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Abstract

Frameworks inspired by the actor model have recently at-

tracted much attention. Actor systems promise transparent

concurrency and distribution by combining message passing

with a strong failure model. In this work, we re-examine

distribution transparency and find that reliability breaks

the promise in several dimensions. Solutions for regaining

awareness of failures are briefly discussed.

Categories and Subject Descriptors C.2.4 [Distributed

Systems]: Distributed applications

Keywords Actor model, message passing, distribution trans-

parency, failure detection

1. Introduction

The actor model [1] seamlessly integrates concurrency and

distribution. Its ‘actors’ solely communicate via network

transparent message passing using a strong failure model.

In reaction to a message, an actor can send messages, create

new actors, or set its future behavior.

The C++ Actor Framework (CAF) [2] is a lightweight

implementation of the actor model in modern C++ that com-

bines a high level API with an efficient message passing

layer. Like in most actor systems its behavior under distri-

bution differs from local concurrency. For example, message

passing to remote actors is unreliable while messages are re-

liably delivered to local actors. In general, reliability in dis-

tributed systems is a major source of complexity and much

harder to achieve than in local regimes.

In this work, we reconsider reliability aspects of dis-

tributed actor systems. In search for enhanced transparency,

we question whether a lightweight system can provide the

same behavior for distributed as for concurrent scenarios, or

whether the runtime system can at least detect when these

behaviors deviate.
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Figure 1. The steps that affect the reliability of messaging

Distributed message passing in CAF proceeds in several

steps, each prone to specific errors (see Figure 1). The first

step to pass a message is a synchronous local operation (1),

which can only fail due to limited memory resources. For

messages to remote actors, a proxy transparently forwards

the messages to the middleman (MM). After serialization

(2), the MM resolves the address of the receiver and trans-

mits the message. Messages can get lost during transport, be

duplicated, or change order. The MM on node B deserial-

izes the message (3) if enough memory is available. Then,

the message is enqueued into the mailbox of the receiver (4)

provided it has enough space. When the receiver is sched-

uled and its mailbox contains no messages that arrived pre-

viously or have a higher priority, it dequeues the message (5)

and processes it (6).

The following section discusses the core constituents of

reliable message passing: message delivery, order preserva-

tion, and the detection of failing actors. We analyze the dis-

crepancies of distributed scenarios compared to concurrent

ones. Finally, § 3 concludes with an outlook.

2. Reliable Message Passing

2.1 Message Delivery

Message delivery in concurrent scenarios depends on a sin-

gle synchronous enqueue operation into the mailbox of the

receiving actor. Mailboxes are lock-free many-writer-single-

reader queues. Sending a message in a concurrent scenario

guarantees that it is enqueued into the mailbox of the re-

ceiver. Moreover, actors are free to skip or drop messages

they receive. When the receiver fails, it remains unclear
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whether the message has already been processed as explicit

feedback is implementation dependent.

The same reliability for remote message passing requires

messages to reliably reach the mailbox of the remote actor—

step (4) in Figure 1. As sending a message is an asyn-

chronous operation, the runtime environments (REs) are re-

sponsible for message handling. Simply relying on transport

guarantees such as from TCP is thus insufficient. Beyond

message transport, runtime failures such as memory alloca-

tion errors can occur on the receiving node. Systems that

allow message routing via intermediate nodes additionally

have to take failures after the first hop into account.

A straight-forward solution to reliable message passing is

granted by an acknowledgement and retransmission mecha-

nism. However, this is an expensive operation, as the sender

needs to maintain a timer state per remote peer and has

to buffer each message until reception is acknowledged by

the remote actor. A lighter way to transparency is implicitly

monitoring the liveliness of the remote nodes, which return

(and forward) error messages in case of runtime failures.

2.2 Message Ordering

Ordering carries information about the relationship of mes-

sages, supports reasoning about the program flow, and eases

debugging. For example, if messages sent by sequential

statements are delivered in order, reading code and consid-

ering side effects is easier. A reliable order can also be used

as a basis for more complex algorithms.

The synchronous characteristic of local sends does not

only create a FIFO ordering between pairs of actors but

extends to causal ordering. The logical relationship of causal

ordering is described by the “happened before” relation [3].

Since actors are free to manipulate the order in their mailbox,

ordering remains only valid until messages are enqueue into

a mailbox.

The default delivery order for distributed scenarios is

non-deterministic. Deploying causal order is very expensive

and imposes either latency, using synchronous communica-

tion or fixed routing topologies, or additional message over-

head by vector timestamps and the number of transitive de-

pendencies [4].

Including a single vector timestamp in each message is

sufficient to detect violation of causality. However, includ-

ing the time vector that contains all actors in messages is not

a feasible solution. As causality is guaranteed in concurrent

scenarios, it might suffice to use a time vector with the log-

ical clocks of nodes for this purpose. Still, synchronization

impact imposed by the clock access remains.

While a failing delivery can be signaled back to the

sender, a violation of order occurs without responsible party.

It could only be signaled as a global error. The cost of causal-

ity leads some actor implementations to remain with FIFO

ordering, which can be implemented comparably cheap, al-

though the local ordering might be stronger.

2.3 Failure Detection

Actors that exit abnormally on a local node are detected by

the RE that sends an EXIT message to all linked actors and a

DOWN message to monitoring ones.

The extension to distributed scenarios requires the RE to

track a list of remote links and monitors for notification. The

reliable receipt of these failure messages depends on the re-

liability of the message delivery. There are two additional

failure cases to track: link and node failures. To a remote ob-

server, both cases are indistinguishable from each other, and

from a very slowly responding node. The RE tracks these

failures separately, for example through heartbeat messages.

The physical deployment at runtime should be transpar-

ent to actors. The RE supports this by mapping partial fail-

ures of the system to individual actor failures. Thus, actors

do not have to handle a new category of errors. In this model,

nodes are considered transparent containers for a set of ac-

tors. Actors might move between nodes depending on the

implementation, in which case the lifetime becomes inde-

pendent from the lifetime of the original node.

3. Conclusion and Outlook

Reliability assurances in current actor systems diverge be-

tween concurrent and distributed scenarios. This discrep-

ancy motivates a reconsideration of reliability aspects. In this

work, we examined message delivery, message ordering and

failure detection as all three have weaker guarantees in dis-

tributed scenarios. While the reliability guarantees for deliv-

ery and failure detection can be aligned at reasonable cost,

causal ordering is more expensive to achieve and introduces

stronger coupling. We identified further research directions

on how these aspects combine at low performance impact.

Our work is part of a redesign of CAF’s network layer.

Further aspects to consider are reachability, rendezvous,

scalability, and security. These dimensions pose heteroge-

neous demands and we face the challenge of identifying a

unified solution space. Our goal is an efficient network layer

that recuperates transparency, scales up to Internet-wide dis-

tribution and down to low-power networks of things.
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