
Automated Testing of Non-functional Requirements

Kristoffer Dyrkorn

BEKK Consulting, Oslo, Norway

kristoffer.dyrkorn@bekk.no

Frank Wathne

BEKK Consulting, Oslo, Norway

frank.wathne@bekk.no

Abstract
We present an open-source toolkit that enables automated
testing of non-functional requirements. Our toolkit offers an
alternative to current approaches (e.g. testing suites) bybe-
ing lightweight, flexible, free and by reusing libraries and
executables found on common operating systems and plat-
forms. The toolkit provides developers and project managers
with reports about the system under development. We would
like to advocate the importance of non-functional testing,es-
pecially in the context of agile projects, and we have experi-
enced significant risk reductions in our projects when using
the toolkit described here.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging - Testing tools (e.g., data
generators, coverage testing); K.6.3 [Software Engineer-
ing]: Software Management - Software development

General Terms Measurement, Performance, Reliability,
Verification

Keywords Automated testing, non-functional requirements,
metrics, open source

1. Introduction
Most automated testing tools are limited to the aspect
of functional testing. We claim that the testing of non-
functional requirements (performance, scalability, robust-
ness, recoverability, cacheability, etc) in server applications
should be considered equally relevant and subject to au-
tomation. In our opinion, running such tests are highly valu-
able during the development process. In our session we will
demonstrate an implementation that allows for automated
testing of non-functional requirements.

Copyright is held by the author/owner(s).

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

2. Background
Agile methods are well-known practices within software de-
velopment. Along with automated tests, these practices have
improved software development processes and the qual-
ity and predictability of software releases. Agile practices
has increased the focus on writing testable code, leading to
widespread adoption of Inversion-of-Control containers and
the Dependency Injection pattern.

However, most automated tests do not cover the external
– i.e. non-functional – behaviour of the code being devel-
oped. As an example, performance and scalability issues will
not be detected by the execution of unit tests. In addition,
non-deterministic or transient phenomena (e.g. the effects of
caching) might not be revealed at the unit test level. Thus the
”green lights” commonly in use in automated test tools are
only valid in a local context and might give a false impres-
sion of what the net effects of code changes are. Automated
testing of the non-functional system properties will narrow
this risk-inducing gap.

3. Automation at the System Level
Our method of doing system-wide automated testing follows
the principle of black-box testing. We run client programs
against a server in order to exercise the system as a whole
in a realistic manner. Example communication protocols
and interfaces include: HTTP (for standard web traffic and
REST-based integration), HTTP + SOAP/WSDL (for web
services), JDBC/ODBC (for databases) and JMS/MSMQ/MQ
(for queue-based systems).

The client programs send pre-generated or self-generated
requests to the system, and we collect response messages, re-
sponse metadata (e.g. headers, response times), application
logs, server logs, and statistics from the operating system
(CPU usage, memory usage). We also run performance and
scalability tests and simulate system interruptions by forcing
restarts of server processes under load.

The gathered data is formatted into a project-specific
report containing the most relevant system outputs and
metrics, e.g. response times, processing rates at increasing
load, application logs, validation errors of system responses,
and memory and CPU usage. The generated report is then
archived for later retrieval.

719



4. Generating Requests
Valid testing depends on realistic request patterns, the ideal
– and utopic – approach being to expose the system to its
future traffic. Other approaches will imply a sampling of the
system behaviour, thus being subject to inaccuracies. One
will have to ensure that test data expose the significant sys-
tem behaviours to a sufficient degree. Some ways to generate
requests are:

• Using historical requests from the production system

• Using self-discovering request generators

• Generating random – but valid – requests

• Manually recording requests

The approach to choose will depend on the complexity of
requests and responses. We have experienced great benefits
from using self-discovering generators – for example, by
using a web crawler to traverse a web site. Self-discovery
makes the tests less susceptible to changes. By the proper use
of WSDL and generated data, self-discovery is also possible
for web services. Other protocols might not support self-
discovery .

Using historical data from a production system is ben-
eficial if a production system already exists. Test and pro-
duction environments must be compatible, and security poli-
cies, costs and/or operational routines must allow this. Asa
principle, we strongly believe that the option to easily re-
play transactions from a production system on a test system
should be available in any software project. This feedback
loop will simplify the recreation of production errors and
give highly relevant test results.

An alternative is to use a fixed set of test data and to
observe the relative changes in metrics over time. The need
for consistent sampling (using test data over time, to make
comparisons possible) will have to be balanced against the
need to adapt to system or API changes (updating the test
data, but losing the baseline). As usual, accuracy must be
traded with effort.

Our experience is, however, that the testing approach de-
scribed here gives valuable output already at a low initial
cost and that accuracy can be improved incrementally. Sys-
tem level testability should be a design goal in a manner sim-
ilar to what testable code now is – due to agile methods and
automated functional testing.

5. Implementation, Usage and Experiences
Our implementation is based on scripts that execute various
command-line programs (protocol clients), and the console
output forms the basis of the test report. Ant has been cho-
sen as the top-level script container due to easy integration
with automated test tools such as CruiseControl. Unix text
utilities were chosen for text processing due to simplicity,
flexibility and cross-platform availability. We have also writ-

ten some clients as basic command-line programs. The test
report consists of a set of HTML files and graphs.

Our practice has been to run the automated tests every
night and to review the reports before the standup meeting
the following day. Thus the project team has a continuous
overview of the system behaviour, and task priorities can be
changed immediately if major issues are identified. Being
able to quickly reverse changes or start work on alternative
solutions reduces risk effectively.

Overall, we have focused on making important informa-
tion as easily available as possible. We believe there is a
tendency for teams to forget or avoid repetitive and cum-
bersome tasks, e.g. reading application logs from multiple
servers. Gathering a description of the system behaviour in
one place is helpful and also simplifies matching error mes-
sages in logs with other reported system abnormalities. Also,
having an archive of reports makes it possible to track the
system behaviour over time.

In one of our projects it became essential to do validation
of the system responses. Here our task was to build an infor-
mation web site with strict accessibility requirements, and
we adopted our toolkit to generate reports over HTML vali-
dation errors, broken links and character encoding issues.

In conclusion, we believe that by doing automated non-
functional testing we have been able to rapidly detect issues
that otherwise would be hidden or discovered later. This
has lead to better risk management and predictability in our
projects, and we have experienced that careful composition
and orchestration of basic software components can yield a
flexible and powerful tool.

6. Future Improvements
Our implementation does not provide a complete solution to
all aspects of non-functional testing. Instead, we think itis
better to create a simple and open toolkit that in turn can be
adapted to a variety of projects and architectures. Some areas
to further explore are: Testing of security (request mutation,
cross-site scripting), bandwidth conservation (web caching,
response compression) and HTML rendering (visual verifi-
cation of layout).

Acknowledgments
The authors would like to thank The Research Council of
Norway for donating the toolkit to open source.

References
[1] http://en.wikipedia.org/wiki/Testautomation

[2] http://en.wikipedia.org/wiki/Agilesoftwaredevelopment

[3] http://en.wikipedia.org/wiki/Inversionof control

[4] http://en.wikipedia.org/wiki/Dependencyinjection

[5] http://cruisecontrol.sourceforge.net/

720


