
Pluggable Scheduling for the Reactor Programming Model

Aleksandar Prokopec

Oracle Labs, Switzerland

aleksandar.prokopec@oracle.com

Abstract
The reactor model is a foundational programming model

for distributed computing, whose focus is modularizing and

composing computations and message protocols. Previous

work on reactors dealt mainly with the programming model

and its composability properties, but did not show how to

schedule computations in reactor-based programs.

In this paper, we propose a pluggable scheduling algo-

rithm for the reactor model. The algorithm is customizable

with user-defined scheduling policies. We define and prove

safety and progress properties. We compare our implemen-

tation against the Akka actor framework, and show up to 3×
performance improvements on standard actor benchmarks.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming; D.4.1 [Process

Management]: Scheduling

General Terms Algorithms

Keywords reactor model; reactors; scheduling; compos-

able distributed computing; event streams; channels; actors

1. Introduction
The recently proposed reactor model (Prokopec and

Odersky 2015) (Prokopec 2016) uncovered a new route to

composable distributed computing. Instead of composing

message protocols across multiple actors, the reactor model

advocates protocol composition within a single unit of con-

currency called a reactor. This composition is achieved by

exposing multiple typed first-class event streams instead of

a static receive statement.

The original reactor model proposal (Prokopec and Oder-

sky 2015) dealt with the programming model, but did not

discuss the underlying implementation. Existence of mul-

tiple event streams within each reactor poses a scheduling

problem that differs from that of the standard actor model, in

which each actor has a single mailbox. In the reactor model,

the fundamental constraint is the following: events from dif-

ferent event streams must be scheduled fairly, but serially for

any two event streams belonging to the same reactor.

The goal of this paper is twofold. First, we propose a

scheduler for the reactor model, identify its properties and

show correctness. Second, we make the scheduler pluggable,

allowing clients to implement custom scheduling policies.

There are several reasons why a scheduler should be plug-

gable. First, it is expensive and time consuming to develop

an optimal scheduler. A more prudent plan is to develop a

system with a sub-optimal scheduler, and then (let clients)

improve it incrementally when concrete requirements arise.

Second, not every scheduler is perfect for every situation.

A scheduler can claim optimality across all possible work-

loads, i.e. be Pareto optimal, but it is likely that there is a

more optimal scheduler for a particular class of workloads.

For example, in the Ping-Pong benchmark (Imam and Sarkar

2014a), another message is likely to arrive soon after the ac-

tor sends a message, and it helps to keep a (re)actor acti-

vated even when there are no pending messages to handle.

However, in the Thread Ring benchmark, the same heuristic

wastes processor time, as it is unlikely that a message will

arrive soon. In these cases, users should be able to decide

which scheduling policy is appropriate for their workload.

Third, certain scheduling policies are application-specific

and rely on explicit domain knowledge. For example, if

a reactor needs a special system-wide resource (such as a

GPU or a DSP), then the scheduler needs to negotiate the

availability of the resource with the OS. A generic scheduler

does not have OS-specific knowledge, and this warrants a

user-defined scheduling policy.

This paper brings forth the following contributions:

• Detailed description and implementation of a scheduling

algorithm for the reactor programming model.

• A pluggable mechanism for user-defined scheduling poli-

cies, which can embed application-specific knowledge.

• A list of safety and progress properties for a reactor

scheduler to satisfy. We analyze the proposed algorithm,

and show that it satisfies these properties under specific

assumptions on the user-defined scheduling policy.

• A comparison on the Savina benchmark suite (Imam and

Sarkar 2014a) with the Akka actor framework. We show

that our reactor implementation outperforms Akka on 6

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

AGERE’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4639-9/16/10...$15.00

http://dx.doi.org/10.1145/3001886.3001891

41

out of 8 benchmarks by a factor of 1.1 − 3.3×, and

otherwise has comparable performance.

This work focuses on scheduling reactors in a single reac-

tor system, on a single shared-memory machine. Scheduling

reactor execution in a fault-tolerant distributed setting is not

the goal of this work. That problem is based on an entirely

different set of assumptions (such as faults, preemptions,

network delay, lack of shared memory), and consequently

results in different abstractions. In practice, this is the task

of the cluster manager, and not the reactor scheduler. How-

ever, effective single-machine scheduling is a performance

prerequisite for efficient distributed computations.

Code examples are written in Scala (Odersky and al.

2004), a statically compiled language, primarily targetting

the JVM. Syntax is similar to Java, but more concise. Vari-

ables and final variables are defined with keywords var and

val, respectively, and methods with the def keyword, as

in Python. Type annotations come after a : following an

identifier, similar to Pascal. Function objects are declared

with a list of parameters, followed by => and a body. Par-

tial functions are declared as a list of case statements, and

are defined for the values matched by at least one of the

cases. Traits and the with keyword are equivalents of Java

interfaces and implements. Type parameters are enclosed in

square brackets, []. Operators, such as !, are normal meth-

ods with symbolic names. Critical sections are delimited

with a synchronized block.

The rest of the paper is structured as follows. In Section

2, we describe the reactor model. We then describe the rel-

evant internals of our reactor framework and the pluggable

scheduling algorithm in Section 3. In Section 4, we show

how our scheduling algorithm can be customized with user-

defined components. Section 5 evaluates the scheduling im-

plementation with standard workloads, Section 6 shows re-

lated work, and Section 7 concludes.

2. Reactor Model

The reactor programming model (Prokopec and Oder-

sky 2015) is a generalization of the standard actor model

(Erlang 2015) (Agha 1986). There are three major differ-

ences between these two models. First, the reactor model

exposes multiple first-class event streams instead of a static

receive statement. Second, in the reactor model, a computa-

tion can wait for events from multiple event streams simul-

taneously, whereas an actor can be suspended on a single

receive statement at a time. Third, targets of message sends

are typed channels instead of untyped actor references1. As

argued before (Prokopec and Odersky 2015), these three

fundamental differences allow modularity and composition

of message protocols within a single reactor, a feature that

was previously not possible with actors alone. For exam-

ple, the reactor model allows defining best-effort and reliable

broadcasts, failure detectors (Guerraoui and Rodrigues) and

1 In Erlang, actor references are called process IDs.

CRDTs (Shapiro et al. 2011), and exposing them as reusable

components, which can be either embedded into a reactor, or

further composed into more complex protocols.

In the reactor model, the principal unit of concurrency is

called a reactor. Analogous to how an actor can process at

most a single message at once, a reactor can process at most

a single event at any point in time. This serializability prop-

erty is one of the major strengths of (re)actors, as it allows

users to access local state without the use of synchronization.

Consider a reactor that counts how many events it re-

ceived. The following code snippet declares a reactor tem-

plate AnalysisReactor that tracks how many string events

it received. Field numEvents is part of the reactor’s state:
class AnalysisReactor extends Reactor[String] {

var numEvents = 0 }

Defining a reactor template does not yet start a reactor

instance. Before we see how to do that, we need to define

how the reactor receives events. Entities that allow handling

incoming events are called event streams. Every reactor gets

a default event stream called main.events when it is created.

To receive an event, users need to pass an event handler to

the stream’s onEvent method. We extend the body of the

previous reactor template with a call to onEvent:

main.events.onEvent { x => numEvents += 1 }

Generally, an event stream has the type Events[T]. In our

case, main.events has the type Events[String], because

we declared a reactor of type Reactor[String].

A reactor is not limited to receiving events on a sin-

gle event stream. During its lifetime, a reactor can receive

from any number of event streams. Apart from the main

event stream, every reactor has a system event stream called

sysEvents that delivers lifecycle events – for example, when

the scheduler assigns execution time to the current reactor,

or the reactor terminates. We can react to a subset of system

events by passing a partial function to onMatch method of

the event stream. In the following, we expand the earlier re-

actor template with a variable numSch, and count the number

of times the reactor was assigned execution time. We expect

that each time the reactor is scheduled, it handles several

events. When the reactor terminates, we print the average

number of events handled each time it got scheduled:
var numSch = 0

sysEvents.onMatch {

case Scheduled => numSch += 1

case Terminated => print(numEvents / numSch)

}

Every event stream has a corresponding channel. A chan-

nel is the writing end of the event stream. It has the type

Channel[T], where T corresponds to the event stream type.

Whereas an event stream can be used only by the reactor that

owns it, a channel can be shared with any other reactor. The

basic operation on a channel is an event send !. In the fol-

lowing, we extend the reactor template to send a message to

the main channel when the reactor starts:
sysEvents.onMatch {

case Started => main.channel ! "started" }

42

To create additional channels and event streams, a reactor

can use the open statement. Given the type of events, say

Int for integers, the open statement returns a fresh pair of a

channel and the corresponding event stream:

val (numberEvents, numberChannel) = open[Int]

To create a running reactor instance from a reactor tem-

plate, we need to call the spawn method of the reactor sys-

tem. Spawning a reactor returns its main channel:
val ch: Channel[String] =

system.spawn(Proto[AnalysisReactor])

Proto is a wrapper around the specific reactor class, used

to set properties such as the textual name of the reactor.

We stated that reactors generalize actors. To support this,

we encode an Akka-style (Akka 2015) actor with a reactor

from the Reactors.IO framework (Prokopec 2016). The reac-

tor receives events of type Any, which is the top type in Scala.

Any event x from the main event stream is forwarded to the

partial function receive. Otherwise, the event is discarded.
abstract class AkkaActor extends Reactor[Any] {

def receive: PartialFunction[Any, Unit]

main.events.onEvent { x =>

if (receive.isDefinedAt(x)) receive(c)

} }

Exact formal semantics of the reactor model can be found

in related work (Prokopec and Odersky 2015). In a nutshell,

the reactor model has the following components:

• Starting computations: reactor templates that define re-

actors, and the spawn method used to start them.

• Receiving events: event streams and the onEvent method,

used to subscribe to incoming events.

• Sending events: channels and the ! operator, used to

send events to other reactors.

• Modularising protocols: the open method, used to cre-

ate supplementary channels in the current reactor.

The main difference with the actors is that there are multi-

ple event streams in each reactor, and events can be delivered

on any of them. Before examining the proposed scheduling

algorithm, we examine its desirable properties.

2.1 Properties of a Reactor Scheduler

We now explore some desirable properties that a reactor

scheduler should satisfy. In what follows, we say that an

event is delivered if it is enqueued on an event queue. We

say that a reactor is activated when it becomes scheduled to

process some of the delivered events. We say that an event is

handled when the event handlers from corresponding event

streams get invoked for that event.

Serializability states that a reactor at any point in time

runs at most one of its event handlers. Processing events

serially, in sequence, prevents race conditions that would

otherwise result from simultaneously manipulating reactor

state. Importantly, serializability applies to events received

on all event streams of the same reactor – at most one handler

across all event streams may be active at any time.

Liveness states that if an event is delivered to the reactor

on some event stream, then the corresponding event handler

is eventually invoked. Liveness prevents starvation – a sce-

nario where specific subsets of events are never processed,

preventing normal program progress.

Although liveness ensures that all delivered events are

eventually handled, it is in practice useful that a scheduler

provides a stronger guarantee. A scheduler should avoid a

scenario in which a set of events delivered to one event

stream grows indefinitely. This can, for example, occur in

a multiple producer, single consumer setting. Liveness only

ensures that the single consumer is eventually scheduled, but

does not prevent its event queue from growing indefinitely.

To be fair, a scheduler must ensure that some event streams

get processed more often than others. We formulate fairness

as follows – for any two events x and y, such that x is the

dx-th event delivered globally and y is dy-th, and x is the hx-

th event handled globally and y is hy-th, difference hx − hy

must be bound by dx − dy +C, where C is a constant. This

is essentially a global relaxed FIFO condition.

Aside from being fairly executed, reactors must be able to

exploit parallelism. A reactor scheduling system is scalable

if it meets the following. First, event handling must retain

the same performance in the presence of concurrent event

delivery. Second, event delivery time must be O(1) when

there are P events delivered concurrently on any subset

of event streams. Third, event delivery time must be O(1)
irrespective of the number of event streams E in the system.

The scheduling sytem must be efficient – the time spent

scheduling must be amortized by the execution of user code.

Scheduler overhead should not be noticeable. This property

is validated through an empirical evaluation.

The last important concern is pluggability. Clients that

possess domain knowledge must be able to apply this knowl-

edge to their scheduler to make the system more efficient.

Pluggability allows controlling when a specific reactor is ex-

ecuted, and how much execution time it receives.

Some of these properties, such as serializability, ensure

that a program never violates semantics of the reactor model.

We refer to them as safety properties, as they guarantee that

nothing bad happens. Other properties, such as liveness, fair-

ness and scalability, improve progress of a reactor-based

program. Their absence can in worst case prevent the pro-

gram from completing, but does not violate semantics or

cause incorrect behavior. As we will see in Section 3, the

proposed pluggable scheduling system enforces safety prop-

erties. Progress properties are good-to-have, but not essential

for all programs. For such properties, the scheduling system

establishes a well-defined foundation, and delegates the de-

cision of fulfilling them to other components.

3. Scheduling System

In this section, we describe the proposed pluggable

scheduling algorithm. We start with the internals of our re-

actor system implementation, and then show the algorithm

itself. Finally, we prove that the algorithm satisfies serializ-

ability and liveness, and is fair under specific assumptions.

43

3.1 Reactor System Internals

An event queue contains a set of delivered, but not yet

processed events for a particular event stream. Since events

must be handled serially within a reactor, an event queue

serves as a buffer between the reactor and the senders. An

event queue is an equivalent of an actor mailbox.

In the following, we show the EventQueue trait. Method

enqueue atomically enqueues an event to the event queue

and returns queue size. It can be called concurrently. The

dequeue method atomically removes an event, emits it on an

event stream events, and returns the number of remaining

elements at the point when the event was removed. Method

dequeue is quiescently consistent – it can be called by at

most a single thread at a time. When dequeue emits the

event on the associated event stream, control goes from the

scheduler to handlers installed by the user code.
trait EventQueue[T] {

def enqueue(x: T): Int

def dequeue(): Int

def events: Events[T] }

A connector of type Connector[T] is a wrapper that binds

an event stream, a channel and an event queue together.

Calling open creates a new connector.

Different reactors have different textual names, used to

retrieve their channels. The set of all possible names com-

prises the namespace of the reactor system. At any point in

time, at most a single reactor can have any single name.

When created, every reactor is assigned a unique numeric

ID. The set of all possible UIDs forms the UID space. Dur-

ing the entire lifetime of the system, every UID can be as-

signed to at most one reactor, and cannot be reused.

A reactor system is an entity that contains a set of reac-

tors, the scheduling system, and a single namespace and UID

space. Usually, there is a single reactor system per process,

but users can create additional reactor systems if necessary.

Configuration properties such as pickling and network re-

sources are set when creating the reactor system.

Prototype, represented with the Proto[T] type, is a con-

figurable wrapper around the reactor template. It allows con-

figuring the textual name and the scheduling policies of the

reactor instance, and is passed as an argument to spawn.

Immediately before the reactor instance starts, the reactor

system creates a frame object of type Frame, used to hold

internal reactor state – reactor name, UID, scheduling policy,

connectors, lifecycle state and information on whether the

respective reactor is currently executing.

A reactor’s scheduling policy is captured in a Scheduler

object. The initSchedule method is invoked once when the

reactor is created, and schedule is invoked every time a re-

actor is activated. Method newPendingQueue creates a queue

with a list of active connectors, and allows the scheduler to

implement a queuing policy.
trait Scheduler {

def initSchedule(f: Frame): Unit

def schedule(f: Frame): Unit

def newPendingQueue(): Queue[Connector[_]] }

1 def spawn[T](

2 system: ReactorSystem, proto: Proto[T]

3): Channel[T] = {

4 val uid = system.reserveId()

5 val uname = system.acquire(proto.name)

6 val f = new Frame(uid, uname, proto, system)

7 try {

8 f.active = false

9 f.scheduler = proto.scheduler

10 f.lifecycleState = Fresh

11 f.connectors = new Map[String, Connector[_]]

12 f.pending = f.scheduler.newPendingQueue()

13 f.scheduler.initSchedule(f)

14 f.main = open(f, "main", f.queueFactory)

15 activate(f)

16 } catch { case t: Throwable =>

17 system.release(uname)

18 throw t

19 }

20 f.main.channel }

21 def activate(f: Frame) {

22 val run = f.monitor.synchronized {

23 if (!f.active) {

24 f.active = true

25 true

26 } else false }

27 if (run) f.scheduler.schedule(f) }

Figure 1. Reactor creation

Queue exposes standard operations enqueue and dequeue.

Note that its implementation is different than that of an event

queue. A pending queue stores event queues, while an event

queue stores events. The two are separate entities.

As we will see in the next section, user-defined Scheduler

objects allow fine-tuning how the scheduling system works.

3.2 Scheduling Algorithm

From a high-level standpoint, the algorithm works as

follows. When a reactor needs to execute, the active field

in its frame is set to true, and the scheduler is notified. The

reactor then gets execution time. It repetitively removes an

event queue from the pending queue, and calls dequeue on

the event queue until either the scheduler tells it to stop,

in which case a non-empty event queue goes back to the

pending queue, or the event queue becomes empty, in which

case the pending queue is polled for the next event queue.

There are two ways that a reactor can get execution time.

First is when a reactor instance is created with spawn, and

the second is when an event is delivered to a reactor. In both

cases, the reactor is activated and sent for execution.

We first consider the spawn operation, shown in Figure 1.

The method starts by reserving a UID in line 4, and the reac-

tor name in line 5. It then creates a Frame object in line 6. In

lines 8 through 11, frame is marked as not activated, refer-

ence to the scheduler specified in the prototype is copied, the

lifecycle state is set to Fresh, and a connector table is cre-

ated. In line 12, the scheduler’s newPendingQueue method

returns the queue data structure that will hold non-empty

event queues. The scheduler is asked to optionally set a cus-

tom state object in the frame’s schedulerState field. This

44

1 def execute(f: Frame) = {

2 assert(f.active)

3 assert(f.isolationCount.compareAndSet(0, 1))

4 try lifecycleAndProcessBatch(f)

5 finally {

6 var repeat = false

7 f.monitor.synchronized {

8 if (!f.pending.isEmpty &&

9 f.lifecycleState != Terminated)

10 repeat = true

11 else f.active = false

12 }

13 if (repeat) f.scheduler.schedule(this)

14 f.isolationCount.set(0)

15 } }

16 def checkFresh(f: Frame) {

17 val fresh = f.monitor.synchronized {

18 if (f.lifecycleState == Fresh) {

19 f.lifecycleState = Running

20 true

21 } else false }

22 if (fresh) f.reactor = proto.create() }

23 def checkTerminated(f: Frame, forced: Boolean) {

24 val term = f.monitor.synchronized {

25 val isRunning = f.lifecycleState == Running

26 val mustTerm = f.pending.isEmpty &&

27 f.connectors.length == 0

28 if (isRunning && (forced || mustTerm)) {

29 f.lifecycleState = Terminated

30 true

31 } else false

32 }

33 if (term) f.system.release(name) }

38 def lifecycleAndProcessBatch(f: Frame) {

39 try {

40 checkFresh(f)

41 processEvents(f)

42 } catch { case t: Throwable =>

43 checkTerminated(f, true)

44 } finally checkTerminated(f, false)

45 }

46 def processEvents(f: Frame) {

47 f.schedulerState.onBatchStart(this)

48 val c = popNextPending(f)

49 if (c != null) drain(c)

50 }

51 def popNextPending(f: Frame): Connector[_] = {

52 f.monitor.synchronized {

53 if (f.pending.nonEmpty)

54 f.pending.dequeue()

55 else null

56 }

57 }

58 @tailrec def drain(c: Connector[_]) {

59 val remaining = c.queue.dequeue()

60 if (f.schedulerState.onBatchEvent(c)) {

61 if (remaining > 0 && !c.isSealed) {

62 drain(c)

63 } else {

64 val nc = popNextPending(f)

65 if (nc != null) drain(nc)

66 }

67 } else if (remaining > 0 && !c.isSealed)

68 f.monitor.synchronized {

69 f.pending.enqueue(c)

70 } }

Figure 2. Reactor loop

is done with the call to initSchedule in line 13, and the

default connector is allocated in line 14.

At this point, the frame is initialized and may run. A

call to activate in line 15 activates the frame. This method

acquires the frame’s lock in line 22, and checks if the frame

is already active in line 23. If not, the active field is set to

true in line 24. If active was set, the schedule method is

called in line 27. This indicates that there is a newly activated

frame that should run. The scheduler must give the reactor

execution time at the earliest opportunity.

When the scheduler assigns execution time on some

thread, that thread must call the execute method shown in

Figure 2. This method starts the reactor’s event loop, and

has several stages. First, it prepares the reactor context –

it asserts that the frame is active in line 2, and optionally

sets thread-local state (not shown in the code). Then, it calls

lifecycleAndProcessBatch to continue executing the reac-

tor’s lifecycle. After the lifecycle method completes, either

exceptionally or normally, execute checks if the reactor

should continue executing or not. Line 8 tests if there are

any pending event queues with unprocessed events and the

reactor did not terminate. If so, the reactor is rescheduled,

and otherwise its active field is set to false.

The lifecycleAndProcessBatch method uses two aux-

iliary methods checkFresh and checkTerminated. Method

checkFresh is called before event processing starts, and it

atomically changes the state from Fresh to Running. If the

state changes, it means that reactor was just started, so the

checkFresh method needs to run the reactor constructor.

Constructor must run asynchronously, and not in the spawn

method, to ensure non-blocking semantics. The constructor

is run in line 22 with a call to the prototype’s create method.

The checkTerminated method similarly checks for termi-

nation, and is called after processing events. A reactor must

terminate if it is in the Running state, its pending queue is

empty, and there are no more live connectors. If the argu-

ment forced is set to true, it means that user code threw an

exception, and the reactor must be terminated regardless of

its execution state. When the state is atomically changed to

Terminated, the reactor name is released in line 33. In prac-

tice, all these methods emit lifecycle events on the system

event stream, but we omit them from Figure 2 for brevity.

At this point, the reactor can start handling events. The

method lifecycleAndProcessBatch calls processEvents,

which in line 47 notifies the scheduler that a batch of events

is about to be handled. The processEvents method then

calls popNextPending to dequeue a non-empty connector.

If a reactor just started, it is likely that no events were yet

delivered, and popNextPending returns null. In this case,

45

1 def send[T](c: Connector[T], x: T) {

2 val f = c.frame

3 val size = c.queue.enqueue(x)

4 var run = false

5 if (size == 1) f.monitor.synchronized {

6 f.pending.enqueue(c)

7 if (!f.active) {

8 f.active = true

9 run = true } }

10 if (run) scheduler.schedule(this) }

Figure 3. Event send

processEvents simply returns. If there is a non-empty con-

nector, processEvents calls the drain.

The drain method calls dequeue on the event queue in

line 59. This releases an event on the corresponding event

stream, and enters user code. After event handlers process

the event, dequeue returns the number of remaining events

at the point in time when the event was removed. It then

asks the scheduler if it should continue executing events

in line 60. If the scheduler decides that additional events

should be batched, drain checks if the event queue is non-

empty and calls itself tail-recursively in line 62 with the

same connector. If the current event queue is empty, method

drain pops the next non-empty connector if there is one,

and calls itself recursively in line 65. If the scheduler denies

processing additional events, drain enqueues the non-empty

event queue back to the pending queue in line 69.

Using onBatchEvent, the scheduler can decide how many

events to handle. Usually, a scheduler will handle a batch of

events, to amortize the cost of setting up the reactor context.

A reactor is also activated when an event is delivered on

one of its event streams. This is done by the send method

in Figure 3, which first enqueues the event on the respective

event queue in line 3. If the event queue size after calling

enqueue is exactly 1, it means that the corresponding event

stream was previosly dormant, and it became active when

the event was enqueued. In this case, the reactor’s lock is

acquired in line 5, and the event queue is placed on the

pending queue in line 6. If the reactor was not previously

active, its active field is set to true, and the reactor is

scheduled for execution in line 10. The execute method

from Figure 2 is eventually invoked on some thread.

3.3 Analysis of the Scheduling Algorithm

We now state several claims about its properties. We

prove that the algorithm is safe with respect to serializability.

For space reasons, we skip safety properties such as exactly-

once delivery. We then prove liveness and fairness, with

specific assumptions about the Scheduler.

Theorem 1 (Safety). Assume that schedule executes the

reactor exactly once. For a specific reactor, there is at most

a single event handler executing at any point in time.

Proof. No thread is initially running execute. The first call

to schedule occurs in the activate method in Figure 1, and

the second schedule occurs in the send method in line 10 in

Figure 3. If either activate or send calls schedule, then the

active field was previously false and was atomically set to

true by the same thread. No other thread can call schedule

until execute reaches line 13 in Figure 2.

The execute method calls schedule in line 13 only if

active was not set from true to false. It follows that, for a

specific reactor, there is always at most one thread that pre-

viously left the active field in the true state, and that thread

calls schedule. By assumption, execute is called only once

for every schedule call, and execute calls dequeue for every

event only once, so it follows that there is at most a single

event handler executing at any time2.

Lemma 1 (Deactivation). An empty event queue is never on

the reactor’s pending queue.

Proof. We show this inductively – claim is initially true,

and no operation violates it. The pending queue is initially

empty. The send method puts only non-empty event queues

to the pending queue. Events are only dequeued by drain in

Figure 2, and this method never puts an empty event queue

back to the pending list. By Theorem 1, no other thread can

interfere by concurrently executing drain.

Lemma 2 (Activation). A non-empty event queue is either

on the reactors’s pending queue, or is put on the pending

queue after a finite number of steps, exactly once.

Proof. An event is delivered to the event stream in line 3

of the send method shown in Figure 3. If enqueue in line

3 returns size greater than 1, then there must exist another

thread for which enqueue previously returned 1. If this other

thread did not yet put the event queue on the pending list,

then no other thread can drain that event queue (since the

point in time when enqueue returned 1), by Lemma 1.

Consider the thread for which enqueue returns size 1 in

line 3 of Figure 3. That thread puts the event queue to the

pending list after a finite number of steps. Next, consider

the thread that calls popNextPending. If the event queue is

non-empty when that thread subsequently calls dequeue in

line 59, the event queue is put back to the pending queue by

the same thread after a finite number of steps. By Lemma 1,

the queue cannot become empty before this happens.

Theorem 2 (Liveness). Assume that schedule eventu-

ally executes the specified reactor, and that every event

queue added to the pending queue is dequeued after call-

ing dequeue sufficiently many times. Then, if an event gets

delivered to an event stream belonging to some reactor, that

event is eventually handled by an event handler.

Proof. By Lemma 2, a non-empty event queue is already

on the pending queue, or will be after a finite number of

steps. By assumption, every reactor is eventually executed,

and every event queue in pending is eventually dequeued.

For each such event queue, at least one event is handled.

Consequently, every event is eventually handled.

2 In fact, check in line 3 of Figure 2 ensures this even if schedule calls

execute from multiple threads.

46

Fairness is achieved by the scheduling policy, so the fair-

ness proof makes heavy assumptions on its implementation.

Theorem 3 (Fairness). Let S be the set of reactors for which

schedule was called. Assume that the scheduler always exe-

cutes the reactor from S with the least recent event ξ, that

the dequeue call on the pending queue of the respective

reactor returns the event queue that contains ξ, and that

onBatchEvent returns true if the argument connector con-

tains the most recent event in the system. Then, the schedul-

ing is fair with respect to the previous definition.

Proof. Under the assumptions, dequeue call in line 59 al-

ways returns the oldest unprocessed event, so scheduling is

fair with C = 1 for the definition in Section 2.1.

4. Scheduling Policies
In this section, we go over implementations of the trait

Scheduler. There are several different ways in which a

Scheduler governs the scheduling policy. First, it decides

when to execute frames submitted with the schedule method.

Second, it decides how long a scheduled reactor should ex-

ecute with schedulerState. Third, it decides which event

stream to flush with the newPendingQueue method.

The schedulerState exposes methods onBatchStart

and onBatchEvent. Most schedulers use some variant of the

following DefaultState, which handles up to BATCH_SIZE

events during one scheduled frame execution.
class DefaultState extends State {

private var batch = 0

def onBatchStart() { batch = BATCH_SIZE }

def onBatchEvent(c: Connector[_]) = {

batch -= 1

batch > 0 } }

The newPendingQueue method decides on the queuing

policy of the active event queues. Unless specified otherwise,

the pending queue will implement the FIFO policy, as that

trivially achieves the liveness property – at least one event is

eventually scheduled from each event queue.

Thread pool scheduler. Task schedulers, such as the

Fork/Join pool (Lea 2000) from the JDK, multiplex a set

of tasks across a set of worker threads. It is useful to

reuse the effort put into task schedulers when implement-

ing a reactor scheduler. In the following, we show the

ExecutorScheduler, which uses a JDK Executor to sched-

ule reactor frames:
class ExecutorScheduler(val e: Executor)

extends Scheduler {

def initSchedule(f: Frame) =

f.schedulerState =

new DefaultState with Runnable {

def run() = execute(f) }

def schedule(f: Frame) =

executor.execute(f.schedulerState) }

Method initSchedule, called when the reactor starts,

creates a default state with the JDK Runnable interface

mixed in. Scheduler state is simultaneously a task, which

calls the execute method from Figure 2. Method schedule

then passes this task to the Executor, delegating the decision

of when to run the reactor to a task-based scheduler.

Dedicated thread or process scheduler. In some cases,

we want to give a specific reactor a higher priority by as-

signing it a dedicated thread or process. Here, the decision

of when to run is delegated to the underlying OS.

Such a reactor need not process events in batches, and

can simply flush all its event streams until they are empty, as

shown in the following scheduler state implementation:
class DedicatedState extends State {

def onBatchStart() {}

def onBatchEvent(c: Connector) = true }

The ThreadScheduler uses an auxiliary method loop,

which calls execute from Figure 2, and then waits inside

a monitor until the reactor terminates or there is a pending

event queue. The loop ends when the reactor terminates.
def loop(f: Frame) = do {

execute(f)

f.monitor.synchronized {

while (!hasTerminated(f) && !hasPending(f))

f.monitor.wait() }

} while (!hasTerminated(f))

When the reactor starts, the ThreadScheduler creates a

DedicatedState object with a thread that calls loop. The

thread is started in schedule the first time that the reactor is

supposed to run, triggered by the spawn in Figure 1.
class ThreadScheduler extends Scheduler {

def initSchedule(f: Frame) =

f.schedulerState = new DedicatedState {

val thread = new Thread {

override def run() = loop(f) } }

def schedule(f: Frame) =

f.monitor.synchronized {

if (!f.schedulerState.thread.isStarted)

f.schedulerState.thread.start()

f.monitor.notify() } }

The dedicated thread is subsequently notified when event

delivery by send from Figure 3 prompts a call to schedule.

Piggyback scheduler. Normal programs are started by

executing the main function on the main thread of the pro-

gram. A reactor-based program has no notion of a main

thread. It is therefore convenient to piggyback the existing

main thread to one of the reactors in the program. This is the

task of the following PiggybackScheduler:
class PiggybackScheduler extends Scheduler {

def initSchedule(f: Frame) {}

def schedule(f: Frame) =

if (f.schedulerState == null) {

f.schedulerState = new DedicatedState

loop(f)

} else f.monitor.synchronized {

f.monitor.notify() } }

The first time schedule is called by the spawn method, the

piggyback scheduler executes the event loop, thus blocking

the current thread. Subsequently, schedule calls in the send

method notify the thread that there are new events.

Fair scheduler. Scheduler implementations shown so far

satisfy liveness, but they are not necessarily fair. An OS

kernel or a task scheduler can satisfy fairness across a set

of threads or tasks. However, neither has information about

the number and age of events delivered to different reactors,

and cannot give more time to reactors whose load is higher.

47

In the following, we show a scheduler that is fair accord-

ing to the definition from Section 2.1. We use an event queue

factory that assigns a timestamp to an event when it gets

enqueued. The event queue itself respects the FIFO policy.

Timestamp of the oldest event can be obtained by calling

headTime on the queue. We define two helper methods that

return a numeric priority of a connector and a reactor frame:
def cpriority(c: Connector[_]) =

-1 * c.queue.headTime

def fpriority(f: Frame) =

cpriority(f.pending.head)

The pending queue is a priority queue that sorts event

queues using cpriority. The fair scheduler maintains an-

other priority queue tasks for the set of activated reactor

frames, based on fpriority. When a reactor is started, its

event queue factory is replaced by a timestamping queue

factory. The scheduler state uses the same connector as long

as its priority is higher than the priority of the other acti-

vated frames, and other connectors of the current frame. The

schedule method enqueues a frame to the tasks queue, and

a separate thread dequeues and executes frames.
class FairScheduler extends Scheduler {

private val tasks =

new PriorityQueue[Frame](fpriority) {

def newPendingQueue() =

new PriorityQueue[Connector[_]](cpriority)

def initSchedule(f: Frame) {

f.queueFactory =

new TimestampQueueFactory(f.queueFactory)

f.schedulerState = new State {

def onBatchStart() {}

def onBatchEvent(c: Connector[_]) =

cpriority(c) > fpriority(tasks.head) &&

cpriority(c) > cpriority(f.pending.head)

} }

def schedule(f: Frame) = tasks.enqueue(f)

startThread {

while(true) execute(tasks.dequeue()) } }

This is a proof-of-concept implementation of a fair sched-

uler, which is neither scalable (because it is single-threaded)

nor efficient (because C = 1). In practice, it is useful to relax

fairness to some degree in order to achieve performance.

Timer scheduler. Real-time computations must be sched-

uled at regular intervals. The following java.util.Timer-

based implementation periodically schedules a reactor.
class TimerScheduler(period: Long) {

val timer = new java.util.Timer

def initSchedule(f: Frame) {

f.schedulerState = new DefaultState

val task = new java.util.TimerTask {

def run() {

if (hasTerminated(f)) this.cancel()

else execute(f) } }

timer.schedule(task, period, period) }

def schedule(f: Frame) {} }

The initSchedule method creates a new TimerTask that

executes the frame, or cancels itself if the reactor terminated.

Resource scheduler. In some cases, a reactor must be

scheduled only when a specific resource is available. A re-

source can be an external hardware sensor, an embedded co-

processor, or a GPU on commodity hardware.

class ResourceScheduler extends Scheduler {

def initSchedule(f: Frame) =

f.schedulerState = new DefaultState

def schedule(f: Frame) =

OS.requestResource(() => execute(f)) }

When schedule gets called, ResourceScheduler re-

quests an OS resource and passes a callback that executes

the frame once the resource becomes available.

5. Evaluation

We used standard benchmarks from the Savina suite

(Imam and Sarkar 2014a) to test our scheduler performance

(Prokopec 2016) against the Akka framework (Akka 2015).

We used established evaluation methodologies (Georges

et al. 2007) (Prokopec 2014). Benchmarks were done on

a quad-core 2.8 GHz Intel i7-4900MQ processor with 32
GB of RAM, and results are shown in Figure 4.

Ping-Pong. In this benchmark, one (re)actor sends a pre-

allocated ping message to another (re)actor, which then re-

sponds with a pong message. This is repeated N times. The

benchmark evaluates how fast the scheduling system ex-

changes the context between two (re)actors when it is likely

that they will be reactivated soon after deactivation. Our re-

actor implementation is around 1.6× faster than Akka.

Streaming Ping-Pong. Akka frequently uses an alterna-

tive form of the Ping-Pong benchmark in which the first

actor starts by sending W ping messages, instead of a sin-

gle one. Whereas in the Ping-Pong benchmark each actor

must wait for the reply before sending the next message,

in Streaming Ping-Pong the two actors work on a sliding

window of messages and do not have to yield control to the

scheduler. Our reactor system is 1.3−1.4× faster than Akka.

Thread Ring. Here, R (re)actors are arranged in a ring,

and each waits for a message before sending it to the next

(re)actor in the ring. Program ends after the message is

forwarded N times. The benchmark tests context switching

when it is unlikely that a (re)actor will be reactivated soon

after deactivation. Depending on N , our system is in some

cases as fast as Akka, and sometimes up to 1.2× slower.

Counting Actor. A producer actor sends N numbers to a

counter actor. The counter actor accumulates the sum of the

numbers, and terminates. The benchmark is somewhat sim-

ilar to Streaming Ping-Pong. Our implementation is around

3× faster than Akka.

Fork Join (Throughput). A single (re)actor allocates K

(re)actors that count incoming messages, and sends them N

messages in a round-robin manner. The benchmark evaluates

messaging throughput, and quality of batching messages.

Our system is 2.5− 3.0× faster than Akka.

Fork Join (Creation). Benchmark creates N (re)actors,

and sends a message to each of them. After a (re)actor

receives a message, it terminates. This benchmark tests actor

creation performance. Depending on N , our system is as fast

as Akka, and sometimes up to 1.3× faster.

Fibonacci. This benchmark computes Fibonacci num-

bers recursively, where each recursive call creates a (re)actor.

48

Ping-Pong

1.0×

1.0×

1.0×

1.0×

1.0×

1.6×

1.6×

1.6×

1.6×

1.6×

5000 10000 15000 20000 25000

0

20

40

60

N

time/ms

reactors Akka

Streaming Ping-Pong (W=128)

1.0×

1.0×

1.0×

1.0×

1.0×

1.4×

1.4×

1.3×

1.4×

1.4×

5000 10000 15000 20000 25000

0

5

10

15

N

time/ms

reactors Akka

Thread Ring (R=1000)

1.2×

1.1×

1.1×

1.1×

1.0×

1.0×

1.0×

1.0×

1.0×

1.0×

5000 10000 15000 20000 25000

0

10

20

30

40

N

time/ms

reactors Akka

Counting Actor

1.0×
1.0×

1.0×
1.0×

1.0×

3.2×

3.0×

3.0×

3.3×

3.0×

50000 100000150000200000250000

0

20

40

60

80

N

time/ms

reactors Akka

Fork Join (Throughput), K=128

1.0×
1.0×

1.0×
1.0×

1.0×

2.7×

3.0×

2.7×

2.6×

2.5×

500 1000 1500 2000 2500

0

20

40

60

80

100

N

time/ms

reactors Akka

Fork Join (Creation)

1.0×

1.0×

1.0×

1.0×

1.0×

1.1×

1.1×

1.2×

1.2×

1.3×

5000 10000 15000 20000 25000

0

50

100

150

N

time/ms

reactors Akka

Fibonacci

1.0× 1.0×

1.0×

1.0×

1.0×

1.5× 2×

1.6×

1.5×

1.1×

5 10 15 20 25

10
0

10
1

10
2

N

time/ms

reactors Akka

Big (N=1280)

1.6×

1.1×

1.1×

1.0×

1.0×

1.0×

1.0×

1.0×

1.0×

1.1×

50 100 150 200 250

0

50

100

150

P

time/ms

reactors Akka

Figure 4. Running time on standard actor benchmarks (lower is better)

0 10 20 30 40 50
0

50

100

150

Batch Size

R
u

n
n

in
g

T
im

e/
m
s Streaming Ping-Pong (N=25k)

Counting Actor (N=250k)

Fork Join (Throughput) (N=2500,K=128)

Fork Join (Throughput) (N=2500,K=32)

Figure 5. Dependence of running time on batch size for

high message load benchmarks (lower is better)

This benchmark tests dynamic actor creation performance.

Results are shown in logarithmic scale in Figure 4. Our sys-

tem is 1.1− 2.0× faster than Akka, depending on N .

Big. This benchmark creates a large number of (re)actors

N , each sending P pings to P randomly chosen (re)actors,

awaiting a reply between each consecutive ping. The bench-

mark tests many-to-many message passing. Depending on

P , our system is in some cases 1.1−1.6× slower than Akka,

and in some cases 1.1× faster than Akka.

5.1 Effect of Batch Size on Performance

In benchmarks that have high average message count per

actor, exchanging contexts between actors frequently can

be detrimental. Amortizing these costs by handling multiple

events in one batch greatly increases performance.

As argued in Section 2.1, batch size must be bound to

ensure fairness – large batch sizes have a negative effect of

delaying execution of other reactors. Batching must amortize

context switch costs, but also prevent starvation.

0 200 400 600 800 1,000

20

40

60

Number of event streams

R
u

n
n

in
g

T
im

e/
m
s

N=50k

N=100k

N=200k

N=500k

Figure 6. Roundabout Benchmark (Lower is Better)

In Figure 5, we show benchmarks where batch size affects

the running time. In Streaming Ping-Pong and Counting Ac-

tor, the inflection point is around batch size 5, but perfor-

mance converges above 40. We show Fork Join Throughput

for different choices of the number of reactors K. We leave

out out-of-scale points below batch size 10 for K = 128.

For K = 32, we can see a steep jump around 7. Here, the

batch size is just large enough to give inactive reactors suffi-

cient time to fill their event queues. By the time a reactor is

reactivated, it has sufficiently many pending events to bene-

fit from batching. Based on these benchmarks, we keep the

BATCH_SIZE constant from Section 4, at value 50.

5.2 Event Stream Scalability

We now show that the system scales with the number of

event streams per reactor. In Figure 6, we show the Round-

about benchmark, in which the roundabout actor receives N

messages on K event streams. The running time is almost

constant when increasing the event streams count – gentle

upward slope is a consequence of decreasing cache-locality.

49

6. Related Work
The actor programming model was proposed by Agha

(Agha 1986). One of the most notable applications of the

actor model is the Erlang programming language (Erlang

2015). On the JVM, Scala Actors followed the Erlang model

(Haller and Odersky 2006), but since JVM does not have

continuations, semantics were not equivalent to the Erlang-

style receive statement. Akka is an actor-based framework

(Akka 2015), which takes a step away from the Erlang

model in that it supports only a single top-level receive

statement. Kilim (Srinivasan and Mycroft 2008) is another

JVM actor framework that takes a more sophisticated ap-

proach by exposing the @pausable annotation, used to mark

and transform methods that potentially suspend. The Re-

actors.IO framework exposes event streams on which sus-

pendable computations can be chained monadically or with

a sequence of callbacks (Prokopec 2016) (Prokopec et al.

2014) (Prokopec and Odersky 2015).

Selector model is an actor model with multiple mailboxes

(Imam and Sarkar 2014b). In this model, there are multi-

ple mailboxes that the actor can programmatically activate.

Although the abstract selector model allows a dynamic num-

ber of mailboxes, the implementation requires specifying the

number of mailboxes before the selector starts.

Most actor schedulers are built on top of a task scheduler,

such as the Fork/Join framework (Lea 2000). Depending

on the task scheduler implementation, this approach ensures

liveness. However, fairness, as defined in Section 2.1, is not

necessarily ensured – giving all actors equal execution times

can cause starvation when message-load is non-uniform.

Many frameworks use pluggability to defer some schedul-

ing decisions to the client. For example, message scheduling

in Akka (Akka 2015) uses the underlying task scheduler to

assign equal execution chunks to actors, but this does not

guarantee message handling fairness. It is the client’s job to

implement a fair dispatcher to customize the scheduling pol-

icy, or a custom event queue if additional capabilities such

as persistence are necessary (Prokopec 2015). Parallel actor

monitors (Scholliers et al. 2014) for the AmbientTalk lan-

guage (Pinte et al. 2013) expose a user API that can option-

ally enable parallelism within an actor. Ensuring scalability

is thus deferred to the client-side.

7. Conclusion
We described a scheduler algorithm for the reactor model.

We showed that the scheduler satisfies safety properties

and can guarantee liveness and fairness depending on the

scheduling policy. Scheduling policies are pluggable – in

addition to the default policies shown in Section 4, users

can define their own custom policies. We have empirically

shown that the scheduler is scalable and efficient by compar-

ing our implementation against the industry-standard Akka

framework, on the Savina actor benchmark suite.

An interesting area of future work is scheduling reac-

tor programs on heterogeneous resources, such as GPUs.

Achieving scalability and good performance in non-uniform

computations is more challenging, and we believe that our

pluggable scheduler infrastructure is well suited for this task.

References
G. Agha. Actors: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986. ISBN 0-262-01092-5.

Akka. Akka Documentation, 2015. http://akka.io/docs/.

Erlang. Erlang/OTP documentation, 2015. http://www.erlang.org/.

A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous

Java Performance Evaluation. SIGPLAN Not., 42(10):57–76,

Oct. 2007. ISSN 0362-1340. doi: 10.1145/1297105.1297033.

R. Guerraoui and L. Rodrigues. Introduction to Reliable Dis-

tributed Programming. Springer. ISBN 978-3-540-28845-9.

P. Haller and M. Odersky. Event-Based Programming without In-

version of Control. In Proc. Joint Modular Languages Confer-

ence, Springer LNCS, 2006.

S. M. Imam and V. Sarkar. Savina - An Actor Bench-

mark Suite: Enabling Empirical Evaluation of Actor Libraries.

AGERE! ’14. ACM, 2014a. ISBN 978-1-4503-2189-1. doi:

10.1145/2687357.2687368.

S. M. Imam and V. Sarkar. Selectors: Actors with Multiple

Guarded Mailboxes. AGERE! ’14, pages 1–14, New York,

NY, USA, 2014b. ACM. ISBN 978-1-4503-2189-1. doi:

10.1145/2687357.2687360.

D. Lea. A Java Fork/Join Framework. JAVA ’00. ACM, 2000.

ISBN 1-58113-288-3. doi: 10.1145/337449.337465.

M. Odersky and al. An Overview of the Scala Programming Lan-

guage. Technical Report IC/2004/64, EPFL Lausanne, Switzer-

land, 2004.

K. Pinte, A. Lombide Carreton, E. Gonzalez Boix, and W. Meuter.

Ambient Clouds: Reactive Asynchronous Collections for Mo-

bile Ad Hoc Network Applications. Springer, 2013. ISBN 978-

3-642-38540-7. doi: 10.1007/978-3-642-38541-4.

A. Prokopec. ScalaMeter, 2014. http://scalameter.github.io.

A. Prokopec. SnapQueue: Lock-Free Queue with Constant Time

Snapshots. Scala ’15, 2015. doi: 10.1145/2774975.2774976.

A. Prokopec. Reactors.IO Website, 2016. https://reactors.io.

A. Prokopec and M. Odersky. Isolates, Channels, and Event

Streams for Composable Distributed Programming. Onward!

2015, pages 171–182, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3688-8. doi: 10.1145/2814228.2814245.

A. Prokopec, P. Haller, and M. Odersky. Containers and Aggre-

gates, Mutators and Isolates for Reactive Programming. SCALA

’14. ACM, 2014. doi: 10.1145/2637647.2637656.

C. Scholliers, E. Tanter, and W. De Meuter. Parallel Actor Moni-

tors: Disentangling Task-level Parallelism from Data Partition-

ing in the Actor Model. Sci. Comput. Program., 80:52–64, Feb.

2014. ISSN 0167-6423. doi: 10.1016/j.scico.2013.03.011.

M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A Compre-

hensive Study of Convergent and Commutative Replicated Data

Types. Research Report RR-7506, Jan. 2011.

S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for

Java, pages 104–128. Springer, Berlin, Heidelberg, 2008. doi:

10.1007/978-3-540-70592-5.

50

