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Abst rac t  

Concurrent Prolog supports object-oriented 
programming with a clean semantics and additional 
programming constructs such as incomplete messages, 
unification, direct broadcasting, and concurrency 
synchronization [Shapiro 1983a]. While it provides 
excellent computational support, we claim it does not 
provide good notation for expressing the abstractions 
of object-oriented programming. We describe a 
preprocessor that remedies this problem. The 
resulting language, Vulcan, is then used as a vehicle 
for exploring new variants of object-oriented 
progrlmmlng which become possible in this 
framework. 

I n t r oduc t i o n  

The concurrent logic programming languages cleanly 
build objects with changeable state out of purely 
side-effect free foundations. As in physics, a causal 
chain of events with enough coherence over time can 
be viewed as an object with stats. 

The resulting system has all the fine-grained 
concurrency, synchronization, encapsulation, and 
open-systems abilities of actors. In addition, it 
provides unification, logic variables, partially 
instantiated messages and data, and the declarative 
semantics of first-order logic. 

Abstract machines and corresponding concrete 
implementations support the computational model of 
these languages, providing cheap, light-weight 
processes, fast unification, and parallel architectures. 
The implementations provide the equivalent of "tail 
recursion optimization", so objects built on these 
foundations have the same complexity measure as 
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objects implemented directly. 

Since objects with state are not taken as a base 
concept, but are built out of finer-grained material, 
many variations on traditional notions of 
object-oriented programming are possible. These 
include object forking and merging, direct 
broadcasting, message stream peeking, prioritized 
message sending, and multiple message streams per 
object. 

In exploring these issues, we found that the notation 
in which objects are expressed has some serious 
problems. It is significantly more verbose and 
awkward than that provided by traditional 
object-oriented progrt.mm;ng languages. We remedy 
this by providing a preprocessor with syntax 
formalizing the cliches used for object-oriented 
progromming in concurrent logic programming 
languages. We call the resulting language "Vulcan" 
because Vulcan is a fictional place characterized by a 
community of actors behaving logically. 

S u p p o r t  f o r  a p r o g r a m m i n g  p a r a d i g m  

A programming paradigm is a programming style. 
Object-oriented programming, for example, is a 
programm/ng style in which operations are grouped 
together with structured objects. Descriptions of 
operations and structure are collected together in 
classes which share operations and structural 
descriptions with their super-classes. 

The support a programm/ng system gives to a 
programm/ng paradigm includes linguistic, semantic, 
execution, and environmental support. 

Linguistic support. 

The linguistic expression of a program should 
correspond well with the intentions of the 
prograramer. The system should support clear and 
concise expression. Common programming cliches 
should be supported. 
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Clear  semantics .  

The basic constructs supporting a paradigm should 
have a simple clean semantics. The underlying 
semantics should be well-suited for both human 
understanding of programs and machine analysis and 
transformation of progr9m~. 

Execut ion suppor t .  

A system must  be able to execute programs in the 
paradigm efficiently. A programmer should not be 
penalized unnecessarily for programming in a good 
style. 

Env i ronmenta l  suppor t .  

The system should support the debugging of programs 
at  the level of abstraction of the programming 

paradigm. If, for example, a system is supporting 
object-oriented programming then the tracing, editing 
and browsing of programs should be in terms of 
objects, methods, messages, classes, and instance 
variables and not the underlying implementation 
constructs. 

In addition, if the system supports other programm/ng 
paradigms these should be well-integrated. 

O b j e c t - o r i e n t e d  p r o g r a m m i n g  in  

C o n c u r r e n t  P r o l o g  

Shapiro and Takeuchi present Concurrent Prolog and 
a set of programming cliches for programming in an 
object-oriented style [Shapiro 1983a]. Here we 
Snmmarize their findings and in the following sections 
evaluate and extend their work. We use Concurrent 
Prolog (CP) since it is a typical example of a 
concurrent logic programming language. Most of the 
ideas presented apply equally well to other concurrent 
logic programming languages. 

Concur ren t  Prolog 

As in Prolog, a program in Concurrent Prolog is a 
collection of Horn clauses. A Horn clause is a logical 
implication of the form 

V(xt .... xk) Ao "-  Al & A~ & AB 

where the A's are atomic formula, n and k can be 0. 
There are no variables occurring in the A's other than 
xl through x~. 

In CP and Prolog, clauses have the syntax: 

/tO :-  AI. A~I . . . .  An. 

and variables are normally denoted by constants 
beg/rating with an upper case letter. 

CP and Prolog programs can be read declaratively as 
sets of logical implication& A single clause reads as 
"for all xt through Xk Ae is true if AI through A, are all 
true". A clause in which n is zero is read as "for all xl 
through xk Ao is true". Clauses can also be read 
procedurally as "to solve a goal matching Ao, solve the 
subgoals As through A.". 

Each of the A's is a term made from a functor and its 
arguments. The functor of the  term, plus(3. 4, X), 
is plus, and the arguments are 3. 4, and x. The 
specification ofa  functor includes its arity, so foo( x. Y ) 
and foo(x.Y,Z) are distinguished. Constants are 
0-arity functors. Arguments are themselves terms. 
Sometimes the top-level terms (A's) are called atomic 
literale and the functors of the literals are called 
predicate symbols. 

For Prolog, the list of clauses for the same predicate 
symbol (including arity) define a procedure. A 
procedure is interpreted as "to solve a goal, try the 
clauses sequentially until one is successful. If  another 
solution is requsted, the procedure should try the 
remaining clauses. 

CP extends the syntax of clauses by adding the commit 
operator "J". There is exactly one commit operator per 
clause and it either replaces one of the commas in the 
clause or i8 placed before As or after An. A clause 
without "F has the commit before AI. One calls the 
consequent Ao of a clause the head, the conjunction of 
atomic formulas before the commit operator the guard 
and the conjunction of formulas after the commit 
operator the body. 

A CP clause: 
H : - G l  . . . .  6m I Or. . .  Ba 

has a process or behavioral reading which says, "a 
process matching H, can be reduced to the system of 
processes Bt through Bn if the guard processes Gt 
through G= successfully terminate". In CP atomic 
formula are treated as processes while in Prolog they 
are considered goals. A CP procedure is a collection of 
clauses for the same predicate. I t  is interpreted as "to 
reduce a process, commit, if possible, with one of the 
clauses and reduco the process to the processes 
described in the clause body". We say that  a process 
can commit with a clause if the process unifies with 
the head of the clause and the guard successfully 
terminates. I f there  is more than one clause which can 
commit with a process then one is chosen 
non-detsrministicly. If  there are no clauses that  can 
commit then it fails. Unlike Prolog, CP is not capable 
of backtracking or searching for all solutions. Correct 
CP implementations are sound but incomplete 
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theorem provers (as are conventional Prologs), 

An implementation of CP can be based upon 
fine-grained parallelism. The search for a clause 
which can commit can be performed in parallel. When 
a clause commits it stops the processing of the other 
clauses. This kind of parallelism is sometimes called 
limited or-parallelism. Even more important is the 
potential for and-parallelism in CP. And-parallelism 
is the concurrent execution of each CP process. I t  is 
called and-parallelism since the set of processes 
corresponds to a conjunction of atomic formula which 
must be true for the query to be true. 

Unification in CP is extended to interpret read-only 
annotations on occurrences of variables (denoted by a 
'~." at the end of the variable name). An attempt to 
instantiate an uninstantiated variable with a 
road-only annotation causes the process to suspend. I f  
no clause of a process can commit, but at least one 
clause suspended during the unification then the 
process  is s u s p e n d e d .  Efficient implementations of CP 
associate suspended processes with the variables 
which caused the suspension. No attempts are made 
to reduce a suspended process. A suspended process is 
activated only when the variable it is waiting for is 
instantiated. One can think about the read-only 
annotation as saying "don't use this occurrence of the 
variable until some other process running 
concurrently gives it a value". From the point of view 

of the declarative reading, the road-only annotations 
are ignored. 

Qu | ckso r t  in C o n c u r r e n t  Pre log.  

/" Sort clauses have the form: 
sort(UnsortedList,SortedLimt) *I 

sort([] , [ ] ) .  

sor t ( [HIT] ,$or tsd ) : -  
par t | t ton(  I'?,H.L,G), 
sort(L?.LS), 
sort(G?,SS). 
concatenate(LS?.[ltlGS?],Sorted). 

/~ Partition clauses haoe the form: 
partition(UnsortedList,PartitionKey, 

LesserList,GreaterList) */ 

p a r t t t t o n ( [ ] , X , [ ] . [ ] ) .  

par t i t~on( [H lT] .X, [HIL ] .G ) :-  
H ( ,  X [ p e r t i t t o n ( T ? . X , L , G ) .  

par t t t ton( [H IT ] ,X .L .  [H#G] ) : -  
H >- X ~ per t t t ion(T?,X,L.G).  

/* Concatenate clauses have the form: 
concatenate(FirstList,SecondList, 

Concatenatedl, ist) */ 

concatenate([] .X,X). 

concatenate([X I Xs],Y. [X I Zs ])  :-  
concatenate(Xs?,Y,Zs). 

The first clause of sor t  provides a base case for 
rocursion: an empty list is already sorted. The second 
clause reads: use the first element to partition the 
remainder of the unsorted elements. This provides a 
list of elements that  will precede the first element in 
the sorted list, and a list of elements to follow it. 
Compute sorted versions of these two lists, then 
construct a single list using concatenate. The 
elements preceding the first unsorted element get 
concatenated with a list made up of the first element 
and the elements greater than it. 

pa r t l t l on  has a similar base case. The second 
p s r t l t l o n  clause commits only if the first element of 
the UnaortedLtst iS less than or equal to the 
Part | t lonKey. I f  SO, it adds the element to the list of 
elements to precede the Part i t i on Key, then partitions 
the rest ofthe Unso rtedL I st. The third clause operates 
similarly for elements greater than the Part i t i on Key. 
Notice that  if the tested element equals the 
PartltlonKey, one of the two work clauses is chosen 
non-deterministically. 

Concatenate is a relation of three lists where the first 
two concatenate to form the third. 

CP has been used successfully to do serious system 
programming and symbolic computing. An operating 
system and programming environment called Logiz 
has been built upon a subset of CP called Flat 
Concurrent Prolog. [Silverman 85] The language has 
a simple and clean semantics. Implementations of CP 
provide very light-weight processes. Process 

synchronization is accomplished by use of the commit 
operator and the road-only annotations. 

Objects  In C o n c u r r e n t  P ro log  

The ephemeral processes in the sorting example 
hardly posess the permanence and identity of objects. 
CP associates this identity with a communication 
channel earry/ng messages for consumption by an 
ephemera] process. When the process receives a 
message, it reduces to other processes. One of the 
processes has the same functor as the original and 
consumes the remainder of the message stream. CP 
represents state changes by incarnating that  process 
with the new state instead of the old. This is so similar 
to tail-recurs/on that  it is often referred to as that. 
Such continually reincarnated processes are called 
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$or t ( [Z.3.1] ,S)  ~ p e r t ( [ 3 , 1 ] . Z . L . G )  ~ G - [ 3 ]  
~ L - ( I )  

~ pset(t|t, ! .L$.G3) L3"G3"[ ]  

~ s o r t ( L 3 ? . L S 3 )  . LS3=[I 
s o r t ( L ? , L S ) - ~ h - . _ ~  

~sor t (G3?,GS3)  - GS3-[] 

~ " - - - - - c o n c ( L S 3 ? . [ t J G S 3 ? ] , L S )  LSo[I] 

sortlG?,GS) , ~ GS2-[] 

~ c o n c ( L S Z ? , ( 3 1 G S 2 ? ] , G S )  ~ 6 S , [ 3 ]  

Iconc(LS?,(21GS?] S) $-[11ZS1] ,, conc([ ] . [Z.3] ,Z$1) ZSt,[Z,3] 

This is a simplified diagram of the process spawn tree of the computation for quicksort. 
The nodes represent processes to be reduced, or bindings introduced by those processes. 

perpetual  processes. The communication channel 
passed along from process to process provides the 
identity of a perpetual process. 

The communication channels of CP are simply shared 
logical variables. Since logical variables cannot be 
reset once they are set (instantiated), a 
communication variable must  instantiate to a pair of 
the message transmitted and a new uninstantiated 
logical variable for further messages. A process 
waiting for a message suspends on the communication 
variable (via read-only annotations) until it becomes 
instantiated to such a pair, then executes the method 
appropriate to the first element of the pair. Once the 
pair contains a message, the new variable (second in 
the pair) must  be used for further communication 
because the message part  cannot be reset. This 
write-once property requires the recursive process 
creation scheme described above. Furthermore, 
multiple suppliers cannot put messages onto the same 
stream because one process would instantiate the 
message before the second, so the second process would 
fail. This problem will be dealt with later. 

Since a communication channel - usually called a 
stream - identifies an object, the logic variable 
representing the channel is often treated and referred 
to as the pointer to the object. This engenders our 
variable naming convention: we name stream 
variables for the kind of process interpreting the 
message stream. We add the prefix 'New' to the name 
of the variable representing the future messages to an 
object (typically the variable used in the recursive 
call). Whenever examples include two different 
variables with the same name, numbers will be 
appended to their names to distinguish. 

Consider the following example CP program. I t  
implements a simple bank account defined to respond 

to  t he  messages  depos  t t ,  w i t h d  raw, and  b a l a n c e .  

a c c o u n t ( [ d e p o s i t ( A m o u n t )  I N e w A c c o u n t ] .  
8aZence .Name . . . .  ) : -  

/" [ncreo~e the b(z~nce by Amount "I 
plus(Balance,Amount.NewBalance), 
a c c o u n t  (NewAccoun t ? ,  NewBa l a n c e ? ,  Name . . . .  ) .  

a c c o u n t (  [ h a l  a n c e (  B a l a n c a  ) ] NewAccount  ] ,  
B a l a n c e . N a m e  . . . .  ) : -  

a c c o u n t  (NewAccoun t ? ,  a a l  a n t e .  Name . . . .  ) • 

accoun t  ( [w t t hd rew(Amoun  t ) I NewAccount ] ,  
B a l a n c e . N a m e  . . . .  ) : -  

/" S~btract Amount from the balence unieu the ba~nce 
too low. "/ 

Ba lance  >- Amount I 
p 1us ( amount. NawBal ance. 8a 1 ance ) .  
account(NawAccount? .NawBalenca, Name . . . .  ) .  

account ( [w t thd raw( Amount ) I NewAccount ] .  
Balance.Name . . . .  ) : -  

/" Leave balance untouched and report attemp~ to 
overdr~w ~/ 

Balance  ( Amount I 
repo r tOve  rd rawn (Name. Ba 1 ance.  Amount . . . .  ) 
accoun t (  NewAccoun t ? .  Be1 anca.  Name . . . .  ) .  

The deposit clause increases the Balance  b y t h e  
given amount. The second clause simply instantiatee 
the argument to the current 8al ante. The third clause 
can only commit if the account contains at least Asoun t 
in it. Otherwise the fourth clause reports the at tempt 
to overdraw the account. The first two clauses each 
correspond to a method in an object-oriented 
programming system. The third and fourth clauses 
together correspond to an ordinary method. All the 
clauses have the same arguments. The first 
represents the input message stream. When the 
message stream of an account instantiates, it 
attempts unification with the first argument  from 
each clause. Since all methods have the form 
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[NessagelVariable], the actual t4assage determines 
which clause will successfully unify, so the message 
dispatches properly. Nessage can be any log/cal term 
and may include variables. Often those variables get 
used to return values, as in the balance clause. 

Consider the follow/ng transactions. The extra 
arguments to the above definitions were extra 
information attached to an account. For simplicity, 
only the 8alance will be shown now. 

account(A?.100), 
A - [depos|t(100). balance(B), withdraw(200) 

I NewAccount ] .  

The account process immediately suspends if it tries 
to run. The second process runs, instantiating A to 
[deposit(100), balance(B), withdraw(200) I 
NewAccount]. Now the first process proceeds, unifying 
[deposit(100) . . . .  ] with the first clause (none of the 
others can succeed). I t  reduces, leaving the following 
processes: 

plus(Salance,Amount. New8alancel), 
account([balance(B), wt thdraw(Z00) 

I NewAccount ] .NewBalsncel? ). 

Taking the most pathological route, assume that  
account keeps being reduced. The balance message 
drops out immediately. I t  succeeds, and the argument 
will be instantiated when the p I us process completes. 
I f  any concurrrent operation attempts to use the value 
of that  variable, it will suspend because the variable is 
read-only. Such is the case with the withdraw 
message. I t  unifies with the correct clause, but the 
guard tries to compare an uninstantiated variable 
with a number, so the comparison suspends. The 
account process that  looks at MnAccount also 
suspends. Therefore the plus process will run since it 
is the only remaining active process. I t  computes the 
new balance. The process doing the withdrawal 
compares that  balance to discover that  the withdrawal 
is legal, and so finally withdraws the money. 

This sequence of reductions demonstrated the 
pipelining ability, and the power of the simple 
read-only annotations. 

The declarative semantics of a perpetual process is 
peculiar. Each clause can be read declaratively as 
stating constraints on possible histories of messages 
and the corresponding state. The first clause of 
account, for example, can be read as "a history of 
messages beg/nnlng with one matching 
deposlt(Aelount) iS a val id balance history i f  the 
remainder of the history is valid in the state where the 
sslance is the sum of the previous balance and the 

AIount". 

This peculiar declarative semantics can be a useful 
basis of a debugger which keeps a pointer to the 
history of messages and provides a convenient way to 
browse the message history. 

Special  f ea tu res  of  C P Objects  

Shapiro and Takeuchi claim that  CP realizes objects in 
the sense of Hewitt 's Actor model. [Clinger 1981] CP 
objects have internal state, can be operated upon only 
by message send/ng, and can exchange arbitrary 
messages. Any number of instances can be created 
from a definition of an object. Unlike Smalltalk, 

Flavors, Loops and the llke, CP objects are not based 
upon call/return message passing. CP objects have the 
full control generality of actors. Call/return is just a 
particular pattern of message passing in CP [Hewitt 
1977]. 

In addition to the full generality of actors, CP objects 
have special features not found in other 
object-oriented programming systems. The streams 
and processes of CP are side-effect free. Perpetual 
processes seem to change because a process terminates 
and causes a similar but different one to be created. 
This lack of side-effects leads to a simpler, clearer 
declarative semantics. The explicit manipulat/on of 
streams is more flexible than the system-supported 
message queues of actor systems [Clinger 1981]. 
Several objects can share a s tream of messages, 
enabling direct broadcasting. A stream can be held 
onto to provide a message history to inspect. A stream 
of incoming messages is available for peeking ahead. 
A perpetual process can consume multiple streams, 
differing in cabability or priority. 

C o n c u r r e n c y  

The underlying model and motivation for CP is based 
upon large-scale concurrency and simple, yet 
adequate, synchronization prim/tires. CP defaults to 
concurrency. I t  achieves sequencing and 
synchronization with the conun/t operator and 
read-only annotations. Shapiro has shown CP to be 
adequate for solving classical synchronization 
problems llke multiple readers and writers and 
addressing issues Hke starvation, fairness, and 
deadlock. [Shapiro 1983b] CP progrRmmers have 
found the commit operator and the read-only 
annotations easy to use and reason about. Unification 
and conun/t are thought of as atomic transactions. 

Unlike Smalltalk, Flavors, Loops and the like, CP 
objects are active. They can execute continually, 
though by convention they normally suspend when 
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there are no messages to process. Like serialized 
actors. CP objects process messages one at a time. 
though unlike serialized actors the typical CP object 
processes messages in a pipeline fashion. The body of 
the clauses for an object by convention creates a new 
process to receive subsequent messages. This process 
is normally spawned concurrently with some of the 
method computation. Consider the first clause of 
account. 

account ( [ dapos i t ( Amount ) I NewAccoun t ] ,  
Balance,Name . . . .  ) : -  

plus (Salar ies,Amount.  NewSalance) ,  
account(NewAccount?.Newaalance?.Name . . . .  ). 

When a depos it message is in the front of the stream 
of incoming messages this clause commits and spawns 
a process to add Amount to Salance and a process to 
receive more messages. If the new account process 
receives a message before the plus process has 
terminated then the sal ante will be the 
uninstantiated variable NewSalance. Since 
NewSalance is read-only, it can only be instantiated by 
the plus operation that runs concurrently with the 
reeursive call. When another process actually tries to 
use NewSalance it will suspend until plus finishes. 

Logic Variables 

The usefulness of the logic variable has been 
repeatedly demonstrated in both Prolog and CP 
programming. Unbound variables in logic 
programming are "first class objects" in that they can 
be passed around and embedded in structures. In 
object-oriented programming in CP, this is frequently 
exploited by a technique called incomplete messages.  

Messages are sent which contain variables and 
typically the recipient binds those variables. This is 
the most common way of sending a message and 
getting a reply. The second clause of account is an 
example of this. 

account(  [be 1 once( Be1 ance ) [ NewAccoun t ] ,  
Balance,Name . . . .  ) : -  

account ( NewAccoun t ?, 6al ance, Name . . . .  ) .  

The sender of a b s 1 a n c • message requests the current 
Salance of an object. Unlike call/return message 
sending, the sender proceeds immediately. Frequently 
the users of the response from an incomplete message 
have read-only annotations to prevent those parts of 
the computation from using the uninstantiated 
variables of the response before the recipient fills them 
in. 

Another use of logic variables in CP objects is to leave 
some state variables uninstantiated. We saw how this 

could occur naturally in the pipeline style of message 
processing. It is also possible to create objects with 
parts left uninstantiated. The following processes 
creates an account with an unknown Balance and use 
a hal ance message to initialize it to 300. 

account(A?.X. joe . . . .  ). A- [halance(300) I A1] .  

This technique may be useful in creating objects which 
need complex initialization. 

Verbos lW,  

The ms, or shortcoming of object-oriented 
programming in Concurrent Prolog is its verbosity. 
Each method must at the very least repeat the names 
of the state variables in both the head of the method 
and in the tail recursive call. Each method must 
explicitly fetch the next method from the stream and 
then recur on the stream ofrema/ning messages. Such 
tedious repetition easily results in subtle mistakes. 
The tail-recursive call requires a read-only annotation 
on the stream of remaining messages, for example. 
Without it, the process does not suspend, so unification 
non-deterministically applies a clause (anything 
unifies with a vat/able), setting the first element ofthe 
stream to the message for that clause, then executing 
its body. Logically, we queried, "What sequence of 

messages could objects of this class have, starting from 
the current state, and what would be the new state?" 
Later message sends to the object would likely fail 
because they would try to unify different message 
terms. All this from leaving out one question mark! 

[Shapiro 1983a] addresses the inconvenient necessity 
of repeating the state variables by packaging up the 
entire state into a single term and using special 
predicates to access or create modified versions. 
Consider the differences between the following two 
ways of writing a move method for a window. 

/* Version with multiple state variables "/ 
window( [move( NewX, NewY ) I NewWi ndow ].  

X,Y,Width. Hetght .Contents)  :-  
eraseRegion(X.Y.Width .Height)  [ 
wtndow( [showl NewWindow], 

NewX ,NewY,Wtdth, Ha igh t ,Conten ts ) .  

/* Version with one state variable */ 
window([move(NewX.NewV)JNewWindow].State) :~ 

eraseRegion(State) ,  

setWindowState(xy.NewX,NawY,State,NewState)i 
wtndow([showlNewWindow].NewState), 

t he re~uo~par to f thede f in i t i ono~se tWindowSto~e~ 
setWtndowState(xy. NewX.Naw¥. 

wtndowStata(X.Y.Width.Height .Contents) .  
wtndowStata(NewX.NewY.Width. 

He igh t ,Conten ts ) ) .  
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Without sophisticated compile-time optimizations, 
packaging requice significantly more t/me and space. 
Also, setWtndowStetn and getWtndowStste clauses 
must be defined/.or each collection o/.state variables. 

A P r e p r o c e s s o r  S o l u t i o n  

A straightforward solution to the verbosity of 
object~oriented programming in CP is to build a 
preprocessor. User programs declare the state 
variables once and methods are written in a concise 
notation and expanded into ordinary CP. Vulcan is 
such a preprocessor. It  formalizes the cliches used/.or 
object-oriented programming in Concurrent Prolog, 
and in doing so, reduces their verbosity. 

Vulcan operates on clauses for classes and methods. 
Class clauses declare the names (and perhaps 
properties) of" state variables for all the instances of' 
the named class. Method clauses use the class 
declarations to expand into operations invoked by 
particular messages to the object. 

class(window, [X.Y,Wtdth,Hetght,Contents]). 

declares that all window methods have a message 
stream, and all the named instance variables. It also 
generates a make clause for creating instances. 

make(window.[x.Y.Wtdth,Hetght.Contents], 
Window) :-  

/" This makes a process consumin 8 the stream Window "/ 
wtndow(Wtndow?.X.Y,Wtdth.Hs|oht,Contents ). 

A method for getting the pos i t ion of s window Can be 
defined as 

method(window.posttton(X.Y) ). 

Vulcan recognizes re/.erences to the variables declared 
in the class, and generates code appropriately. The 
obvious expansion which is shown below directly 
un/fies the arguments o/" the message with the 
appropriate state variables, just as the Vulcan code 
ind/cated. Later d/scuseion shows that this only works 
i/. x and y are terms and not streams to other objects. 

w|ndow([pos|tton(X.Y) I NewWtndow]. 
X. Y.Vtdtb. Height,Contents ) : -  

wtndow(NewWlndow?. 
x.Y,Wtdth.Hetght.Contents ). 

Since post t ion has no body to expand, the clause just 
contains the head and the ta/l-recureive call. The 
preprocessor would actually generate unique names 
t'or variables rather than names like NewWindow that 
might conflict with programmer defined variables. 
These examples use the simpler names/'or readabili~. 

The Vulcan expression/'or changing an object's state is 

become( (Vat1. value1). (Vat2, value2) . . . .  ) .  T h i s  

can be read as a parallel assignment statement. Thus, 
a w i naow's position could be moved by: 

method ( i t  ndow,moveBy(De 1tax, DelteY ) ) : -  
plus(X.DsltaX,NswX)0 
plus(Y,DeltsY,NewY), 
become((X.NewX), (Y.NowY)). 

which expands to 

wtndow([moveBy(OsltsX,DeltsY) I NewWtndow], 
X.Y.Vldth,Hs tght.Contsnts) : -  

plus(X,DeltsX.NewX). 
plus(Y,Oslta¥.NewY). 
w t ndow( NowW t ndow?. 

NswX?.NswY?,Wtdth.Height.Contents). 

Message Sending 

In CP one simply unties a stream variable with a pa/r 
of a message and a new vat/able to send a message. 
The Vulcan equivalent is 
send(Rscstv tngObJect.Message). The 
pseudo-variable Self refers to the receiver of a 
message. Methods can treat Self as any other 
message stream. 

Since any method/.or an object can refer to or change 
the object's state, becomes and messages to Self must 
be serialized. Vulcan assumes that those operations 
function on successive states of' the object. All 
expressions lex/cally after a become or a send to Self 
refer to the new state. Vulcan achieves sorialization 
by uldng message queues. The usual CP manner of' 
send/ng messages to self is to "preset" the message 
stream on the recureive call. Vulcan packages any 
expressions lexically after a send to Self into a 
"continuation" method whose selector is preset onto 
the message stream after the earlier messages. 

The above definition of sovesy doesn~ erase or 
red/splay the w I n dew. A more realistic vers/on is: 

metflod(wtndow,move8y(OeltaX.OeltsY)) :-  
send(Self,erase), 
plus(X.OeltsX,NewX). 
plus(Y.gsltaY.NswY). 
become((X.NswX),(Y.NewY)), 
send(Self,show). 

Tilts t ranslates to: 

wtndow([moveBy(DeltaX.DeltaY) I NewWindowl]. 
X.Y.W|dth,Hstght,Contents) :-  

wtndow([erase.prtvateHoveSy(DelteX.DeltaY) 
] NewW|ndowl?]. 

X.Y,W/dth.Hetght,Contents). 
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window([privateMoveBy(DeltaX.Del taY) 
] NawWtndow2]. 

X.Y.Wtdth,Hetght,Contents) :- 
plus(X,OaltaX.NewX). 
plus(Y,OeltaY,NewY), 
wihdow([show ) NewWtndow2?]. 

NewX?,NewY?,Wtdth,Hetght,Contents). 

Messages sent after the become (show) are interpreted 
as occuring after the state change, and so are sent from 
the continuation method. 

Immutable  streams vs. pointers  to mutable 
objects. 

For object-oriented programming, CP fundamentally 
differs from languages like Smalltalk in that CP does 
not have pointers to objects. The message stream 
malnta/ns the identity of CP or Vulcan objects. If  two 
processes send different messages on the same stream, 
then the first process sends its message normally, but 
the second process usually falls because its message 
will typically not unify with the already-instant/areal 
message variable. Two processes can only send 
messages to the same object by merging the streams of 
messages that they produce into the one stream 
consumed by the object. This is also called splitting 

the reference to the object. Pass/ng out the contents of 
a state variable, or even a reference to Salf, requires 
the splitting o£ the stream to the object. In CP, the 
programmer must split message streams explicitly to 
achieve object sharing. Neglecting to split a stream 
can lead to non-obvious bugs when multiple processes 
try to unify different messages with the front of" the 
stream. 

In general, a state variable can "point to another 
object" (i.e. contain a stream being consumed by a 
perpetual process) so the expansion must replace 
references to state variables in the method clause w/th 
one branch of the split of that state variable. The 
other branch becomes the new state variable. This 
gives the following definition of me rg e: 

merge([MessagelMoreXs] ,Ys, [MsssagelMoreZs]  : -  
merge(MoreXs?,Ys,MoreZs). 

merge( Xs, tMessage [HoraYs ], [Message [MoreZs ] :- 
earge(Xs,MoreYs?.MoreZs). 

These two clauses define the third argument as a 
non-deterministic merge of the two streams. The CP 
implementation must ensure that this merge is fa/r. 
Messages sent to one of the first two arguments will be 
sent to the third eventually. 

A state variable doesn't necesarily contain a stream 
being consumed by a process. It may simply contain a 

term as a value. In order to deal with this uniformly, 
we extend merge to simply share the term itself" by 
unification. 

merge(Term. Term,Term) :- otherwise I true. 

This relies upon the special guard literal otherwise 
which succeeds if all lexically preceding clauses fail. 
Declaratively, otherwise operates as the conjunction 
of negative literals corresponding to guards and 
unifications of the preceding clauses. This clause will 
succeed if none ofthe earlier clauses applies. 

The pus t t ion method above: 

method(window.pus f t ton(X, Y) ) 

expands using me rge to: 

wtndow([posttton(X|,¥1) [ NewWtndow]. 
X.Y.Wtdth.Height.Contents) :- 

merge(Xl,XZ,X), 
merge(Yl,YZ,Y), 
window(NewVtndow?. 

X2,Y2,Wtdth,Hetght,Contents). 

In Prolog and CP, [Message [MoraYs] is just s~tact ic 
sugar for the term dot(Message,MoraYs) the 
standard pairing funetiod. Similarly, 
(Message1 .Message2] translates to 
dot(Message[,dot(Messaga2,[])). Since lists are 
actually terms, the above definition of merge cannot 
distinguish between lists meant as message channels 
and lists meant as terms. The preprocessor avoids this 
problem by using a unique functor (like \stream) in 
place of the dot functor. Similarly, [] gets replaced 
by some unique constant like \endO/'Stream. Further 
examples continue to use the list notation, though, for 
readability. 

Class Inheri tance.  

Vulcan can implement inheritance at least two ways. 
The first is the descript/on copying semantics 
corresponding to subclassing. The second is 
inheritance by delegation to parts. 

For subclassing, class declarations include the 
superclasses as the third argument. The subclass is 
then created w/th source copies ot all methods 
inherited from its superclasses. The superclassos field 
can be a s/ngle class or a list o£ classes for multiple 
inheritance. 

class(labeledWtndow,[Lsbel],wtndow). 

makes the preprocessor expand all window methods 
w/th respect to labeledWindow. Below, the source from 
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the mersey method of window is copied to 
1 ebeledWtndow: 

method( labeledWtndow,moveSy(DelteX. De l taY) )  :-  
send( S e l f . e r a s e ) .  
p lus(X.Del taX,NewX),  
p lus (Y .De l  taY.NewY). 
become((X,NewX), (Y.NewY)),  
send(Sol f . show) .  

expands to: 

I abe ledVt ndow( [moveBy( De 1 tax .  Oa 1 taY ) 
I NewLabeledWtndow]. 

x .Y.Wtdth.He tgh t .Con ten ts .La l )e l )  : -  
labe ledWtndow([erase.  

p r i va teMoveSy(Oe l tsX .De l taY) .  
show [ NewLabeledWtndow?], 

NewX?,NewY?,Width, 
Height .Contents, l .8001 ) .  

S im i l a r l y .  prtveteMoveBy is copied to 1 abeladWtndow. 

If the programmer defines a new mersey method for 
labe!edWindow, it overrides the automatically 
generated one. As in Smailtaik, an overriding method 
can access the inherited version: sendSoper(Messege) 

tells the preprocessor to expand inline the inherited 
method definition. (When the inherited method 
doesn't correspond to a single clause, then the relevent 
clauses can be copied with a unique predicate name, 
and a call to that predicate substituted inline) The 
show message from moveSy is a good example. It must 
show the label, then do whatever windows do to show 
their contents. The show definitions for the two 
classes: 

method(window.show) : -  
send( Con t e n t s . d t s p l a y A t ( X , Y ) ) .  

method ( labeledWtndow, show) : -  
sendSuper(show). 
s e n d ( S e l f , d i s p l a y L a b e l ) .  

combine for lebeledWtndow to give: 

method( labeledWtndow, show) : - 

send (Con ten t s .  d t sp 1 ayAt( X. Y ) ) .  
s e n d ( S e l f . d t s p l a y L a b e l ) .  

wh ich  expands to: 

lebe ledVtndow([show J NewLabeledVtndow]. 
X ,Y .V / i d th .He tgh t .Con ten ts .Labe l )  :-  

Contents - [ d t s p l a y A t ( X , Y )  [ NewContents]. 
labe ledWtndow( [d tsp layLabe l  

I NewLabeledWtndow? ] ,  
X .Y ,Wtd th .Hetgh t .NewConten ts .Labe l ) .  

i n h e r i t a n c e  by  d e l e g a t i o n  to pa r t s .  

Shapiro and Takeuchi achieve the sharing of' methods 

and structure common in systems with class 
inheritance by using delegation to parts. A 
1 e be 1 edW I n dew contains a w i n dew as a par t .  ra ther  than 

implicitly being a kind of window. The delegation code 
for class 1 abe 1 edW t n dow is: 

c18ss(1abeledWtndow.[Wtndow. Labe1]) .  

A method not accepted explicitly by a I abe I edWi ndow is 
delegated to the contained w t ndow (referenced through 
a state variable) with a method of the form: 

I a b e  I edWl ndow( [Me s s age [ NewLabe I edWi ndow ] ,  
Wtndow. Label )  : -  

o the rw ise  J /* no earlier methodm were applbcable */ 
Wtndow • [Mes sage J NewWt ndow]. 

1 abe 1 adW t ndow( NewLabe 1 edW t ndow?. NewW t ndow?. 
Label ) .  

Since the delegation does not pass along the 
lsbeledVtndow with the message, the inherited 
method can only refer to the window. For example, a 
lsbeledWtndow delegates mersey messages to its 
window part. The show message to Self in the above 
implementation of movasy gets sent directly to the 

wtn0ow, so the label does not get displayed along with 
the rest of the window (as discussed in [Bobrow 1985]). 
This problem can be solved by including in the 
delegation message a stream on which the 
labeledWtndow will interpret messages sent to itself 
[Lieberman 1986]. This stream is called Sale because 
the class of the object it represents is unknown, and its 
only property is that it supplies the overall identity. 
The w t ndow is the proxy for the 1 abe ledV i ndow, since it 
performs operations for it. The labeledVtndow is 
called Sel f because it represents the outer object being 
processed. 

I abe I edWi ndow( [Message J NewLabel edW t ndow]. 
Window.Label) : -  

o therw ise  J 
Window - 

[hand] e(Messege.Sel f .  NewLabeledWtndow) 
I NewWtndow]. 

labeledWtndow(Self?.NewWtndow?.Label ).  

This clause essentially sends a special message to its 
window part that asks it to execute the message 
normally, except to direct all sends to self  to the 
labeledWindow instead of the window. The 
1 • O t 1 e dW t n dew recur8 On So 1 ¢ ra the r  than 

NewLebel edt/t ndow So that it receives messages sent in 
the delegation before those sent externally (just as in 
send to Self). The handle method must eventually 
make NewWtndow a ta i l  o f  Se l f  ( Se i r  - 

[Msgl:Msg2 . . . .  [ NewWtndow]). 
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Delegation can be explicitly used in places other than 
the automatic delegation method. The delegation 
version of the s how method for ] abe ] sdVt ndow is just: 

method(labeledWtndow,show) :- 
dslegateTo(Window,show), 
send(Se l f ,d tsp layLabe l  ). 

This translates to 

laheledWindow([show I NewLabeledVtndow], 

Vtndow, Label)  : -  
Window - 

[hand lo (show,Se l f , [ d t sp layLabs l  
I NewLsbsledWindow]) 

I NewWtndow]. 
labsledWtndow(Self?, NewWtndow?, Label ) .  

Properly demonstrating that  the CP code described 
above actually supports reentrant, state changing 
delegation involves quite long and complicated 
examples, and so lies beyond the scope of this paper. 

These two implementations of inheritance are 
compatible, allowing selection of an inheritance 
scheme suited to the problem. 

In t r icacies  of  Send 

In most object-oriented systems, mutable and 
immutable objects are programmed in a uniform 
manner. To get the first element era  list one sends the 
list the same message independent of whether it is 
immutable or not. CP preserves this 
interchangeability and code-sharing between different 
implementations of an object when computing with 
perpetual processes. 

Logical terms, however, are not interchangeable with 
streams to perpetual processes. Logical terms are 
created and accessed by unification. They are much 
simpler and more efficient than CP mutable objects. 
Logical terms can be incrementally filled in since they 
can contain logical variables to be instantisted later. 
Terms cannot, however, be the basis of object-oriented 
programming since they are "write-once". A term can 
represent a window of a particular size and location 
but cannot continue to represent that  window as it 
moves and grows. Message sending must be extended 
to work with terms. 

We have been sending messages to objects in CP by 
simply open-coding a unification of the message 
stream with the message and a new tail. In order to 

generalize message sending to apply to terms as well, 
we introduce a send predicate: 

send( ins s s age I NewObj ect ] ,  His sage, NewOb j ect ). 

Acall to send 

send (Vt ndow.move( 3,42 ). NewVi ndow) 

is equivalent to 

Wtndow~- [move(3.42) I NewWindow]. 

The definition must be extended to handle terms, as 
was merge. The following clause is added. 

send(X,Nessage.X) :-  
o therwise [ 
sendToTerm(X,Nsssage). 

sendToTsrm actually does the requisite operations, 
rather than just queuing messages, so it is named 
appropriately. Suppose we have both immutable and 
mutable line segments in a graphics package. 
Immutable line segments are terms of the form 
] tne(StsrtPotnt,VndPotnt)  while mutable line 
segments are defined by: 

c l a s s ( l t n e , [ S t s r t P o i n t . E n d P o i n t ] ) .  

A method for d/splaying mutable lines can be specified 
as follows. 

method( l ine ,d isp lay )  :- 
drawLtne(Stsr tPotn t .  EndPoint) .  

send can be extended for displaying immutable lines 
as f o l l o v ~  

sendToTerm(11ne(StartPotnt .EndPotnt) .dtsplsy)  : -  

drawL t ns (S ta r tPo tn t ,  EndPotnt). 

The above can be written as follows. 

msthod(11no(Star tPotnt ,  EndPoint) , d i sp lay )  : -  
d rawLtne(Star tPo ia t ,EndPotn t ) .  

Thus, the same syntax defines methods for both 
mutable objects and immutable terms. 

The correspondence should go both ways. 
Unfortunately, CP objects cannot be used where terms 
are used. Unification of CP objects is impossible since 
there are no pointers to the objects. Unification 
between streams to CP objects simply constrains the 
streams to have the same messages. Also, low-level 
primitives for arithmetic and the like deal only with 
terms. 

Closing s t r e ams  and re fe rence  count ing.  

A stream to a perpetual process can be closed by 
Vulcan. Stream closing requires that  every class 
definition add a clause of the following form. 

C 1 sssNama( [ ] ,  StstsVsr I . . . .  StateVarN) : -  
c loseSt ream(Sta teVar l ) .  

c 1oseSt ream( S ta toYs rN ). 

Where closeStream is defined as 
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closeStream([]) .  
closeStream(X) : -o the rw ise  J true. 

me rge needs to be extended by the following clauses. 

merge([],Stream,Stream). 
merge(Strbam.[].Stream). 

The effect is that when one of the input streams of a 
merge process is closed off, the merge process simply 
unifies the other input stream to the output stream, 
and then goes away. 

There are two reasons why it is of value to explictly 
close a stream. One reason is that it can be more 
efficient than waiting for the garbage collector to 
collect streams and associated suspended processes 
which are not accessible from the active processes. 
Depending upon the implementation of merge, many 
merge processes can terminate if streams are explicitly 
closed. The second reason for closing streams is to 
avoid the semantic difficulties with perpetual 
processes. What does it mean if all the active 
processes terminate but some perpetual processes are 
left suspended? If the expansions of Vulcan methods 
close streams then the objects can be realized as nearly 
perpetual processes. A nearly perpetual process is 
active until it explictly terminates. 

Since streams are always split, no stream should ever 
be shared. Consequently it is safe for any object to 
close a stream to which it no longer intends to send 
messages. Typically this will remove one of the 
streams being merged before being consumed by the 
perpetual process. If the stream is being consumed 
directly, then the perpetual process actually receives 
[ ], and typically terminates. 

A terminating perpetual process should close all 
streams contained in its state. Likewise, the update of 
state variables should close any newly unroferenced 
streams. Thus, Vulcan must insert calls to 
closeStream when expanding methods with become. 

The analogy between stream spl i t t ing and 
incrementing a reference count and stream closing 
and decrementing a reference count is very strong. As 
with reference counting, stream closing is not a full 
substitute for garbage collection since there can be 
cycles of object references which are disconnected from 
all the active processes. 

A very odd fact about Vulcan is that all processes will 
term/nate only in programs for which an object 
reference count collector recovers all garbage. 
Programs which create cyclic object references and 
then drop all references to the cycle will have 
processes that  never terminate. 

A Send that  does not rely on Merge 

In CP and Vulcan sharing of streams is handled by 
calls to merge. Alternatively, send could search for the 
uninstantiated tail of the stream, instantiating it to 
the message/new-tail pair. This search can be easily 
implemented using the low-level CP primitive var 
which is true if its argument is currently unbound. 

search|ngSend(Stream,Message.NewStream) :- 
var(Straam) [ 
Stream • [Message[NewStreem]. 

searchtngSand([OtharMessaga[StreemRematnder], 
Message, NawSt ream) :-  

otherwise [ 
saarchtngSand(StreamRama|nder. 

Has sage. NewSt ream). 

search tngSand( x.Message, X) : -  
otherwise [ 
sendToTerm(X.Message). 

The semantics of vat is unclear and its 
implementation is problematic on a distributed 
system. The use of vat can be avoided if a unique 
token is included inevery message. The first clause of 
search I ngSend could then be rewritten as follows. 

searchtngSend([HesssgoiNewStraam], 
Message. NewStream). 

SearchtngSend has some unpleasant performance 
characteristics. The overhead ofsending a message on 
a stream is proportional to the number of messages 
sent to the object since the last transmission from this 
reference to the stream. The average cost of sending a 
message on a shared stream is proportional to the 
number of references to the stream. If  there is a 
reference to a stream that is rarely used it will prevent 
the garbage collector from collecting the history of old 
messages on that stream. I t  is possible for anyone 
sharing a stream to close it down by binding the 
variable in the tail to a constant. 

I t  is for these reasons that Vulcan expands methods 
into clauses which call merge whenever a new 
reference to a stream is released. There is one case, 
however, in which the preprocessor cannot generate 
the appropriate calls to merge. If  a state variable of a 
perpetual process contains a term which contains 
streams then the term can get passed out without the 
contained streams being split. Users of that term can 
then get multiple references to the contained stre_am_~, 
Vulcan alleviates this problem by using stream 
splitting when possible and falling back on searching 
send to recover gracefully from those situations in 
which streams were not split when needed. In the 
normal case, the stream splitting will prevent 
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multiple references to a stream and there is no 
overhead to the searching send. 

With a naive implementation of merge as given 
earlier, the overhead of a message transmission can, in 
the worst case, be linear in the number of references to 
a stream. The best implementation in CP of stream 
merging is logarithmic [Shapiro 1984]. [Shapiro 1986] 
and the Logix implementation of FCP [Silverman 
1985] implements stream merging primitively so that 
it has a small constant cost. Vulcan can exploit these 
primitives to maintain a constant cost of a message 
transmission (on an implementation on a sequential 
machine). 

Reliance on searching send is inconsistent with the 
above claims about reference counting. This is 
because it is only safe for Vulcan to generate stream 
closing code when it can tell from static analysis that 
the stream is unshared. Cleaning up this conflict is an 
area for future research. 

More esoteric object-oriented p rogramming  
features. 

The streams consumed by perpetual processes are 
ordinary CP terms. As such it is possible for several 
perpetual processes to be consuming the same stream. 
When a message is put on the stream it is directly 
broadcast to all the objects sharing that stream. To be 
able to send to beth individuals and groups the stream 
being consumed can be split into a shared 
broadcasting stream and a private stream. The 
following clause for making windows maintains the 
shared stream called E t h e r .  

mskeVtndow(InitValues,Ether,PrtvNewOhject) :- 
make(wtndow,InttValues,NewObJect). 
merge(PrtvNewObJect?,Ether?,NewObject). 

The caller ofmakeWlndow gets a private channel to the 
newly created object which is consuming a stream 
which is the merger of the Ether and the private 
channel. InttValues contains initial values for the 
state variables. 

One can broadcast on the Ether by sending messages 
just like any other message sending. For example, 
send(Ether.redlspiay.NewEther) will cause all 
windows to redisplay themselves. If the message is 
incomplete, for example, 
send(Ether,postttons(Postttons),NewEther), then 
one can arrange to get the bag of responses by using 
"open-ended" lists. Open-ended lists are lists whose 
last tail is always an uainstantiated variable. If one is 
interested in just the first answer (as in the Actor r a c e  

construct), then one waits for just the head of the list. 

If one is interested all the elements, the short-circuit 
technique of [Takeuchi 1983] described in [Shapiro 
1986| can be used to tell when they're all present. 

Various object-oriented programming systems support 
features such as classes as objects, meta-classes, and 
method combination [Bobrow 1986]. These features 
can be incorporated into the Vulcan framework. 
Given some support for global naming of processes 
(e.g. the module feature of Logix [Silverman 1985]) it 
is possible to support classes as objects. If the Vulcan 
preprocessor itself was built in an object-oriented 
fashion then different meta-classes could process 
class and method specifications differently. Method 
combination is normally implemented as a define-time 
process. The Vulcan preprocessor could be extended to 
combine pieces of methods and expand the 
combinations into ordinary CP clauses. 

There are some unique capabilities of objects in CP 
because the communication channels are explicit. A 
method can, for example, peek ahead in the message 
stream to see if some particular message is pending. 
The following method does nothing if there is an undo 
message of the same sort pending. The example is 
inspired by the time warp system for discrete 
simulations. [Jefferson 1982] 

method( t tmeVsrpObject, do(X) ) : -  
pendingNessage(undo(X).Self) [ t rue.  

m e t h o d ( t i m e W a r p O b j e c t , d o ( X ) )  : - 
otherwise l doHairyComputat ion(X.Self) .  

where pend t ngNes sage iS defined as 

pendtngNessage(Message,Stream) : -  

v a t ( S t r e a m )  I f a l se .  

pendtngNessage(Nessage. [Nessage INoreNsgs ])  : -  
otherwise I true. 

pendtngNessage(Message. 
[OtherNessageJNoreNsgs])  : -  

o t h e r w i s e  I 
pendlngNessege(Nessage.NoreNsgs). 

It is only by convention that messages to perpetual 
processes are put on streams. The structure being 
consumed can be any term. It might be useful to 
sometimes communicate via priority queues or binary 
trees. This interesting avenue of research has not 
been explored. 

The objects of CP are really sequences of process 
reductions that we choose to view as an object with 
identity and permanence. By convention a process 
representing an object reduces to a collection of 
processes one of which has the same predicate and the 
same state variable values unless they have been 
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explicitly changed. It is worthwhile exploring the 
usefulness of occasionally breaking this convention. 
An object can become an object of another type or 
become several objects which perhaps share some state 
or channel¢ If some useful cliches involving identity 
forking or changing are discovered they may be 
supportable in Vulcan as variants or extensions of the 
become statements. 

Comparisons with other work 

There have been several approaches to merging the 
logic programm/ng and object programming 
paradigms. Components of the logic programm/ng 
paradigm are: terms, clauses, goals, logic variables, 
unification, etc. Components of the object 
programming paradigm are: objects, classes, methods, 
messages, message sending, instance variables (slots, 
acquaintances), object references, continuations, 
inheritance, etc. The different approaches to merging 
these paradigms can be roughly categorized according 
to how they draw correspondences between their 
respective components. 

A straightforward way to embed objects in Prolog is for 
an object to consist of a set of unit-clauses asserted in 
the database. Consider. 

name( symO003, bob ). 
$pecies(symOOO3,human). 
age(symO003,24). 
mother(symOOO3,symO002). 

parent(X.Y) :- 
mother(X,Y). 

psrant(X,Y) :- 
fa ther(X,Y) .  

In object~oriented terminology, symO003 is an object 
reference to an object with instance var/ables name, 
age, etc., and that responds to the message parent. 
Each unit clause stating a property of such an 
identifier serves as the storage for an instance 
variable of that object. In this framework, the user 
makes no distinction between stored and computed 
values, i.e., between instance variables and methods. 
It is also natural in this scheme to have methods 
defined on individuals, or on classes whose 
membership is based on some computed quality (e.g. 
all humans with a parent named fred). The approach 
taken by [Gullichsen 1985] is essentially similar to 
this. 

There are disadvantages with this approach. One is 
its heavy reliance on the non-logical assert and 
retract: they must be used to change the value of 
instance variables, and even to create new instances 

(something that is pure in most other systems). 
Because these objects exist as assertions in the 
database, garbage collecting them is also hard. Also 
there is no encapsulation so any program can inspect 
or update the state of an object without sending it a 
message. 

LM-Prolog [Kahn 1984], CommonLog (a logic 
programming extension to CommonLoops [Bobrow 
1986]), Tao [Okuno 1984], and Uniform [Kahn 1981] 
directly support employing user defined objects as 
terms. Unification of primitive term types like 
symbols and conses is handled primitively as in any 
Prolog. Unification of user defined objects causes 
unification messages to be sent, so that the objects can 
unify according to their abstract properties. This 
supports the abstraction power of object-oriented 
languages. In contrast, standard Prologe only support 
unification of syntact/c representations. If these 
user-defined objects also have changeable state (as in 
CommonLog and Tao), then the declarative semantics 
of unification are lost. This approach doesn't merge 
the notions of changeable state and logic 
programming, it just allows them to eo-ex/st uneasily. 

Prolog-with-Equality [Kornfeld 1983] represents a 
similar approach in which regular Prolog syntactic 
terms are able to serve as user defined objects. When 
the Prolog interpreter fails to syntactically unify 
terms A and s, it instead attempts to satisfy the goal 
eq-als(A,S). I/'this goal succeeds, then the two terms 
are considered to be un/fied, with the bindings 
introduced by the equality proof in effect. In this 
approach, the clauses defined for equal s correspond to 
unify methods, and functors of terms typically 
correspond to classes. This approach also deals only 
with object-oriented abstraction, and not with 
changeable state. 

A weakness of Vulcan in comparison to some of the 
above approaches is the inability to unify Vulcan 
objects. This could be dealt with by extending the 
underlying Prolog to send equals messages when 
attempting to unify objects. This would not work in 
the standard concurrent logic programming 
languages, since messages cannot be sent from the 
guard. 

Several people have suggested the following approach 
for dealing with changeable state within the logic 
framework: A term corresponds to the state of an 
object at a given moment in time. An object consists of 
the list of such states, represtenting the object's 
history. An object reference consists of a pointer into 
this list. The current state of the object is the state 
immediately before the currently uninstantiated tail 
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of this list. The searching-send technique is used to 
find this state. Any state changes to the object are 
represented by further instantiating the object's 
history list. From the logic point of view, the object's 
state isn't being changed, more of its history is being 
discovered. Searching send could avoid actual search 
if implemented primitively. The semantics of this 
approach are suspect since a memory cell is being 
simulated by using the mete-logical vet predicate to 
reveal the otherwise hidden side-effect in unification. 
This approach also does not support object 
encapsulation. 

Mandala is perhaps most similar in approach to 
Vulcan. Mandala objects are also perpetual processes 
consuming streams, built on a concurrent logic 
programming language. Unlike Vulcan, all object 
references are indirect by name through a name server 
object, which binds names to streams. The individual 
Mandala object contains its own set of clauses, which 
are processed meta-interpretively when the object 
processes a message. This mete-interpretive set of 
clauses is reminicent of Logix modules. There are 
currently unresolved efficiency issues with this 
approach: the name server is a central bottleneck in 
the system, and garbage collection is hard since all 
objects are refered to by name. It  is hoped that the 
interpretive overhead can be removed through partial 
evaluation. 

An Evaluat ion of  Vulcan as an object-or iented 
p r o g r a m m i n g  language  

As discussed in the introduction, a system supports 
object-oriented programming well if it provides good 
linguistic, execution, and environmental support and 
has a clear semantics. In addition, the paradigm 
should be supported in a way that  coexists smoothly 
with other supported paradigms. 

Linguistic suppor t .  

The primary advantage of Vulcan over CP is the clear, 
concise, and mnemonic manner of defining methods. 
One can program as if one had real pointers to objects. 
Class definitions provide a more declarative means of 
dsfin/ng creation and initialization methods. Common 
cliches such as inheritance and method specialization 
are supported. 

Execut ion pe r fo rmance .  

The performance of Vulcan programs should be 
comparable with the equivalent CP programs since 
the Vulcan programs are translated into CP. The 
translated Vulcan may call merOe more often than the 
hand-coded equivalent program. This can be 

alleviated by state variable declarations in the class. 
The support for interchangeability of terms and 
streams to perpetual processes does require a simple 
run-time test in merge and send. Again declarations 

can be used to alleviate this overhead. 

Envi ronmenta l  suppor t .  

The environmental support of Vulcan has yet to be 
developed but no fundamental obstacles are expected. 
Normally it is difficult to debug the execution of 
translated programs (e.g. debugging compiled 
programs) since the program being executed is so 
different from its source. The declarative information 
in the class definitions is necessary for good browsing 
tools. Tracing can be accomplished by having Vulcan 
leave behind extra code in methods that  saves or 
prints the relevant state. More relevant error 
messages such as "message not understood'* can be 
produced by automatically generating for every class a 
final clause to catch the error. Declarative debugging 
systems [Shapiro 1982] should be modifiable to 
provide an object-oriented view. 

Semantics .  

The operational and declarative semantics of Vulcan 
programs is given in terms of their translation to CP. 
So long as this translation is straight-forward this is 
acceptable. The semantics of CP is on a sound footing 
[Shapiro 1983b]. The programs can be viewed as 
logical axioms and the execution viewed as controlled 
deduction. The semantics of perpetual processes is an 
active area of research and does not appear 
problematic. There are no side-effects in CP and yet 
via tail-recursion optimizations there are no 
performance penalties for avoiding side-effects. The 
CP clause which is the expansion of a Vulcan method 
definition is a Horn clause partially defining the 
permissible histories an object can have. [Shapiro 
1983b] 

Peaceful  coexis tence with o the r  pa rad igms .  

Vulcan can be the basis of a single paradigm system, 
in that it can be used as just an object-oriented 
language. I t  does coexist with CP which is based upon 
both a logic programming paradigm and a process 
reduction paradigm. A potential source of trouble in 
mixing Vulcan and CP in a program is that  Vulcan is 
based upon very strong conventions of CP 
programming. The user writing CP may easily violate 
these conventions when, for example, manipulating a 
stream being consumed by an Vulcan process. A 
problem which is easy to fix is that Vulcan generates 
predicates whose names are the names of the classes. 
These should be made unique since they may conflict 
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with user predicates and they are never called 
explicitly by user programs. These interactions of CP 
and Vulcan have not been explored in depth. 

Directions for Future Research 

Although research groups in Japan, Israel, England, 
and other countries have been actively programming 
in an object-oriented style in CP and related 
languages, there is no experience yet with using 
Vulcan for a serious application. This experience is 
necessary to evaluate the system and to discover its 
strengths and weaknesses. 

CP is a well-known instance of a growing class of 
concurrent logic programming languages. Very little 
in Vulcan depends upon the special features of CP. It 
should be the case that only small changes are 
necessary to change Vulcan to translate into Guarded 
Horn Clauses (GHC) [Ueda 1985], P-Prolog, or Parlog 
[Clark 1984]. CP and GHC have "flat" versions that 
restrict the guards to calls to simple predicates. Some 
rewriting of Vulcan is necessary to produce FCP or 
FGHC programs. 

The Vulcan language provides at least as much basic 
functionality as most object-oriented programming 
languages do. Exploring new functionality such as 
message stream peeking, direct broadcasting, multiple 
streams per object (for capabilities and perspectives), 
and object forking looks very exciting. Also trying to 
absorb the ideas of multi-methods and recta-objects of 
C o m m o ~ p e  [Bobrow 1986] into Vulcan may be 
worthwhile. 

A promising avenue of research being pursued in the 
logic programming context is to provide language 
extensions by writing extended meta interpreters and 
use partial evaluation to remove the cost of the extra 
layer of interpretation. Vulcan implementation was 
not conceived of as an interpreter written in CP, but 
instead as a translator to CP. The meta-interpreter 
approach combined with partial evaluation provides a 
means of experimenting with variants of Vulcan 
without paying a performance penalty. 

The expansion of Vulcan code,  when read 
declaratively in the underlying logic programming 
language, is a description of the permissible history of 
the object's behavior. In this, the expansion of a 
Vulcan program resembles the actor semantics 
[Clinger 1981] of an actor program. This leads to the 
interesting possibility that we may have here a good 
representation language for reasoning about, and 
proving properties of, programs with side effects. The 
CP interpreter itself (being a sound, though 
incomplete, theorem prover) can serve as the proof 

engine. 

There is the interesting question of how well 
languages like this can make effective use of highly 
parallel hardware. It seems quite plausible that the 
simple reduction process of an FCP interpreter is well 
adapted for execution on fine-grained SIMD machines 
like the Connection Machine. Techniques like 
broadcast streams may correspond directly to constant 
time operations on such hardware. Towards this end 
we have started exploring Vulcan programs that seem 
to express this style. In particular, some publi~.hed 
Connection Machine programs [Hillis 1985] seem to be 
expressible quite naturally in Vulcan. 

Summary 

Concurrent Prolog is a suitable base for 
object-oriented programming. Unadorned, it suffers 
some syntactic problems of awkwardness and 
verbosity. We have presented a design for Vulcan, a 
syntactic sugaring for CP that remedies these 
problems. The result is a language in which logic 
programming and object.oriented programming are 
smoothly integrated. The language supports, in 
addition to the usual object-oriented constructs, 
concurrency, unification, and incomplete messages. 
This framework facilitates the exploration of 
variations on object-oriented programming including 
message stream peeking, direct broadcasting, and 
object forking. 
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