
Modularizing Crosscutting Concerns with Ptolemy

Hridesh Rajan1 Sean Mooney1 Gary T. Leavens2 Robert Dyer1 Rex D. Fernando1

Mohammad Ali Darvish Darab1 Bryan Welter1
1Department of Computer Science 2Department of EE and Computer Science

Iowa State University University of Central Florida
{hridesh,smooney,rdyer,fernanre,ali2,bawalter}@iastate.edu leavens@eecs.ucf.edu

Abstract
In this demonstration we show our language Ptolemy, which
allows for separation of crosscutting concerns while main-
taining modular reasoning. We demonstrate the benefits of
Ptolemy over existing aspect-oriented languages and im-
plicit invocation designs. Ptolemy’s quantified, typed events
provide a flexible quantification mechanism that acts as
a declarative interface between object-oriented code and
crosscutting code. Events are announced explicitly and
declaratively.

Event types allow for compile-time errors and avoid the
fragile pointcut problem of aspect-oriented languages. The
interface provided by event types also allows for modular
reasoning, without considering all aspects in the system. The
declarative event announcement allows avoiding writing te-
dious and error-prone boiler-plate code that implicit invoca-
tion designs require.

We demonstrate several realistic examples that show-
case the features of the Ptolemy language and show use of
Ptolemy’s compiler. The demonstrated compiler is built on
top of the OpenJDK Java compiler (javac), providing full
backwards compatibility with existing Java sources as well
as ease of integration into the existing tool chains. We show
how to integrate the compiler into both existing Ant and
Eclipse builds.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Modules
and Packages

General Terms Design, Languages

Keywords modular reasoning, aspect-oriented program-
ming languages, implicit invocation, translucid contracts,
aspect-oriented interfaces, Ptolemy

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

1. Background
Maintenance and evolution of software systems is of ex-
treme importance in software engineering. In order to evolve
and maintain systems easily, a clear traceability of concerns
from requirements to code must exist. Certain concerns lack
such traceability due to their scattering across several mod-
ules and tangling with other concerns. Such concerns are
called cross-cutting concerns in aspect-oriented (AO) termi-
nology [4]. Being able to modularize such concerns is an
important problem investigated by AO techniques as well as
implicit invocation (II) techniques [6].

The key idea behind both AO and II techniques is to de-
couple components and allow for their composition at run-
time using events. For example, in the observer design pat-
tern, which is an adaptation of II techniques [6], the par-
ticipants (subjects and observers) are decoupled in both the
design and code and then composed at runtime. The subjects
dynamically announce events which observers dynamically
register event handlers (methods) that are invoked implicitly
after the events are announced. This ensures that subjects are
independent of any observers and allows for separate main-
tenance and evolution.

In AO languages such as AspectJ [5], the events are
predefined by the language. Certain standard events, such
as method calls, in the program’s execution are provided.
In AO languages, these events are announced implicitly and
handlers are declaratively registered to sets of these events.
This process is called quantification [3].

II techniques have two distinct advantages over AO tech-
niques. First, all events are explicitly announced, which aids
reasoning about modules announcing events as all points
where such announcement may occur are explicitly marked.
Second, event announcement is generally more flexible as
any arbitrary point may announce an event.

AO techniques have advantages over II techniques as
well. First, compared to II techniques the implicit event an-
nouncement in AO helps automate and decouple event an-
nouncers and handlers. Second, since modules announcing
events do not explicitly name handlers, the handler code re-
mains syntactically independent of all announcement code.

31



2. Ptolemy
The Ptolemy language [7] takes advantages from both
implicit-invocation (II) and aspect-oriented (AO) tech-
niques. It has three main design goals:

• Enable modularization of crosscutting concerns while
maintaining the encapsulation of object-oriented code,

• enable a well defined interface between the crosscutting
and object-oriented concerns and

• enable separate type-checking, compilation and modular
reasoning of crosscutting and object-oriented code.

Achieving these goals using AO languages in the style
of AspectJ is difficult. First, knowing for certain if advice
may apply at a point in the code is difficult, as such poten-
tial locations occur frequently. At every such possible point,
programmers must reason and account for the effects of all
applicable advice. Second, in order to reason about control
flow, programmers would have to reason about all potential
control effects of advice at that location, including how dif-
ferent advice might interact with each other.

3. Benefits of Ptolemy
The event types provided by Ptolemy’s design provides a
declarative interface between the object-oriented and cross-
cutting code. Event types define the type for all announced
events as well as the context information available during
event announcement. Announcing events is declarative and
explicit. The language design provides several software en-
gineering benefits.

• Explicit event announcement aids in modular reasoning.
• The declarative event announcement syntax saves pro-

grammers from writing tedious and error prone boiler-
plate code. It also allows the compiler to statically check
and optimize the event announcement code.

• Event types are statically checked during compilation,
which avoids the fragile pointcut problem associated with
AO techniques.

• Event types allow for specifying a contract between sub-
jects and observers. Such translucid contracts [1, 2] ex-
pose some details of the observers, which allows pro-
grammers to understand an upper-bound on the behav-
ior of subjects and observers by only inspecting the event
type.

• Quantification over subjects does not require enumerat-
ing the subjects, which decouples the observers from sub-
jects.

Ptolemy allows observers to declaratively express interest
in certain events in the system. The bindings allow observers
to refer to subjects without becoming name dependent on the
subjects. This name independence allows for separate and

independent maintenance and evolution of the subjects and
observers.

4. Demonstration Overview
This demonstration showcases the features and benefits
of the Ptolemy language through several realistic exam-
ples. The current infrastructure for developing Ptolemy pro-
grams is also demonstrated, including syntax highlighting in
Vim/Emacs and use of Ptolemy’s compiler. The compiler is
built on top of the standard OpenJDK Java compiler (javac)
and is fully backwards compatible with pure Java programs.
Use of the compiler with both Ant and Eclipse is demon-
strated.

5. Presenter Biographies
Hridesh Rajan is one of the two original authors and cre-
ators of the Ptolemy language. He has extensive experience
in separations of concerns techniques and co-developed the
aspect-oriented language Eos. He has given previous demon-
strations on the Ptolemy language at AOSD’10, FSE’10 and
ECOOP’11. He also taught a half day tutorial on the Ptolemy
language at AOSD’11.

Robert Dyer helped develop the original research com-
piler for Ptolemy. He also was the lead researcher on an em-
pirical evaluation of the Ptolemy language which involved
developing Ptolemy versions of two medium sized, open
source programs (MobileMedia and Health Watcher).

Acknowledgments
This work is supported in part by the US National Science
Foundation (NSF) under grant CCF-10-17334 to Hridesh
Rajan and grant CCF-10-17262 to Gary T. Leavens.

References
[1] M. Bagherzadeh, H. Rajan, and G. T. Leavens. Translucid

contracts for aspect-oriented interfaces. In FOAL ’10.

[2] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.
Translucid contracts: Expressive specification and modular ver-
ification for aspect-oriented interfaces. In AOSD ’11: 10th In-
ternational Conference on Aspect-Oriented Software Develop-
ment, March 2011.

[3] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In OOPSLA 2000.

[4] G. Kiczales et al. Aspect-oriented programming. In ECOOP
’97.

[5] G. Kiczales et al. An overview of AspectJ. In ECOOP ’01.

[6] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In VDM ’91.

[7] H. Rajan and G. T. Leavens. Ptolemy: A language with quanti-
fied, typed events. In ECOOP, July 2008.

32




