Applying Aspect Mining Techniques
to Understand an Existing Program

Fernanda Campos

Yadran Eterovic

Pontificia Universidad Catélica de Chile
{mfcampos,yadran}Qing.puc.cl

Abstract

Research in magnetic resonance imaging requires repro-
gramming the software that controls the scanner -a difficult
task. We have successfully applied three aspect mining tech-
niques to obtain information about several properties of this
complex, non object oriented program.

Categories and Subject Descriptors D.2.7 [Software]:
SOFTWARE ENGINEERING—Distribution, Maintenance,
and Enhancement

Keywords Program understanding, Aspect Mining, Exe-
cution relations, Event traces, Concept analysis, Random
Walks.

1. Introduction

Program comprehension is a practical field in software en-
gineering concerned with understanding existing code for
reuse, maintenance and refactoring. Research in magnetic
resonance imaging (MRI), requires reprogramming the soft-
ware that controls the scanner, which in turn requires identi-
fying the functions and parameters that must be changed.

Our focus is understanding the program used to control
a Philips scanner; a large, complex, non object oriented,
almost not modularized and poorly documented code. It
contains over 300,000 lines of code written in GOAL-C, a
special-purpose programming language. A typical execution
trace obtained by executing a pulse sequence in the scanner
may contain more than 30,000 function calls. Therefore,
identifying the changes that have to be made, usually takes
a very long time. We hypothesized that by applying aspect
mining to the program we could obtain information about its
properties (not necessarily it’s aspects), which could help us
perform the changes required by MRI researchers

Copyright is held by the author/owner(s).

SPLASH’12, October 19-26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

2. Aspect Mining

Aspect mining is a reverse engineering process, which con-
sists in finding crosscutting concerns hidden in existing soft-
ware. Techniques have been tested mainly on small scale ex-
periments in object oriented languages. We are interested in
the application of these techniques to real, non object ori-
ented code, where they may help understand the program’s
organization, behavior and important features.

We chose three techniques, that give us different infor-
mation about the program. Event traces finds recurring ex-
ecution traces, indicating general execution patterns in the
code. Formal concept analysis looks for those functions
from the same module that are present in all traces, i.e., scat-
tered code. It computes the list of functions only present in
a certain trace, i.e., what functions are more related to a spe-
cific trace type. Modified random walks identifies the most
popular and less significant functions; it can also point out
functions that crosscut the system. Since to obtain the cross-
cutting concerns we need to compute the popularity and sig-
nificance of each function, this will also give us the list of
most significant functions.

3. Applying diferent techniques

To apply Event traces, we search for specific relations be-
tween functions [1] in the traces. The outside before relation:
for an execution of function a, function b is executed just be-
fore a; the inside first relation: for execution of function a,
the first function called inside it is function b; outside after
and inside last relations, with the obvious meanings. Two
properties are defined over these relations, a relation is uni-
form, if it exists always in the same composition and cross-
cutting, if it occurs in more than one calling context in the
trace. In the original paper execution relations that are both
uniform and crosscutting are considered aspect candidates.
For our purposes, these candidates show us information re-
garding the order in which functions call each other.

By applying this technique to different traces, we ob-
tained a list of relations between functions. We see multiple
repetitions of some functions in the relations, called from
different modules, from at least 20 files, and from many
other functions. This suggests the code is coupled.



Multiple types of validations are found among the most
common relations in all traces; with this technique we can
obtain which functions are common to the system valida-
tions, ie: functions called in various validation phases. We
also found functions belonging to the scan simulation inter-
face, called when a user selects a protocol page in the sim-
ulator; for instance, MPIEX_softkey_screen masks enabled
parameters during validation. Thus, given that the program
consists of a parameter definition part (PDF) and a measure-
ment part (MPF), this information shows which functions
belong to the PDF part of the program: those concerned with
the setup and validation of the parameters. What is interest-
ing is that most relations found in most traces are from this
part of the program. Only four relations were found which
belong to the MPF.

Formal concept analysis technique [2] consists in ob-
taining a concept lattice from traces. The use case associ-
ated with an execution trace is an object whose attributes
are the functions in the trace. A concept is the object plus
its attributes. Aspect candidates are obtained when different
functions from the same module are executed for more than
one concept or when a concept has functions from different
modules (although this is not sufficient to identify a cross-
cutting concern).

This technique gives us a list of functions that appear on
all traces. This means each candidate function is executed
at least once in each trace. The fact that it repeats in dif-
ferent executions indicates scattered code, but also refers to
functions that are part of the base of the program, like user
interface or validation functions. We find among the aspect
candidates functions related to the specific absorption rate
restrictions; this makes sense since it is a factor that should
always be computed before a scan.

Some common functions that execute scans may be con-
sidered part of the core of these traces, since they perform the
measurements necessary for obtaining the sequences (MPF).
For example MPIMN _scan_exec is part of these candidates.
If we take a closer look we see it is in charge of executing
the PDF for the scan, after the "start scan" button is pressed
and before the scan starts it calls certain initializations and
sets up some parameters for the scan.

We executed heart scan traces and brain scan traces, com-
paring the results from applying the technique only to heart
traces with those from applying it to brain traces, we obtain
candidates that appear in one of the types of sequences and
not in the other. This identifies functions that are specific to
certain procedure types.

Modified random walks, is the application of a page
rank algorithm to compute possible concerns by determin-
ing which elements are more popular and significant [3]. We
modified the original technique by performing the calcula-
tions over actual traces. Popularity is the number of times
an element is visited from different elements. Significance
is the number of distinct elements an element visits. These

82

ranks help us obtain potential crosscutting concerns in two
ways. Homogeneous crosscutting: popularity is higher than
significance by a certain threshold. Other possible concerns
are Heterogeneous crosscutting: elements with much higher
significance than popularity.

Analyzing the results we found that some concerns are
functions that are also concerns in previous techniques.
Thus, these functions are not only crosscutting and uniform
relations but they are also the most popular and least signif-
icant functions. Only one concern is unique to each type of
trace. For the heart scans, MPICOIL_get_app_sar_limit, a
function that gets the maximum amount of specific absorp-
tion rate allowed. For the brain scans, MPGGEO_m_matrix-
_to_sg_matrix, a function that stores a matrix structure.

All candidates for traces of a specific sequence type are
the same, and even between different type of traces most of
them are repeated. Since they don’t vary with the sequence,
and since they are called multiple times, they can be consid-
ered part of the application’s core. Because this technique
requires the candidates to have low significance, the results
are very simple functions, much like getters and setters.

4. Conclusions

The application of all three techniques, combined with the
scarce documentation available, allowed us to understand
different properties of the program’s execution. Event traces
reveals function call sequences found in all traces. Results
from concept analysis gives us a list of the functions most
likely to be related to general parts of the execution, such
as parameter setup and validations. Finally random walks
identifies more general functions that are called for both
types of traces.

The combined application of several aspect mining tech-
niques, based on dynamic analysis, can reveal important
information about the execution of a complex program.
Whether this information is related to actual aspects is not
as important for us, as is understanding the code: relative ex-
ecution order, function significance and popularity, function
roles and their relationship to specific sequence types.

Overall the information obtained regarding the programs
execution is very valuable to improve our understanding of
the program. While as software engineers we interpret this
information syntactically, an MRI researcher can infer at
least part of the programs functionalities.

References

[1] S. Breu and J. Krinke. Aspect mining using event traces.
In Proc. of the 19th IEEE int. conf. on Automated software
engineering, 2004. ISBN 0-7695-2131-2.

[2] P. Tonella and M. Ceccato. Aspect mining through the formal
concept analysis of execution traces. In Proc. 11th Working
Conf. on Reverse Engineering, 2004. ISBN 0-7695-2243-2.

[3] C. Zhang and H.-A. Jacobsen. Efficiently mining crosscutting
concerns through random walks, 2007.





