
Composing Locks by Decomposing Deadlocks

Hari K. Pyla
Virginia Tech
harip@vt.edu

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.3.4 [Programming Languages]: Processors—Run-
time environments; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Concurrent programming
structures

General Terms Algorithms, Design, Languages, Measure-
ment, Performance and Reliability

Keywords Concurrent Programming, Runtime Systems,
Program analysis, Deadlock Detection and Recovery, Spec-
ulative Parallelism and Coarse-grain Speculation

1. Introduction
The evolution of processor architectures from multi-core
to many-core requires programmers to use concurrency to
achieve performance. Unfortunately, shared memory par-
allel programs are difficult to implement correctly, and
so is detecting concurrency bugs (e.g., data races, dead-
locks, order violations, atomicity violations). In practice,
the most common concurrency bugs are a) data races that
arise due to unguarded or improperly guarded memory up-
dates and b) deadlocks that arise due to circular dependen-
cies among locks. While data races can be ameliorated by
appropriate synchronization (a challenging problem in it-
self), deadlocks require fairly complex deadlock avoidance
techniques, which may fail when the order of lock acquisi-
tions is not known a priori. Furthermore, due to the potential
for deadlocks, programmers cannot arbitrarily compose lock
based codes without knowing the internal locking structure.
Hence, composability is limited by deadlocks. The goal of
this research is to achieve composability of lock based codes.

We present Sammati [1] (agreement in Sanskrit), a soft-
ware system that is capable of transparently and determin-
istically detecting and recovering from deadlocks in multi-

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

threaded applications, without requiring any modifications
to application source code or recompiling/relinking phases.
Sammati is implemented as a pre-loadable library that over-
loads the standard POSIX threads (pthreads) interface and
supports applications written using weakly typed languages
such as C and C++. It guarantees the acquisition of mutual
exclusion locks a deadlock free operation. Sammati supports
arbitrary application level threading models, including those
that use locks for concurrency control where serial lock eli-
sion does not result in a program with the same semantics.

Sammati associates the memory accesses with locks and
privatizes memory updates within a critical section. The
updates within a critical section are made visible outside
the critical section on the release of the parent lock(s), viz.
the containment property. On the acquisition of every lock,
Sammati checks for deadlocks. If a deadlock is detected, the
deadlock elimination algorithm breaks the cycle by selecting
a victim, rolls it back to the acquisition of the offending lock,
and discards its memory updates. Since our containment
mechanism ensures that memory updates from a critical
section are not visible outside the critical section until a
successful release, we simply restart the critical section to
recover from the deadlock.

Although the core idea behind Sammati is quite simple,
there are several challenges in the details of this work. First,
we need to provide a transparent mechanism for detecting
memory updates within a critical section and privatizing the
updates. Second, in the context of nested locks we need to
define a set of visibility rules that preserve existing lock se-
mantics, while still permitting containment based deadlock
elimination and recovery. Finally, we need a deadlock detec-
tion and recovery mechanism that is capable of determinis-
tically eliminating deadlocks without either (a) deadlocking
itself or (b) requiring an outside agent. Additionally, Sam-
mati can detect and report write-write races that occur be-
tween (a) guarded and concurrent unguarded updates to a
shared value and (b) improperly guarded updates, where a
single data value is guarded by two or more different locks.
In this research we propose and implement techniques that
address the above design objectives.

We evaluated its performance of Sammati using SPLASH,
Phoenix and synthetic benchmark suites on a 16 core shared
memory machine (NUMA) running Linux with 64GB of

67



RAM. We measured the number of locks acquired and lock-
acquisition-rate (total locks acquired/total runtime) for all
applications used in this study. While Sammati’s runtime is
impacted by lock acquisition rate, it shows speedup compa-
rable to the native pthreads case even for applications that
have large (≈ 89, 500 locks/sec) lock acquisition rates. This
is in contrast to transactional memory systems, which have
significant impact on speedup, largely due to privatization at
the instruction level and the need to guard every read from
read/write conflicts. Additionally, the space overhead of our
approach is O(W), where W is the write set (in pages) within
a lock context. Finally, we also evaluated Sammati by run-
ning programs that were deadlock prone. We find that the
native pthreads programs deadlock while Sammati deter-
ministically detects and avoids the deadlocks, transparently
recovers from them and successfully executes the program
to completion. Our results indicate that for most applica-
tions the speedup of Sammati is comparable to that of native
Pthreads with modest memory overhead.

Contributions and Impact
There are several aspects of this work that will significantly
impact the usability of lock based programming for concur-
rency on multi-core architectures.

• Handling Deadlocks: Existing systems rely on program
analysis, modifications to source code and/or operating
system and, prediction techniques to identify the occur-
rence of deadlocks. In contrast, Sammati deterministi-
cally detects and recovers from deadlocks at runtime
without requiring access or modifications to source code
in applications with arbitrary threading models. Our pro-
posed approach readily enables its use with existing
applications. Additionally, Sammati’s language trans-
parency, enables its use with a wide variety of program-
ming languages including unmanaged languages such as
a C, C++ and Fortran.

• Programmer Productivity: Due to the non-deterministic
nature of thread execution, it may not be feasible in prac-
tice to verify and test all possible interleavings of threads
and their lock acquisitions in order to determine if a pro-
gram is deadlock free. Programmers can write code to
the best of their ability and rely on the runtime system
(Sammati) to handle deadlock detection and recovery.

• Mutual Exclusion Locks: Most programmers are al-
ready familiar with lock-based programming as opposed
to using transactional memory systems and addressing
issues in lock based programming can benefit the large
base of lock-based software artifacts in use today. Previ-
ously, lock based codes were not composable due to the
potential of deadlocks –one of the primary motivations
for transactional memory. Since Sammati provides a ro-
bust mechanism to address this problem, we believe that

this work will enable a new generation of composable
lock-based codes.

2. Current and Future Directions
Several novel techniques proposed in the research opens way
to solve important challenges faced in concurrent program-
ming.

2.1 Program Analysis and Shadowing Memory
We are currently working on improving the performance
of Sammati through compile time analysis and instrumen-
tation. Sammati’s overhead primarily stems from the pro-
tection and privatization of the virtual address space. We
believe that we can reduce this runtime overhead by em-
ploying program analysis to accurately determine the write-
set (i.e., data modified) within a lock even in the presence
of nested and conditional lock acquisition and release se-
quences. There are several challenges in the details of this
work. First we need a mechanism to identify locks and their
scope in the program. Second, we need to accurately de-
termine the write-set (i.e., data modified) within a lock. In
situations where program analysis cannot determine control
flow, the Sammati runtime can act as the fail-safe to pro-
vide deterministic deadlock detection and recovery. Third,
we need to isolate the memory updates within locks to fa-
cilitate recovery on deadlock. We need a lightweight mem-
ory shadowing mechanism to accomplish isolation. Addi-
tionally, the ordering and integrity of the load and store in-
structions must be preserved in order to maintain program
correctness. We plan on leveraging the LLVM compiler in-
frastructure to implement some of our proposed techniques.
We will be evaluating our approach using SPLASH, Phoenix
and PARSEC benchmarks.

Given the scope of this research, we expect the following
key research deliverables from this work. First, a runtime
infrastructure for transparent deadlock detection and recov-
ery for POSIX threaded codes with any threading model,
which enables composability of arbitrary lock-based codes.
Second, reachability and flow analysis methods to minimize
the performance impact of deadlock detection and recovery
mechanisms in the common case of deadlock free opera-
tion. Third, novel methods to transparently eliminate prior-
ity inversion problems in threaded codes operating in real-
time infrastructures. Fourth, mechanisms to support non-
idempotent operations such as memory management and IO
within critical sections that may be affected by deadlock re-
covery. Fifth, methods to guide deadlock victim selection
based on a variety of performance and correctness metrics
and techniques to ensure safe progress when threads abort
while holding locks. To our knowledge, several of the pro-
posed research deliverables present the only known solutions
to the corresponding research problem and will complement
existing research in the area of compilers and runtime sys-
tems.

68



2.2 Concurrency Bugs and Managed Languages
We are currently extending our work to detect other forms of
concurrency bugs (e.g. data races) and provide concurrency
bug detection and composability of lock based codes in
managed languages such as Java.

2.3 Support for Speculative Execution
The impending multi/many core processor revolution re-
quires that programmers leverage explicit concurrency to
improve performance. Unfortunately, a large body of ap-
plications/algorithms are inherently hard to parallelize due
to execution order constraints imposed by data and control
dependencies or being sensitive to their input data and not
scale perfectly, leaving several cores idle in the impending
multi/many-core processor revolution. The goal of this re-
search is to enable such applications leverage multi/many-
cores efficiently to improve their performance. Our objective
in this work is extend the lock/unlock semantics of Sam-
mati to begin/commit/abort semantics and to provide pro-
grammers with a tool for exploiting parallelism in such ap-
plications.

Technical Approach
This work equips programmers with a powerful tool for ex-
ploiting parallelism by means of coarse-grain speculation.
Our programming model can express computation at any
granularity, so that any application unit can be executed
speculatively without burdening the programmer from the
subtleties of concurrency programming such as using the
low level threading primitives to create speculative control
flows, manage rollbacks, and recover in the event of mis-
speculations.

We present a simple speculative programming frame-
work, Anumita (guess in Sanskrit) [2], in which coarse-grain
speculative code blocks execute concurrently, but the results
from only a single speculation modify the program state. An-
umita is implemented as a shared library that exposes APIs
for common type-unsafe languages including C, C++ and
Fortran. Its runtime system transparently (a) creates, instan-
tiates, and destroys speculative control flows, (b) performs
name-space isolation, (c) tracks data accesses for each spec-
ulation, (d) commits the memory updates of successful spec-
ulations, and (e) recovers from memory side-effects of any
mis-predictions.

Anumita associates each speculation flow’s (e.g., an in-
stance of a code block or a function) memory accesses in
a speculation composition (loosely, a collection of possible
code blocks that execute concurrently) and localizes them,
isolating speculation flows through privatization of address
space. Ultimately, a single speculation flow within a com-
position is allowed to modify the program state. We present
well-defined semantics that ensures program correctness for
propagating the memory updates. Anumita supports a wide
range of applications by providing expressive evaluation cri-

teria for speculative execution that go beyond time to solu-
tion to include arbitrary quality of solution criteria.

Using Anumita requires minimal modifications (8-10
lines on average) to application source code. Additionally,
the speculation-aware runtime manages memory and col-
lects garbage from failed speculations. In the context of
high-performance computing, with the prevalent OpenMP
threading model, Anumita naturally extends speculation to
an OpenMP context through a pragma. To our knowledge,
Anumita is the first system to provide support for exploit-
ing coarse-grain speculative parallelism in OpenMP based
applications.

Our preliminary results [2] using real applications such as
graph coloring problem, partial differential equation (PDE)
solvers and combinatorial problems including sorting indi-
cate that Anumita is capable of significantly improving the
performance of hard-to-parallelize and input sensitive appli-
cations by leveraging speculative parallelism. For instance,
in the PDE solver the speedup ranged from 0.84 to 36.19, for
the graph coloring problem it ranged from 0.95 to 7.33, and
for the sort benchmark it ranged from 0.84 to 62.95. Using
Anumita it is possible to obtain the best solution among mul-
tiple heuristics. We found that in some cases where heuristics
failed to arrive at a solution, the use of speculation guaran-
teed not only a solution but also the one that is nearly as fast
as the fastest alternative. Anumita’s preliminary results in-
dicate that it is possible to exploit coarse-grain speculative
parallelism without sacrificing performance, portability and
usability.

3. Summary
In this dissertation we provide novel techniques to solve sev-
eral challenges faced in concurrent programming. The con-
tributions of the research will extend well beyond our core
technical contributions. By providing usable and efficient
deadlock detection and recovery for threaded codes, we will
provide a critical tool to programmers designing and imple-
menting (and debugging!) complex applications for emerg-
ing many-core platforms. In addition, our solutions to sev-
eral hard problems in concurrent programming will each
serve to broaden the set of codes, and even application do-
mains that will benefit from the rise of manycore platforms.
More broadly yet, this dissertation will impact the future of
concurrent programming and assist in improving the produc-
tivity of application developers. We believe that our research
efforts will help adapt and sustain the increasing core counts
of multi/many-core systems.

References
[1] H. Pyla and S. Varadarajan. Avoiding Deadlock Avoidance. In

PACT ’10, pages 75–86, New York, NY, USA, 2010.

[2] H. Pyla, C. Ribbens, and S. Varadarajan. Programmable
Coarse-Grain Speculative Execution. In OOPSLA ’11, New
York, NY, USA, 2011.

69




