
A Comprehensive Model Transformation Approach to
Automated Model Construction and Evolution

Yuehua Lin and Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham, Birmingham, AL 35294, USA
1-205-934-5841

{liny, gray} @ cis.uab.edu

ABSTRACT
As models are elevated to first-class artifacts within the software
development lifecycle, the task of constructing and evolving
large-scale system models becomes a manually intensive effort
that can be very time consuming and error prone. To address
these problems, this research poster presents a comprehensive
approach to model transformation. Within this approach, a high-
level aspectual model transformation language is designed to
specify tasks of model construction and evolution, and then a
model transformation engine is used to execute transformation
specifications in an automated manner. Testing and debugging
tools at the modeling level are provided to assist in detecting
errors in the model transformation.

Categories & Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Object-oriented design methods, D.2.5 [Software Engineering]:
Testing and Debugging, and D.2.6 [Software Engineering]:
Programming Environments – graphical environments.

General Terms
Design, Languages, Verification.

Keywords
Modeling, Model Transformation, Testing, Debugging.

1. INTRODUCTION
As models are elevated to first-class artifacts within the software
development lifecycle (e.g., to represent designs, generate tests
and synthesize code), the fundamental task of model construction
and evolution can become manually intensive. For example, a
distributed real-time and embedded (DRE) system can have
multiple thousands of coarse grained component models [3]. A
manual process for evolving such complex systems can be error
prone and require much time to make changes across a large
model hierarchy. Tools to automate the construction and
evolution of models may help to mitigate such problems. Many
commercial and research toolsuites provide APIs to manipulate
models. However, an API approach requires model developers to
learn and use low-level tools to program their tasks of
transforming high-level models. To improve the level of

abstraction in constructing and evolving models, this poster
describes a high-level model transformation language and
associated tools for automated model construction and evolution.

In our model transformation approach, tasks of model
construction and evolution are specified in a transformation
language (called the transformation specification) and then a
model transformation engine is used to execute transformation
specifications in an automated manner. However, a
transformation specification is written by humans and susceptible
to errors. Additionally, a transformation specification may be
reusable across similar domains. Therefore, it is essential to
ensure the correctness of the transformation specification (i.e., the
consistency and completeness, as validated against model
transformation requirements) before it is applied to a collection of
models. An objective of this research is to apply testing and
debugging techniques to model transformations to assist in
improving the accuracy of transformation results. The
transformation testing defined in this research involves executing
a transformation specification with the intent of revealing errors
by comparing the actual output model with an expected model.
After determining that there are errors in a model transformation
specification, a debugging tool at the modeling level assists in
identifying the errors by stepwise execution of a transformation
specification. Currently, a few transformation tools provide
limited debugging facilities (e.g., GReAT [1]). However, there are
no reports in the literature regarding efforts that provide the
facilities for transformation specification testing.

The primary contribution of this research is an investigation into
automated model construction and evolution through model
transformation that considers additional issues of testing and
debugging to assist in determining the correctness of model
transformation. Other related contributions include addressing the
critical issue of model comparison algorithms and visualization of
model differences, which also assists in version control of models.

2. RESEARCH OVERVIEW
This research is conducted within a meta-modeling tool known as
the Generic Modeling Environment (GME) [6]. Our core model
transformation engine is the Constraint-Specification Aspect
Weaver (C-SAW), which has been constructed as a GME plug-in
and applied to various large system models. Initial progress on
transformation testing and debugging is described in [5].

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

104

2.1 Model Transformation Engine: C-SAW
Originally, C-SAW was designed to address crosscutting
modeling concerns, but has evolved into a general model
transformation engine. When performing a transformation with C-
SAW, one input is a source model, and another input to C-SAW is
the transformation specifications written in the Embedded
Constraint Language (ECL). These specifications are executed by
C-SAW to weave changes into source models and generate the
target models.

The ECL supports an imperative transformation style, which
provides features such as collection and model navigation, as well
as a rich set of operators to support model aggregations,
connections and transformations. An ECL transformation
specification usually consists of two kinds of modular units:
aspect and strategy. An aspect is a modular construct that
specifies a crosscutting concern across a model hierarchy. A
strategy is used to specify elements of computation (e.g.,
transformation behaviors) that will be bound to specific model
nodes defined by an aspect. The following code segment is an
aspect example:

aspect ImplModels ()
{ rootFolder().findFolder("Components").

models() select(m|m.name().endWith("Impl"))
 AddConcurrency();

}

This aspect selects all the models whose names end with “Impl”
from a folder called “Components.” A strategy called
AddConcurrency (not shown here) is then applied to the selected
models. Using the aspect and the strategy constructs in ECL, a
task of model construction or evolution can be specified as a
model transformation process.

Within C-SAW, there is a parser and an interpreter for ECL. The
parser is responsible for generating an abstract syntax tree (AST)
of the ECL specification. The interpreter then traverses this
generated AST from top to bottom, and interprets it to perform a
transformation by using modeling APIs provided by GME. Thus,
the accidental complexities of using the low-level details of the
GME API are abstracted in the ECL to provide a more intuitive
representation for specifying model transformations.

2.2 Transformation Testing and Debugging
Transformation specification testing is needed to assist in finding
the errors in transformation specifications. The transformation
specification test engine has three components: the executor, the
comparator and the test analyzer. The executor is responsible for
executing the to-be-tested specification on the input model to
generate the output model. The comparator computes the
mappings and differences between the output model and the
expected model. A test analyzer visualizes the model differences
to assist in comprehending the comparison and provides a
capability to navigate among any differences. If there are no
differences between the actual output and expected models, it can
be inferred that the model transformation is correct with respect to
the given specification. If there are differences between the output
and expected models, the errors in the transformation
specification need to be isolated and removed.

As an initial solution to model comparison, our algorithm will
only determine whether the two models are syntactically
equivalent by comparing all the elements and their properties
within these models. A possible solution to visualization of model
differences is to use graphical symbols and colors to indicate all
possible kinds of model differences (e.g., a missing element, or an
element that has different values for some properties [2]).

After determining that an error exists in a model transformation, a
debugging tool can offer support for isolating the cause of a
transformation error. A model transformation debugger must
understand the model representation, as well as possess the ability
to step through individual lines of the transformation specification
to display the model data intuitively within the host modeling
environment.

3. RESULTS AND EVALUATION
This work is being experimentally validated on a mission
computing avionics application provided by Boeing, which
contains over three million lines of C++ code. C-SAW is helping
to evolve this code base through model transformations [4].
Recently, C-SAW has been used in addressing the important issue
of model scalability [3]. Furthermore, we plan to apply C-SAW to
several other research projects for rapid model construction and
evolution. The feedback of these experiments will assist in
evaluating C-SAW’s ability to automate model construction and
evolution in various domains for specific types of transformations
(e.g. reduced time, increased accuracy and usability). More details
about C-SAW can be found at the following project website:
http://www.cis.uab.edu/gray/Research/C-SAW

ACKNOWLEDGEMENTS
This project was previously funded by the DARPA Program
Composition for Embedded Systems (PCES) program, and
currently supported by the National Science Foundation under
CSR-SMA-0509342.

REFERENCES
[1] Agrawal, A., Karsai, G., and Lédeczi, A., “An End-to-End

Domain-Driven Software Development Framework,” 18th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), Anaheim, CA, October 2003, pp. 8-15.

[2] Alanen, M. and Porres, I., “Difference and Union of
Models,” UML Conference, Springer-Verlag LNCS 2863,
San Francisco, CA, October 2003, pp. 2-17.

[3] Gray, J., Lin, Y., Zhang, J., Nordstrom, S., Gokhale, A., and
Neema, S., “Replicators: Transformations to Address Model
Scalability,” Model Driven Engineering Languages and
Systems (MoDELS), Montego Bay, Jamaica, October 2005.

[4] Gray, J., Zhang, J., Lin, Y., Wu, H., Roychoudhury, S.,
Sudarsan, R., Neema, S., Shi, F., and Bapty, T., “Model-
Driven Program Transformation of a Large Avionics
Application,” Generative Programming and Component
Engineering (GPCE 2004), Springer-Verlag LNCS 3286,
Vancouver, BC, October 2004, pp. 361-378.

[5] Lin, Y., Zhang, J., and Gray, J., “A Framework for Testing
Model Transformations,” Model-driven Software
Development, Springer, Chapter 10, pp. 219-236, 2005.

[6] http://www.isis.vanderbilt.edu/Projects/gme

105

