
Towards Transitory Encapsulation

Sebastian Fleissner
Research School of Computer Science

The Australian National University
sebastian.fleissner@anu.edu.au

Abstract
Encapsulation and information hiding are essential and fun-
damental to object-oriented and aspect-oriented program-
ming languages. These principles ensure that one part of
a program does not depend on assumptions on the internal
structure and logic of other parts of the program. While this
assumption allows for clearly defined modules, interfaces
and interaction protocols when software is initially devel-
oped, it is possible that rigid encapsulation causes problems,
such as brittleness, as software changes and evolves over
time. We suggest that, just as the strength of type systems
have relaxed over time, perhaps structural boundaries could,
too be relaxed. Perhaps there could be a new kind of flexible
encapsulation: one that allows non-permanent and flexible
boundaries between program parts.

Categories and Subject Descriptors D.3.3 [Software /
Programming Languages]: Language Constructs and Fea-
tures

Keywords Flexible Encapsulation

1. Introduction
Type systems started out non-existent, then gradually moved
to being strongly enforced, and then (in some languages)
gradually eased back again, into an arrangement where types
are inferred by the interpreter. Work flows followed a simi-
lar forth and back arrangement, with the provision of strict
directory structures, aligned along structural boundaries and
defined by the user, and then with the introduction of My-
lyn relaxing back into a dynamically derived collection of
related elements.

At least to date there has been no major easing of encap-
sulation, such that it, like types in dynamic languages, can

be inferred. There are times when rather than having a man-
ually defined structure, the programmer should be able to
rely on the interpreter for delineation of an “object”. What
if a programmer needs a dynamically defined entity that is
more flexible, fluctuating in its encapsulation over time, or
from different perspectives. Or perhaps, the encapsulation
of some entities are so complex that it cannot be straightfor-
wardly manually defined but should instead be trusted only
to the interpreter to construct?

2. A Case for Something Different
The relaxation of type systems is limited. While types are
now inferred, they rarely change (during runtime) once de-
fined. It is commonly accepted that large modular or object-
oriented programs become more brittle as they evolve, be-
cause of the static nature of interfaces. As pointed out in
[1] and [3], evolution of software systems can lead to com-
plex and inflexible designs, which in turn lead to a huge
amount of effort for enhancements and maintenance. Rigid
interfaces, which facilitate interaction between objects, can
not easily be changed once the implementation of an object-
oriented program has commenced, because a change in one
object’s interface can result in a ripple effect that leads to
adjustments to many other objects.

Lets consider an object-oriented program in which two
or more objects have a subject-observer relationship, also
known as the observer pattern [2]. Figure 1 illustrates the
conceptual design of this pattern.

Attach (Observer)
Detach (Observer)
Notify()

<<abstract>>
Subject

GetState()
SetState()

subjectState
ConcreteSubject

Update()

<<abstract>>
Observer

Update()
observerState
ConcreteSubject

observers

subject

Figure 1. The Observer Pattern

Although the implementation of the Observer pattern is not
very complex, its existence alone underlines the lack of
mechanisms for defining relationships, other than static in-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2817274

42



heritance relationships, between objects in object-oriented
programming. Furthermore, even though the Observer pat-
tern facilitates a small degree of flexibility, the protocols for
registering, unregistering, and notifying observers have to be
fixed during the design phase and later even small changes
can result in a snowball effect that forces modification of
many other objects. Another issue is that the Observer pat-
tern requires the subject to be aware of its observers, to main-
tain a list, and to explicitly dispatch information to each of
them whenever its state changes. However, the spirit of ob-
servation is that an observer should be able to observe a sub-
ject that is oblivious of being observed.

3. Transitory Encapsulation
Here is what transitory encapsulation of program entities
could look like:

• The scope of an entity’s encapsulation is defined by a
boundary and the scope of encapsulation can change over
time (expand or shrink) as the software is running.

• Scope boundaries can be changed from rigid to flexible
and vice versa at any time.

• Existing scope boundaries can be removed and new
boundaries can be added during runtime.

Relaxing the boundaries would have a profound impact on
how information is shared or passed from one entity to
another. Recall the example of the clunky object-oriented
subject-observer relationship. Lets imagine a programming
language and associated virtual machine supporting the flex-
ible boundaries of transitory encapsulation. In this case a
subject-observer relationship could be established by simply
changing the scope of the subjects boundary or temporarily
removing the boundary completely. Then the observer could
observe a certain piece of information in the subject actively,
without requiring the subject to know each observer send out
notifications whenever a change occurs. Figure 2 provides a
visual representation of what the subject-observer relation-
ship using flexible boundaries might look like.

In Figure 2 the subject and observer are shown as program
entities that are located at certain positions in a virtual two-
dimensional space. The scope of the boundary of the subject
is extended and other and any other entity located within the
circle, in this case the observer, can read the data associated
with the subject. As a result, instead of having the subject
notifying and passing data to the observer, the observer sim-
ply reads data from its current position in the virtual space.

It is important to note that we consider transitory encapsu-
lation as a new principle at the programming language and
virtual machine level and not as a feature provided by a soft-
ware architecture or middle-ware. Most of today’s popular
programming languages are textual that tend to enforce rigid
encapsulation to some degree. Generally, the scope of encap-
sulation is fixed: if a piece of information is outside an entity,

ObserverSubject

ObserverSubject

Figure 2. Subject-Observer with Flexible Boundaries

it is going to stay out for as long as the program is running
unless it is somehow passed into the entity through a well
defined interface.

4. Conclusions
Rigid encapsulation is not a bad thing. If fact, we believe
it is a great principle for creating modules that - at least
in theory - can be easily separated from one another and
then recombined. The internal structure of a module can
change without affecting other modules as long as the public
interface remains the same. However, rigid encapsulation
can become a problem when the public interface changes
- and they do change sooner or later. While refactoring
tools can help to some extend, the more complex the system
grows, the more damage changes can cause.

The benefits of having transitory encapsulation - especially
in combination with traditional scoping systems - allows
programs to reorganize themselves when new entities are
introduced or existing entities are adjusted. It would allow
developers to add functionality without having to change
existing interfaces.

References
[1] O. Ciupke. Automatic detection of design problems in object-

oriented reengineering. In TOOLS ’99, page 18, Washington,
1999. IEEE Computer Society. ISBN 0-7695-0278-4.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley Professional Computing Series. Addison Wesley,
1995. ISBN 0 201 63361 2. http://www.aw.com.

[3] C. L. Nehaniv, J. Hewitt, B. Christianson, and P. Wernick.
What software evolution and biological evolution don’t have in
common. In Second International IEEE Workshop on Software
Evolvability. IEEE Computer Society, 2006.

43


