
Extracting a Domain Specific Language From an Example
A Bottom-Up Method Using the ngrease Metalanguage

Ville T Oikarinen
Sysart Oy

ville@oikarinen.org

Abstract
This demonstration shows a lightweight and fast method for
creating a tested and working domain specific language. The
method is demonstrated using the ngrease metalanguage.

The creation of a new language is started by writing a
representative example of the final product with a test that
tests the transformation from a stub source to the result.

The test is made to pass by writing a constant transformer
that unconditionally outputs the result.

At each step the language is extended by refactoring:
Some part of the transformer template is converted from a
constant subtree to a reference to data read from the source
tree, thus driving additions to the new language.

Optionally, each refactoring step can be driven by a new
test that demonstrates the lack of parameterization of some
part of the final product.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]

General Terms Languages

Keywords metaprogramming, code generation, DSL, method,
refactoring

1. The Problem
A common problem in software development is that the
chosen programming languages and tools require too much
“boilerplate” code: a set of closely related programming
problems each require a unique solution.

Code generation helps, but the experience of the author
is that it is not used often enough and well enough. One
possible reason is that the practical problems and difficulties
are (perceived to be) too big.

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

2. A Solution: Stepwise Refactoring Into a
New Language

This demonstration shows a lightweight method for incre-
mentally refactoring a concrete solution into a new domain
specific language and a transformer that consumes code
written in the new language and produces solutions simi-
lar to the original example.

2.1 A Tool: ngrease
The demonstration uses the ngrease language as the meta-
language so it is recommended to read its introduction [1]
first. The method has its uses with traditional template lan-
guages, too.

ngrease is a pure functional template language that pro-
cesses string trees unlike traditional template languages that
produce raw string content directly.

2.2 Preliminary Step: Convert the Example To an AST
Since ngrease processes trees, it is easier to extract the DSL
from an “ngreased” version of the (programming) language
used in the example, an Abstract Syntax Tree -like tree
model, instead of the actual raw string source code of the
example.

In this demonstration the final product has already been
translated to an ngrease tree, and a working transformer for
it is given.

2.3 Starting Point: Test And Create a Constant
Transformer

A language is defined by a transformer that consumes code
written in the language.

Since the new language will be created by refactoring,
we first need a working transformer that produces the given
example.

This is achieved by creating a test that tests the trans-
former by feeding it a stub of a source in the new DSL and
asserting that it produces the given example.

The test is made green by writing a constant transformer
i.e. a transformer defined by the given example.

850



2.4 Optional: Test Missing Parameterization
After the first step the stub language passes all tests but is
unusable. Ideally a new test is needed to demonstrate the
need for some new parameter for creating different solutions.

In practice, however, it may be more difficult to write the
test, especially the expected output, in advance than to “pin”
the manually reviewed behaviour afterwards.

2.5 Refactoring: Parameterize a Subtree
This is the step that incrementally makes the DSL more
general. The step is analogous to the Parameterize Method
refactoring [2]: In the transformer definition, a subtree or a
list of “similar” subtrees is replaced by a reference. Defining
similarity here is part of the process.

The reference may point to data read directly from the
source tree written in the DSL.

More often, however, the abstraction of the subtree is not
suitable for the DSL so further transformations are needed
for parts of it. This is a subproblem of the original so it can
be solved by extracting a sub-DSL.

After this step, the tests are red until the sources written
in the DSL are updated to the new, extended version of the
DSL under construction.

3. Biography
Ville Oikarinen is a Finnish software developer who also oc-
casionally works as an instructor. His main interests are lazi-
ness (automatization and software configuration manage-
ment), expressiveness (languages and metaprogramming),
freedom (portable and open software) and minimalism ().
He is also the author of the ngrease language.

References
[1] http://ngrease.sourceforge.net/introduction.

html

[2] http://www.refactoring.com/catalog/parameterizeMethod.

html; accessed 25.7.2007

851


