

Reflections on Reflection

James O. Coplien

Gertrud & Cope

cope@gertrudandcope.com

Abstract

Though it usually makes its appearance only as a footnote
in the broader discourse of object design, reflection is a
recurring and sometimes noisily divisive topic in object-
orientation. Glimmers of reflection pervade even the dark-
est corners of the tapestry of object orientation’s history. In
fact, the broader notion of code’s self-knowledge, such as
run-time method dispatch, goes to the heart of what differ-
entiates objects from other paradigms.

Object orientation, at its roots, was about people and
human mental models. It is impossible to make serious
headway in these models without reasoning about the sys-
tem outside of its simple imperative expression. By anal-
ogy, the silent movie era of film held that by removing
speech, the media of film could both appeal to broader
audiences and to tap into the broader human universals that
speech obfuscates.

Programs are the silent films that connect much of hu-
manity today. The silent experience plays out at the screen;
the Internet is the deep hardware on which it runs, and our
software illuminates and articulates the connections be-
tween them. To make software fulfil any social agenda of
human problem-solving requires a link between the reflec-
tions of the individual and those of the software; to rise to
social phenomena requires a computational model that
accommodates reflection at the social and societal layers.

The DCI (Data, Context, and Interaction) paradigm pro-
vides a world model whose reflection allows program
structure to shift with the dynamics in the context of appli-
cation while featuring new ways to clearly present program
structure to faithfully capture end-user mental models of
uses cases and data. DCI and other recent post-modern
approaches offer breakthroughs that raise reflection to its
proper place as a first-class programming concern.

Categories and Subject Descriptors C.0 [System Appli-
cation Architecture]

General Terms Algorithms, Design, Human Factors, Lan-
guages, Theory, Verification.

Keywords DCI; aspect-oriented programming; reflection;
object-oriented programming; use case; silent movies;
social discourse.

1. The Vision

For me, the high point of the past 27 years of OOPSLA was
Dave Thomas’ (originally Jerry Archibald’s) tutorial on
“The behavior of behavior” at OOPSLA ‘91. George Bos-
worth, Adele Goldberg and other notables interjected key
technical and historic insights during the talk. The talk was
an example of the potential of reflection to accomplish
great work with little effort, but the very “gee-whiz” timbre
of the talk revealed its arcane nature. In fact reflection has
had difficulty gaining a footing over the years, due in large
part to a lack of understanding of how to constrain it.

We can better appreciate the need for through its name-
sake in the human domain, and use that understanding to
create better apologies for reflection and better-tuned com-
putational models for its application. In this talk I will show
that reflection is crucially fundamental to the success of
any program that enjoys use in a human context, and will
suggest ways in which technology can smooth the way to
better reflection in design and programming.

2. Meta is fundamental

The object vision of programming is rooted in a belief that
we can go beyond formal logic to tap into human cognition,
while the trappings of polymorphism and encapsulation are
largely derived afterthoughts from software engineering. If
we want programming languages to support human en-
deavour, we must revisit and reflect on how we think. Hu-
man discourse unfolds along ever deepening, alternating
layers of extemporization and reflection. To communicate
literally, while excising the contextual underpinnings, is not
to communicate effectively. The silent movie era of film
was in fact rooted in a belief that pictures opened a rich
interchange that could tap into the broader human contexts
that speech obfuscates, with no lesser aspiration than to
head off what ultimately became World War I [7]. Written
scripts underpinned the unspoken scenes; the scripts built
on timeless human concerns. Copyright is held by the author/owner(s).

SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

7

Programs are the silent films that connect much of hu-
manity today. The silent experience plays out at the screen;
the Internet is the deep hardware on which it runs, and our
software illuminates and articulates the connections be-
tween them. To make software fulfil any social agenda of
human problem solving requires a link between the reflec-
tions of the individual and those of the software; to rise to
social phenomena requires a computational model that
accommodates reflection at the social and societal layers.

Hofstadter’s Gödel-Escher-Bach [1] playfully makes a
strong argument that having a concept of self is the essence
of intelligence. Individual objects can represent information
as data, and can interpret that data in their methods. But
intelligence is more than knowledge. We need a computa-
tional model that lifts us above semantics and epistemology
into hermeneutics: the ability to reason. That means reflec-
tion at the level of network computation: connections be-
tween objects. This doesn’t mean the kind of unconstrained
reflection that gave it a reputation as a “dangerous” tech-
nique, or the kinds of surprises one finds with Aspects [2].
We need a computational model whose code self-organizes
around mental models. That’s roughly how objects started.
[3]

Human beings of all sorts figure into this issue. I as a
programmer must reflect more about the interaction be-
tween users and their program and less about my interac-
tion with the program or about the end user’s interaction
with me during requirements. Agile is about the latter and
user experience (UX) work is about the former. Reflection
is about all three together, but we have matured to deal with
these issues only pair-wise.

This view of system construction implies that “going
meta” is not an option, or a distraction, or a deferrable
phase. Meta is where it starts. Meta provides the foundation
on which non-meta stands. We need to move beyond pro-
gram semantics to epistemology — a theory of knowledge
— and interpretive hermeneutics. We need the meaning of
meaning; the behaviour of behaviour.

Aspects were one noble attempt to open the dialog on
reflection and to move away from the imperative expres-
sion of program logic to more conceptual building blocks.
As has been described elsewhere, this reflects a shift from
the modern school of thought to a more post-modern
framework. However, Aspects were based on overly find
units of behaviour, focusing on class-granularity features
instead of use cases. And they create serious challenges for
comprehensibility of the program flow at that.

3. Reflection and the Programming Model

Reflection is to program dynamics as architecture is to
program statics. There has classically been strong focus on
the design of the source structure of an object-oriented
program: choosing the right classes (CRC cards, designing
class hierarchies) and capturing them in the code. Most
object-oriented programming languages focus on classes as

their primary building block. Most object testing regimens
claim to focus on testing individual classes (though the
actually just test class methods).

Object-oriented programmers have long held similar
models, knowing that there are general recurring properties
that recur place-wise in multiple enactments of business
and social transactions. Base classes have traditionally
served as the home for such recurring business logic. Pro-
grammers also know that no two enactments ensue in ex-
actly the same way. While the general form of the use case
may be formalizable in closed form, its details cannot.
Designers and programmers represent those details as dif-
ferent values in the objects involved in the computation.
Some variants can best be understood by structuring the
data different or by adding data values, as an investment
account is different than a deposit account in the presence
of an interest value. Programmers organize these data dif-
ferences using classes, and organize them as hierarchies.
Method specialization has followed, happily building on
the basic programming language facilities for structuring
data variations through inheritance, to express method
variations using the same mechanism.

No one talks about the dynamics of object relationships.
No one designs objects. Use cases rarely survive beyond
analysis: their identity disappears, scattered across the
network of interacting objects. If they are not explicit in the
code you cannot understand them from the code. Class
method design is difficult because the code of one class’s
methods cannot be cognisant of the method it may invoke
in another class: Dynamic object bindings and polymor-
phism, which try to compensate for an overly complex
source code structure, make this impossible.

The polymorphism of Smalltalk, C++, .Net, and Objec-
tive-C today implement an impoverished kind of reflection
that is more general than is necessary. It is reminiscent of
the early visions of reflection as “a dangerous technique” in
the spirit of changing class Behavior or re-wiring the vir-
tual machine of a symbolic language. This leads to a para-
dox between accidental complexity of unconstrained re-
bindings and overly restrictive coupling between program
use cases and data. We want the program to be able to
reason about itself in a way that reflects how end users
think about the program. Today’s code reflects a static
worldview that strips out on much of the end user model of
the workflow, and attempts to compensate for it by dy-
namically dispatching methods on classes that the language
forces to be designed in isolation, without regard for the
interactions between them.

3.1 DCI

DCI, which Trygve Reenskaug and myself have been de-
veloping over the past ten years, provides a model of re-
flection that allows the program to create a new set of pro-
gram structures for each new use case enactment, while
capturing the common recurring rhythms of both system
behaviours and of recurring data configurations. Regarding

8

the latter, DCI still has classes, but they are reduced to
managing the way the computer represents information in
storage. DCI gives system activities full first-class standing
as algorithms, expressed in terms of the roles [5] involved
in a use case. Each use case lives within another program-
ming construct called a Context. Program interactions al-
ways take place in the context of some configuration of
social actors, and the Context is the locus of that aspect of
the human mental model.

The Context is the main unit of reflection. A Context
corresponds to a use case, whose roles it encapsulates. For
each use case enactment it changes the program structure to
create a network of objects suitable to carry out the use
case. All the same, those aspects of structure that are static
in the end user mental model — such as the use case itself
— remain static in DCI code and statically can be reasoned
about in during program construction.

By adding this form of structured reflection to the com-
putational model, we slice the program dynamics so the
code clearly expresses the use case structure. Paradoxically,
this selective reflection greatly aids code comprehensibil-
ity. The use case becomes a primary structure in its own
right, with the data class structure another. Compile-time
inheritance forces use cases to be split across class layers
whose run-time dynamics cannot be reasoned about in the
code. DCI’s reflection gives the behavioural part its own
expression apart from the data structure.

4. Conclusion

Reflection has had a checkered history as a technique in its
own right, though by definition every OO program ex-
presses some form of it. Reflection has stumbled and strug-
gled for a lack of discipline and for a lack of concern for
human mental models, and for the difficult task of tying
together the triangle of relationships between the program-
mer, the end user, and the program.

Many thanks to Thore Bjørnvig and Trygve Reenskaug.

References

[1] Hofstadter, Douglas. Gödel-Escher-Bach: An eternal golden
braid. Basic Books (1979).

[2] Kiczales, Gregor. Et al. “An overview of AspectJ.” Proceed-
ings of ECOOP (2001).

[3] Kay, Alan. “The Early History of Smalltalk.”
http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.ht
ml (2007).

[4] Reenskaug, Trygve.
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-
MVC.pdf (1978)

[5] Reenskaug, Trygve. Working with objects: The OORAM
Software Engineering Method. Prentice-Hall (1996).

[6] Coplien, James, and Bjørnvig, Gertrud. Lean Architecture for
Agile Software Development. Wiley, 2010.

[7] Bjørnvig, Thore. The Holy Grail of Outer Space: Pluralism,
Druidry, and the Religion of Cinema in The Sky Ship. In
Astrobiology, October 2012, http://www.liebertpub.com/ast.

9

