eds K.L. Clark and
S.-A.Tarnlund, Academic Prese, 1982

[Kahn 1984] Kahn, K., Carlsson M., "How to
implement Prolog on a LISP Machine", in
implementations ofPROLO0, ed J.A. Campbell, Ellis
Horwood, 1984

[Kornfeld 1983] Kornfeld W., '~Equality for Prolog",
Proceedings, Seventh International Joint Conference
on Artificial Intelligence, (1983), pp. 514-519

[Lieberman 1986] Lieberman H., "Delegation and
Inheritance : Two Mechanisms for Sharing Knowledge
in Object - Oriented Systems", in Langages Orientee
Object, Jan. 1986, pp. 79-89

[Okuno 1984] Okuno H., Takeucifi I., Osato N.,
Hibino Y., Watanabe K., "YAO: A Fast
Interpreter-Centered System on Lisp Machine ELIS",

Proceedings 1984 Lisp and Functional Programming
Conference, 1984

[Shapiro 1982] Shapiro, E. Algorithmic Program
Debugging, MIT Press, 1982

[Shapiro 1963a] Shapiro, E. and Takeuchi,, A. Object
Oriented Programming in Concurrent Prolog New
Generation Computing, Springer Verlag V. 1, No. 1
1983, pp. 25-48.

[Shapiro 1983b] Shapiro, E. "A Subset of Concurrent
Prolog and Its Interpreter", ICOT Technical Report,
TR-003 (1983)

[Shapiro 1984] Shapiro E., Mierowsky C., "Fair,
Biased, and Self-Balancing Merge Operators: Their
Specification and Implementation in Concurrent
Prolog", Proceedings, International Symposium on
Logic Programming, Atlantic City, IEEE, pp. 83-91,
1984

[Shapiro 1986] Shapiro E., Safra S., '~[ultiway
Merge with Constant Delay in Concurrent Prolog",
New Generation Computing, Vol. 4 No. 2, pp 211-216,
OHMSHA, LTD. and Springer-Verlag, 1986

[Silverman 1985] Silverman W., Hirsch M., "Logix:
User Manual for Release 1.1", WeizmRnn Institute of
Science, Dec. 1985.

[Takeuchi 1983] Takeuchi A., "How to solve it in
Concurrent Prolog", Unpublished note, 1983

[Theriault 1981] Theriault D. "A Primer for the Act-1
Language", MIT AI Working Paper 221, June 1981

[Ueda 1985] Ueda K., "Guarded Horn Clauses",
ICOTTechnieal Report, 103, June 1985

[Zaniolo 1984] Zaniolo C., "Object Oriented
Progr~mmiug in PROLOG", Proceedings,
International Symposium on Logic Programming,
Atlantic City, IEEE, pp. 265-270, 1984

September 1986 OOPSLA '86 Proceedings 257

