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Abstract
Whenever the need to compile a new dynamically typed
language arises, an appealing option is to repurpose an ex-
isting statically typed language Just-In-Time (JIT) compiler
(repurposed JIT compiler). Existing repurposed JIT compil-
ers (RJIT compilers), however, have not yet delivered the
hoped-for performance boosts. The performance of JVM
languages, for instance, often lags behind standard inter-
preter implementations. Even more customized solutions
that extend the internals of a JIT compiler for the target lan-
guage compete poorly with those designed specifically for
dynamically typed languages. Our own Fiorano JIT compiler
is an example of this problem. As a state-of-the-art, RJIT
compiler for Python, the Fiorano JIT compiler outperforms
two other RJIT compilers (Unladen Swallow and Jython),
but still shows a noticeable performance gap compared to
PyPy, today’s best performing Python JIT compiler. In this
paper, we discuss techniques that have proved effective in
the Fiorano JIT compiler as well as limitations of our current
implementation. More importantly, this work offers the first
in-depth look at benefits and limitations of the repurposed
JIT compiler approach. We believe the most common pitfall
of existing RJIT compilers is not focusing sufficiently on
specialization, an abundant optimization opportunity unique
to dynamically typed languages. Unfortunately, the lack of
specialization cannot be overcome by applying traditional
optimizations.
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1. Introduction
Dynamically typed languages are becoming increasingly
popular due to productivity improvements enabled by rapid
prototyping and incremental deployment cycles. While pro-
grammers rely on the flexibility of dynamic typing, higher-
level data structures, and meta-programming to continuously
improve their applications and unfold new features, the same
features that appeal to programmers directly impact perfor-
mance and make code optimization very challenging.

The initial implementation of a dynamically typed script-
ing language is typically a simple interpreter where applica-
tions can run one to three orders of magnitude slower than
equivalent implementations in C or Java, especially for small
kernels. The past decade has seen significant advances in dy-
namically typed language Just-In-Time (JIT) compilers es-
pecially for Javascript [3, 12, 15, 24], but also for other lan-
guages such as Python [5, 7, 13, 17].

1.1 The Repurposed JIT Compiler Phenomenon
There are two types of dynamically typed language JIT com-
pilers: one type is based on an existing JIT compiler de-
signed for statically typed languages that has been repur-
posed (an RJIT compiler) and the other type is designed
from scratch for the target language. Examples of RJIT com-
pilers include translation to C++, such as HipHop [4] (PHP);
translations to Java, such as JRuby [6], Jython [7], Rhino [9]
(JavaScript); translation to CLR, such as IronPython [5]; re-
purposes of the LLVM JIT compiler [31], such as Unladen
Swallow [13] (Python) and Rubinius [10] (Ruby); and repur-
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poses of the IBM production-level Java JIT compiler, such
as P9 [36] (PHP) and ours [29] (Python).

The main appeal of the repurposing approach is the re-
duction of development and maintenance costs by leverag-
ing a mature infrastructure that includes a well-defined IL,
a rich set of optimizations, support for multiple platforms,
and other standard services. However, the performance of
the RJIT compiler approach has not been satisfactory. To-
day, the largest performance gains are seen on JIT compilers
for dynamically typed language that use radically different
approaches from traditional statically typed language com-
pilation.

The Shootout benchmarks [11], a popular benchmark for
evaluating the performance of various programming lan-
guages and implementations, show that the performance of
RJIT compilers is much lower than when a JIT compiler is
designed specifically for the dynamically typed language.
For example, PyPy [17], the fastest Python JIT compiler,
is a tracing JIT compiler and a custom virtual machine
(VM). Other RJIT compiler implementations include Un-
laden Swallow (an LLVM-based JIT compiler for CPython),
Fiorano (a RJIT compiler for CPython based on the IBM
Java JIT compiler [35]), and Jython (a Java JIT compiler
operating on Java bytecodes translated from Python pro-
grams). Among these RJIT compilers, Jython yields little
performance improvement over CPython, and though Un-
laden Swallow and the Fiorano JIT compiler are noticeably
faster than CPython, they do not generate the kind of dra-
matic improvements of PyPy.

1.2 Effective Optimizations for RJIT compilers
In this paper, we present a detailed analysis of RJIT compiler
performance based on our experience in building the Fiorano
JIT compiler. We focus on maximizing the effectiveness of a
JIT compiler that uses a statically typed IR when applied to
a dynamically typed language. We identify three important
acceleration techniques for RJIT compilers.

Dynamically typed languages present unique compiler
optimization challenges and many optimization techniques
have been created to overcome them [20, 27]. After early
optimizations transform the dynamically typed scripting lan-
guage idioms into sequences more familiar to existing JIT
compilers, the full strength of a standard JIT compiler opti-
mization engine can address the remaining gaps. Chang et
al. reported on the relative importance of these early op-
timizations [22]. To make the RJIT compiler effective, the
system must first apply optimizations targeted specifically at
dynamically typed language.

1.2.1 Specialization, Specialization, Specialization
A key insight is the observation that, when moving from
statically typed to dynamically typed languages, there is an
important shift in the optimization opportunities.

For a dynamically typed language, the main overhead
comes from generic implementations of the primitive oper-

ations and generic data representations as a result of sup-
porting the rich semantics. For example, in CPython, all of
the data is in objects and a generic add operation can in-
volve tens of basic blocks with complex control-flows and
object allocations. The main optimization opportunities in
such languages come from specialization, which is a form of
strength reduction on generic implementations. Not only are
there many specialization opportunities (since most common
Python bytecodes can be specialized), but the payoff can be
huge. Sometimes, the specialized code can be orders of mag-
nitude faster than the original generic implementations.

This means the RJIT compiler should be primed for ef-
fective specialization. Dynamically typed languages intro-
duce greater optimization challenges and benefit consider-
ably from high-level optimizations based on the language
semantics. Failing to specialize with sufficient coverage and
sufficient accuracy is the most common reasons an RJIT
compiler is ineffective.

1.2.2 Less Is More
One surprising observation is that the less a RJIT com-
piler depends on existing optimizations for specialization,
the more effective the RJIT compiler is, and the more it ben-
efits from its other existing optimizations.

This has to do with the type of generic implementations
that the specialization optimizations have to deal with. The
generic operations implemented in a dynamically typed lan-
guage runtime often involve library calls, heap side-effects,
and complex control-flows, which are very hard to analyze.
Therefore, specializations based on a traditional data-flow
framework are often unreliable due to the fundamental dif-
ficulty in accurately computing global side-effects. As a re-
sult, an effective RJIT compiler relies more on techniques
that are not based on data-flow framework, such as feedback-
driven specialization.

1.2.3 Guard-based Specialization
Another intriguing aspect of the less is more phenomenon
is that not only is specialization a strength reduction opti-
mization itself, it is also a catalyst to enable effective use of
existing optimizations in a RJIT compiler. This is because
specialized codes, unlike their generic counterparts, often
are clean of data-flow inhibitors such as calls, heap accesses,
and control-flow join.

To fully maximize the benefit of existing optimizations,
we advocate guard-based specialization (see Section 3.3.1)
that creates a specialized code guarded by a runtime con-
dition. A code specialized by guard does not include the
un-specialied path in the compiled code and if the guard
fails, the compiled code will bail out to the interpreter. This
is in contrast to traditional versioning-based specialization
that versions the code into a fast (specialized) version and
a slow (generic) version. While both approaches achieve a
similar degree of strength reduction, guard-based specializa-
tion is much more amenable to data-flow analysis because it
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removes slow-path code, which often includes library calls
and memory side-effects, from the scope of the optimizer.

1.3 Common Pitfalls of the RJIT Compiler Approach
In spite of the effectiveness of their acceleration techniques,
RJIT compilers do not achieve the same level of perfor-
mance as custom designed scripting language JIT compilers.
Is the RJIT compiler approach fundamentally not viable for
achieving maximum performance from dynamically typed
languages? While we cannot offer a definitive answer, our
experience building an RJIT compiler and evaluating several
alternatives sheds some lights on the limitations and com-
mon pitfalls of the RJIT compiler approach.

One key lesson we learned is that dynamically typed lan-
guage runtimes play a critical role in the effectiveness of
RJIT compilers. The design of the Fiorano JIT compiler in-
cluded an early decision to reuse the CPython runtime with
as few changes as possible.1 However, most generic dynam-
ically typed language runtimes are not designed for effec-
tive compilation. For example, the execution trace of a typi-
cal Python bytecode implemented by the Jython runtime of-
ten consists of between 150 to 300 Java bytecodes, where
one-third of the bytecodes perform heap operations, method
invocations, and branches, and we found similar execution
characteristics in CPython. Therefore, the first common pit-
fall of the RJIT compiler approach is an overreliance on the
JIT compiler alone to improve the performance, while much
less efforts are devoted to improving the runtime to reduce
path length or to facilitate compilation.

For fat runtimes like Jython or CPython, long instruction
paths are the most dominant source of overhead. To reduce
the amount of computation bloat, the longest instruction
paths should be greatly shortened to approach the efficiency
of statically typed languages. The second common pitfall of
the RJIT compiler approach is an overreliance on traditional
redundancy elimination optimizations, such as commoning
or dead code elimination, to reduce the path lengths in the
fat runtime. As shown in Jython, these optimizations are not
very effective. This is because fat runtimes impose two ma-
jor hurdles to data-flow analysis: (1) limited analysis scope
because long call-chains cannot be inlined, and (2) limited
ability to remove redundant heap computations because the
heap analysis must be conservative. In contrast, specializa-
tion based on language semantics proves to be more effective
because it often requires no or only local data-flow informa-
tion.

1.4 Contribution and Organization
This is the first work of its kind that offers an in-depth look
at the approach of extending a JIT compiler designed for
statically typed languages to optimize dynamically typed
languages. The paper makes the following contributions:

1 This is primarily for compatibility reasons because there is a large Python
code base that directly interacts with the internal data structures of CPython
via extension modules.

• We offer fresh insights about why the performance of
RJIT compilers often lags behind that of dynamically
typed language JIT compilers designed from scratch and
we identify several common pitfalls that contribute to this
effect.

• We present design principles for effective RJIT compil-
ers and recommend several techniques: early, feedback-
directed, guard-based specialization; partial IL extension;
and semantic inlining.

• We give details about the design and implementation
of Fiorano, our own RJIT compiler for Python, discuss
its strengths and weakness, and quantify the benefits of
different optimization strategies.

The rest of the paper is organized as follows: Section 2
gives an overview of Python. Section 3 discusses techniques
to effectively map dynamically typed language semantics to
the intermediate representation of an existing JIT compiler.
In Section 4 we present our Fiorano JIT compiler implemen-
tation. A detailed evaluation of the Fiorano JIT compiler is
presented in Section 5, followed by an analysis of four differ-
ent Python compilers and other dynamically typed language
compilers in Section 6. We conclude in Section 7.

2. Python Language and Implementation
Python is a general-purpose, high-level, object-oriented pro-
gramming language that encourages productivity and sup-
ports several dynamic features such as dynamic typing and
dynamic objects [26].

2.1 CPython Semantics
The default de facto standard implementation of Python is
referred to as CPython [8]. CPython is written in C and com-
piles Python programs into bytecodes which are then exe-
cuted in a stack-based virtual machine. Other implementa-
tions of Python exist, such as Jython (mapping Python to the
JVM) [7], IronPython (mapping Python to CLR/.Net) [5],
Cython (translating to C) [16], and PyPy (Tracing JIT com-
piler ) [17]. Figure 1 shows an example of CPython byte-
codes.

2.1.1 Data and Object Model
Every data in Python is an object, including the primitive
data types such as integer. Object fields are called attributes
and are stored as name-value pairs in dictionaries associated
with the object, the class, or its parent classes. Python objects
are dynamic as they can change their classes, and attributes
can be modified, deleted, or added to an existing object. This
means there are no fixed object structure at compile time.

2.1.2 Local Variables and Constants
Local variables are accessed through the LOAD FAST or
STORE FAST bytecodes, and constants are accessed via
LOAD CONST. As shown in Figure 1, all three of these byte-
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15 LOAD_FAST 2 (x)
18 LOAD_FAST 0 (size)
21 COMPARE_OP 0 (<)
24 JUMP_IF_FALSE 24 (to 51)
27 POP_TOP
28 LOAD_FAST 3 (res)
31 LOAD_CONST 2 (1)
34 BINARY_ADD
35 STORE_FAST 3 (res)
38 LOAD_FAST 2 (x)
41 LOAD_CONST 2 (1)
44 BINARY_ADD
45 STORE_FAST 2 (x)
48 JUMP_ABSOLUTE 15

Figure 1. CPython bytecodes corresponding to the loop in
Figure 3.a.

case BINARY_ADD:
w = POP();
v = POP();
x = PyNumber_Add(v, w);
Py_DECREF(v);
Py_DECREF(w);
PUSH(x);
if (x == NULL) throwException();
break;

Figure 2. CPython bytecode handler for BINARY ADD.

codes encode an integer value that is used to directly index
the local or constant arrays stored in the PyFrameObject.

2.1.3 Name Resolution
Object fields (known as attributes) and global variables (in-
cluding method names) are referenced by name and rep-
resented using the bytecodes LOAD ATTR(GLOBAL) or
STORE ATTR(GLOBAL). The name resolution in CPython
is done each time these bytecodes are executed. In a typ-
ical Python application, name resolution occurs, on aver-
age, every 5 to 10 bytecodes [32]. Name resolution itself is
also quite expensive and involves extensive error checking,
pointer indirections, invocations of runtime helpers,and hash
table lookups.

2.1.4 Generic Operations
Arithmetic and compare operations, such as ‘+’, are type
generic. Implementations of these operations are much heav-
ier than their type-specific counterparts. They often involve
complex control-flows that dispatch to specific sequences of
instructions linked to the operand types. Both the operands
and the results of generic operations are objects.

Figure 2 shows the CPython handler for a typical generic
operation, BINARY ADD. Most Python bytecode handlers
use a similar code pattern that involves a call to the run-
time that implements the actual computation of the byte-
code, some reference count handling via Py INCREF()

and Py DECREF(), and error checking that may throw ex-
ceptions.

2.1.5 Method Invocation
For Python, a function invocation allocates and initializes the
PyFrameObject, which includes a PC, the operand stack,
and local variables, and passes the arguments of Python.
Method invocation is very common in Python and occurs,
on average, every 7 bytecodes in a typical Python applica-
tion [32].

2.2 Characteristics of Dynamically Typed Language
Runtime

Most standard and generic implementation of dynamically
typed languages suffer from high overhead. Not only does a
generic implementation incur significant runtime overhead,
it also reduces the effectiveness of traditional optimizers.

2.2.1 Performance and Overhead
Unlike statically typed languages, the interpretation over-
head for dynamically typed languages contributes only a
small fraction of the performance gap [32]. Instead, the over-
head comes mostly from the generic implementation of a
rich and highly dynamic semantics. Key features are: generic
typing is universal and requires type dispatch inside each op-
eration; a monolithic object representation is used for all of
the data types including simple ones such as integers; most
operations can throw exceptions; and most named accesses
are resolved dynamically and repeatedly at runtime. This is
in steep contrast to statically typed languages such as Java
where there is often a straightforward mapping between Java
primitives and machine instructions.

2.2.2 A Case Study of Jython
Jython is another implementation of Python in which a
Python program is first translated into Java bytecode and
then run as a normal Java application, which is optimized
by a standard Java JIT compiler. The Shootout benchmarks
demonstrate that Java JIT compilers cannot greatly improve
the performance of Jython, which sometimes is slower than
CPython.

In the design space of RJIT compilers, Jython falls at one
end of the spectrum, where minimal customization for the
target scripting language is incorporated into the JIT com-
piler. We use Jython as an example to illustrate the chal-
lenges of optimizing a generic dynamically typed language
runtime and the limitations of traditional compilers when op-
timizing such runtimes. Consider the Python loops shown in
Figure 3. All three loops compute the same value, but use
different Python constructs. While a C implementation of
the same computation involves only a few machine instruc-
tions per iteration, the number of operations performed by
Jython is significantly higher. As shown in Table 1, each it-
eration of the loops in Figure 3 executes between 500 and
1100 Java bytecodes, where heap accesses, object alloca-
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def calc1(self,res,size):
x = 0
while x < size:

res += 1
n += 1

return res

(a) localvar-loop

def calc3(self,res,size):
x = 0
while x < size:

res += self.a
x += 1

return res

(b) getattr-loop

def foo(self):
return 1

def calc2(self,res,size):
x = 0
while x < size:

res += self.foo()
x += 1

return res

(c) call-loop

Figure 3. Simple Python Loops.

path length per Python loop iteration path length per Python bytecode
# Java bytecode (a) localvar-loop (b) getattr-loop (c) call-loop LOAD LOCAL ADD LOAD ATTR COMPARE CALL
heap-read 47 80 131 3 5 29 17 53
heap-write 11 11 31 0 2 4 2 16
heap-alloc 2 2 5 0 1 1 0 2
branch 46 70 101 2 8 19 18 34
invoke (JNI) 70(2) 92(2) 115(4) 0 (0) 17 (0) 23 (0) 26 (2) 23 (2)
return 70 92 115 0 17 23 26 23
arithmetic 18 56 67 0 5 38 8 11
local/const 268 427 583 6 60 152 96 154

Total 534 832 1152 12 115 289 191 313

Table 1. Number of Java bytecode executed by Jython for one iteration of the Python loops shown in Figure 3 and for
one Python bytecode, where heap-read (heap-write) includes get(put)field/get(put)static bytecode, and heap-alloc includes
new/anew bytecode.

tions, branches, and invocations account for nearly one third
of the instruction mix.

Table 1 also shows the instruction path length to exe-
cute one Python bytecode in Jython. In most cases, a single
Python bytecode involves between 160 and 300 Java byte-
codes, spans more than 20 method invocations, and performs
many heap-related operations. Similar path lengths are also
observed in the CPython implementation.2

This path length information quantifies the fundamental
overhead of a generic dynamically typed language runtime.
There are many excessively long paths due to the implemen-
tations of the language primitives. The keys to using a con-
ventional compiler to optimize such runtimes are: (1) mas-
sive (partial) inlining to see through deep chains of method
invocations; (2) accurate heap analysis to eliminate redun-
dant heap accesses and allocations; and (3) massive redun-
dancy elimination to shorten the instruction path lengths.

3. Designing a Dynamically Typed Language
JIT Compiler Using a Static IL

This section describes design considerations when repurpos-
ing a type-specific optimization framework for dynamically
typed languages. We first discuss the implications of using
an existing, type-specific intermediate language for Python
(Section 3.1), then present our approach to address the se-

2 A typical three-step execution of CALL FUNCTION, LOAD ATTR, and
BINARY ADD yields between 30 and 60 basic blocks each in the CPython
implementation.

mantic gap between the Intermediate Language (IL) and the
Python primitives (Section 3.2), and finally explain how to
maximize the effectiveness of the existing optimization en-
gine (Section 3.3).

3.1 Implication of Using a Static Intermediate
Language

The IL is the foundation of any compiler optimization frame-
work. We refer to the IL used for a statically typed language
as a static IL. A static IL is by definition type specific, which
means that each primitive operation has a unique type signa-
ture for its operands and result. In addition, the names (sym-
bols) referenced by a static IL are usually resolved statically
or semi-statically3. In contrast, dynamically typed languages
often use type-generic bytecodes and require dynamic name
resolution.

Given the difference between these two semantics, build-
ing a dynamically typed language JIT compiler based on an
existing static IL has several implications:

1. Translating dynamically typed language bytecodes to a
static IL can have a significant optimization effect. This
is because the generic implementations are the major
source of overhead in dynamically typed languages, and
thus the mapping to a static IL can be a powerful special-
ization optimization in itself. In contrast, IL translation

3 For semi-static name resolution, the symbols are resolved into concrete
values (e.g., offsets) once at runtime and will remain resolved unless certain
events such as dynamic class loading occur)
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in a typical statically typed language compiler is seldom
viewed as an optimization.

2. To perform effective specialization during the translation
process, we need to collect information and sometimes
perform analysis outside the static-IL based optimization
framework. For example, the lowering of type-generic
bytecodes to a static IL requires type information, which
can be collected via a type profiler (on the interpreter) or
from a type inference engine analyzing the bytecode of a
dynamically typed language.

3. The design point of the original static-IL optimizer may
differ from that of a dynamically typed language JIT
compiler. For instance, what is deemed as a high-level
optimization in a JIT compiler for statically typed lan-
guages (such as escape analysis) may be a basic opti-
mization (such as allocation removal) in a dynamically
typed language JIT compiler.

The rest of the section discusses how to map rich, dynam-
ically typed language semantics to a static IL to maximize
the optimization effects during translation and when reusing
existing optimizations.

3.2 Feedback-directed Runtime Specialization
While a generic implementation of rich, dynamic semantics
is the major source of overhead in dynamically typed lan-
guages, operations at each specific program counter (PC) of-
ten exhibit a strongly biased behavior, such as the types for
an arithmetic operation, the location of a resolved reference,
or the target of an invocation. This provides fertile ground
for specialization, which can be viewed as a form of strength
reduction of generic operations and generic data representa-
tions. Such specialization typically includes specialization
of operation types, name resolution, and invocation targets.

We used runtime feedback (profiling) as the primary
means to decide on when and what to specialize in our
framework. Simplicity is the main appeal of runtime feed-
back since it requires little program analysis and is a pure
runtime technique. This allows feedback-directed special-
ization to happen as early as possible, thus maximizing the
optimization effect of the translation step. In such a design,
the accuracy and coverage of runtime feedback profiles be-
come first-order constraints on the effectiveness of the JIT
compiler. Such heavy reliance on profiling is not used in
statically typed language JIT compilers, but it is a typical
characteristic of JIT compilers for dynamically typed lan-
guages.

While other approaches rely on program analysis to de-
duce specialization targets such as types [1, 39], they often
require an IL that closely matches the target language se-
mantics for the analysis engine. Therefore, analysis-based
specialization is not appropriate for a framework like ours
that is based on an existing static IL.

if (x->type == PyFloat) {
// fast path
t = PyFloat_fromFloat(-x);

} else {
// slow path
t = PyNumber_Negate(x);

}
(a) versioning-based

guard(x->type == PyFloat)
// fast path
t = PyFloat_fromFloat(-x);

(b) guard-based

Figure 4. Pseudo code of two approaches for specializa-
tions.

3.3 Effective Lowering from Dynamically typed
Language Semantics to Static IL

Given the semantic difference between Python bytecode
and a typical static IL, the translation to a static IL, when
done ineffectively, can result in a naive translator that re-
places every single Python bytecode, such as BINARY ADD,
with the corresponding CPython runtime routine, such as
PyNumberAdd(), in the resulting IL. Not only does lit-
tle specialization occur during the mapping, but the IL after
translation is filled with runtime calls that are hard for any
traditional optimization framework to analyze.

In contrast, an effective IL translation will be an impor-
tant optimization in itself if it takes a generic implementa-
tion, specializes it, and makes it specific. The rest of this
section discusses general techniques for effective mapping
to a static IL.

3.3.1 Guard-based Specialization
Figure 4 shows two approaches to specializing a generic op-
eration. The first example is versioning-based, and includes
both a specialized implementation (a fast path) and a generic
implementation (a slow path). The second example is guard-
based, but includes only the fast path. A guard is a condi-
tional form of control-flow in which, when a guard test fails,
the execution bails out to the interpreter and does not re-
turn to the current compilation scope. While both achieve
the same degree of strength reduction for the generic op-
eration, the impact on subsequent data-flow analysis dif-
fers. Guard-based specialization does not introduce any join-
node in the control-flow graph after specialization, while
versioning-based specialization does, which is the key dis-
tinction between these two forms of specialization.

The elimination of control-flow join via guard-based spe-
cialization is a key mechanism to enable effective data-flow
in a specialized program. In essence, guard-based specializa-
tion prunes a generic control-flow graph, where each generic
operation in the control-flow graph had many outgoing edges
for different type combinations, based on a given set of spe-
cialization conditions.
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3.3.2 (Partial) IL Extension
Because the IL is the foundation of any optimization frame-
work, any IL extension often implies extension to optimiza-
tions operating on the IL. When reusing an existing opti-
mization framework, however, only a few IL extension may
be accommodated.

One use of IL extension is to encapsulate common code
patterns into the IL to avoid disrupting the analysis frame-
work. For instance, most Python bytecode handlers, as
shown in Figure 2, involve error checking and the handling
of reference counting, both of which involve control-flow
and calls to runtime helpers such as throwException. A
straightforward translation of a Python bytecode handler to
a static IL would create several basic blocks per bytecode.
Instead, we can introduce IL instructions to represent refer-
ence counting and error handling, which are later expanded
into the actual code sequences after most optimizations has
been completed.

Another scenario for IL extension is to extend the seman-
tics of an existing IL to express a target language primitive
with different semantics. We call such an extension a partial
IL extension because the IL is only used in selected opti-
mizations where the semantic differences do not matter, but
has to be expanded into the original IL instructions with the
additional IL instructions to perform Python-specific func-
tions.

3.3.3 Semantic Inlining of Runtime Helpers
The presence of unknown library calls (often in binary form
and on the heap) is a major inhibitor to effective data-flow
analysis. Semantic inlining [37] is a technique that allows the
semantics of standard runtime helpers, which in our context
are CPython runtime helpers, to be encoded directly into the
compiler. Semantic inlining is commonly used in modern
JIT compilers for important Java standard class, such as
java/lang/String.

In a JIT compiler for dynamically typed languages, the
simplest form of semantic inlining specifies the memory
side-effects of the CPython runtime helpers. More advanced
forms of semantic inlining can include optimizations on
recognized runtime helpers, such as folding a call sequence
(i.e. the sequence PyInt asInt(PyInt fromInt(x))
that retrieves the value of a newly created boxed value from
x).

4. Fiorano JIT Compiler Implementation
This section describes our Fiorano JIT compiler for CPython
to illustrate the steps we took to repurpose a mature Java
JIT compiler as a dynamically typed language JIT compiler.
Details of the design and implementation of the Fiorano JIT
compiler can be found in [29].

4.1 Overview
The Fiorano JIT compiler was developed on top of the Tes-
tarossa JIT compiler [35], a mature compilation infrastruc-
ture that supports statically typed languages, such as Java,
and multiple platforms, such as POWER and x86. The in-
frastructure consists of three customizable components: IL
generator, IL optimizator, and code generator.

To support Python, we first added a new IL generator
that translates Python bytecode into the infrastructure’s type-
specific IL. We then perform Python-specific, guard-based
specialization to convert as much as possible of the type-
generic Python bytecode into the type-specific IL, such as
integer and float. After that, we can reuse most of the stan-
dard optimizations in the Testarossa JIT compiler with some
changes to support the minimal IL extensions we made to
accommodate the Python semantics. We also added a few
Python-specific optimizations inside the optimization engine
of the Testarossa JIT compiler. Our JIT compiler supports
a variety of optimization levels, which trade optimization
complexity against speed.

The Fiorano JIT compiler is attached to the CPython
interpreter as a shared library. JIT compilation is triggered
if the execution count of a method exceeds a predefined
hotness threshold. There is also a major component that adds
profiling and runtime feedback between CPython and the
Fiorano JIT compiler. We extended the existing interpreter
profiling mechanism to collect Python-specific profiles.

4.2 Runtime Profile and Feedback
Our JIT compiler has a runtime profiler and offers the API
to the interpreter. Through the API, the interpreter can send
the profiler types of the objects used when the interpreter
executes bytecode. The API calls were inserted in one-third
of the Python opcodes that the JIT compiler can optimize
by using runtime type information. We could have done
sampling for these API calls, but we always send the data to
the profiler in our evaluation system, because we believe that
the overhead of the API calls is negligible after compiling
most of the functions during a sufficiently long warm-up
time. Up to five types are collected for each bytecode address
before compilation. The profiler updates the frequencies of
the types for each bytecode with the received data, which
are used later by the JIT compiler to optimize the code. We
modified the original source code of CPython to insert the
API calls.

The JIT compiler can know how frequently each bytecode
was executed and which types occurred most frequently
from the profiled data. The JIT compiler can find the data
saved by the profiler by specifying the bytecode address. If
there is no profiled data for a given bytecode, then the JIT
compiler does not optimize it because it will be executed
rarely. If the JIT compiler obtains a distribution for the data,
such as 100% use of the type A or 50% for type A and 50%
for type B, then the JIT compiler can use the data distribution
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for optimizations. For most of the optimizations, the JIT
compiler can specialize the code with the type if the profile
shows that a type is used for 100% of the executions of the
target bytecode.

4.3 IL Generation and Early Optimizations
This subsection describes mapping Python bytecodes to the
IL and the Python-specific optimizations we apply during IL
generation.

4.3.1 Stack Frame Design for JITed code
While the interpreter allocates a PyFrameObject at each
method invocation, we choose to allocate a stack frame on
the system stack for the JITed code. Using different frame
designs for the interpreter and JITed codes is a common
practice in modern JIT compilers since it is much easier
for a compiler to optimize stack-allocated variables com-
pared to heap-allocated variables. When a JITed method is
invoked, arguments for the method are copied-in from a
CPython frame to a JIT compiler’s frame. Each local vari-
able is assigned to a stack-allocated variable. The height of
the operand stack is also assigned to a stack-allocated vari-
able. When a JITed method invokes a method or yields, live
variables are copied-out from the stack frame of the JITed
code to the CPython frame. Using such a stack frame design
of the JITed code, accesses to Python local variables can be
mapped directly to our IL representing local accesses.

4.3.2 Mapping Python Bytecodes to the IL
During the IL generation, a Python bytecode, by default, is
translated into a call to a corresponding CPython runtime
helper. For example, when processing the UNARY NEGATE
bytecode, we generate a call to PyNumber Negate().
Such a translation (referred to as the naive translation) is
straightforward and preserves the semantics of the byte-
code as implemented in CPython. However, the resulting IL
would look like subroutine-threaded code with many run-
time calls. If later optimizations cannot specialize such run-
time calls to a faster sequence of expanded instructions, then
the benefits of applying traditional optimizations are limited.

To address the limitation of the naive translation, we
added a new opcode, guard, and re-mapped the semantics
of a few existing IL instructions to Python semantics. Note
that a full extension of the IL to Python semantics would
defeat the purpose of reusing an existing JIT compiler. This
is because any IL extension requires some degree of modi-
fication to the existing optimizations that operate on the IL,
and therefore a full extension would require fundamental and
pervasive changes to the existing JIT compiler.

The new guard opcode is a control-flow IL instruction
with a condition operand and a target basic block (BB) num-
ber. Here are the semantics of the guard opcode: execu-
tion falls through if the condition is true,o therwise, the ex-
ecution bails out to the interpreter through the target BB.
Note that, upon the guard failure, the execution does not re-

turn to the current compilation scope. When bailing out to
th interpreter, the target BB restores the states of the inter-
preter frame PyFrameObject to be consistent with the
stack frame of the JITed code at the point of the guard fail-
ure, which includes local variables, the operand stack, block
structures for a for loop and try, and the interpreter PC.

We extended the existing iaload opcode, which origi-
nally represented an indirect load with an offset to a refer-
ence, to represent the common semantics of LOAD ATTR.
The generic implementation of LOAD ATTR includes the
handling of many corner cases and can cause side-effects.
For example, LOAD ATTR may have heap side-effects when
calling getattr , allowing a user to define actions.
When our JIT compiler determines that LOAD ATTR only
performs a simple load from the heap, it maps LOAD ATTR
to the iaload opcode. Such mapping allows optimizations
such as common sub-expression elimination and partial re-
dundancy elimination to apply to the translated IL. However,
LOAD ATTR may execute unexpected operations through
operator overloading at runtime that were not apparent at
compilation time. Therefore, our JIT compiler also inserts
a guard opcode before the iaload opcode. Note that
when the targeted data-flow optimizations are completed,
the iaload is converted back to the actual implementa-
tion of LOAD ATTR. A similar extension is also used for
the iastore opcode for STORE ATTR. We also extended
the existing isinstance opcode that checks whether an
object is an instance of a class in Python. We map Python’s
built-in function isinstance to the corresponding IL in-
struction, so that redundant isinstance operations may
be removed by an existing optimization in the JIT com-
piler [29].

After adding the IL extensions, most Python bytecodes
would still be mapped to a call to a Python runtime helper.
To minimize the impact of calls with unknown side-effects
on the data-flow analysis, we expose the important data-flow
properties of such helpers to the compiler. Such properties
include: (1) whether or not a runtime helper has side-effects
(for general data-flow); (2) whether it can be eliminated
when the result is not used (for redundancy elimination); and
(3) the type signature of a helper (for type-flow analysis). For
instance, PyFloat fromFloat is known to the compiler
as an operation with side-effect that returns a PyFloat ob-
ject, but it is also know that the operation can be eliminated
if the return object is not used.

4.3.3 Type Specialization
In dynamically typed languages, a generic operation such
as PyNumber Negate is very slow because there is over-
head to determine the actual action for each object based on
its type. If the type of the given object is dominated by the
particular type for a generic operation, then our JIT com-
piler inserts a guard opcode for the dominant type. If the
type guard can be inserted, then our JIT compiler can apply
type specialization, which replaces a runtime helper for the
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o = PyNumber_Negate(x)

(a) original IL

guard(x->type == PyFloat)
f = -(x->float_value)
...

(b) specialization with unboxing

guard(x->type == PyFloat)
f = -(x->float_value)
t = PyFloat_fromFloat(f)
...

(c) type specialization

Figure 5. Guard-based optimizations.

generic operation with a faster implementation for the partic-
ular type, as shown in Figure 5 (b). After the type specializa-
tion, the generated IL sequence will consist of primitive type
operations and an object allocation for the primitive type if
the result of an operation produces a primitive type, such as
int or float.

4.3.4 Specialization for Name Resolution
We apply two Python-specific optimizations in the IL gener-
ation phase. The first is specialization for the value loaded by
LOAD GLOBAL. Previous work [26] observed that the value
of a global variable, which often refers to a method resolved
by name, rarely changes after the initialization of an appli-
cation. Based on this observation, our JIT compiler looks up
the value of the global variable in a dictionary at compila-
tion time and puts that value into the IL instructions as a
constant [13]. In addition, our JIT compiler installs watch-
ers in the dictionary so that when a variable is updated, the
watcher invalidates the compiled code and the method is re-
compiled without applying this optimization upon the next
invocation.

The second optimization recognizes common Python
built-in functions. Since the built-in function names are
searched for by the LOAD GLOBAL bytecode, this optimiza-
tion is closely linked with the previous one. If that optimiza-
tion has identified a value as a constant and it includes a
function pointer for a built-in function, then our JIT com-
piler handles it as that built-in function [13].

4.3.5 Control-flow Representation of Exceptions
Another consideration during the IL generation is how to
represent exceptions in the control-flow graph. Unlike Java
where only reference bytecodes may throw exceptions, any
instruction except for the stack-manipulating Python byte-
codes may throw exceptions, such as out-of-memory excep-
tions, To avoid injecting too many control-flow into the gen-
erated IL, we use a factored control-flow graph (CFG) [23]
to handle these frequent exception checks in our IL. The fac-
tored CFG maximizes the size of a basic block for which
existing optimizations can effectively be applied.

4.4 Late Python-specific Optimizations
This section describes Python-specific optimizations that are
applied after IL generation. Some are added as new opti-
mizations to the optimization pipeline of a Java JIT com-
piler. Others are extended from existing optimizations in the
JIT compiler.

4.4.1 Type Propagation
In Python, all data is represented as objects. In our JIT com-
piler, an object is represented as a struct in a heap, with
typical fields in the object, such as reference count,
type, and value. Each field of a Python object is accessed
by an indirect memory access using a base address with an
offset. During the type propagation optimization pass, the
type field is handled to propagate the known type infor-
mation such as integer, float, or list. The computed type in-
formation can be used to eliminate redundant guard and to
support additional type specialization.

4.4.2 Allocation Removal and Unboxing Optimization
As described in Section 4.3.3, early type specialization may
result in a IL sequence that performs a type-specific opera-
tion, produces a primitive value, and then boxes the value
into the corresponding Python object. Eliminating unnec-
essary boxing of primitive values is the most importance
optimization for this type of specialization and is done by
a data-flow optimization called the unboxing optimization.
The purpose of unboxing optimization is to avoid redundant
allocation of primitive CPython objects.

In particular, unboxing is used to assign a scalar value in
the object to a stack-allocated variable so the corresponding
object allocation can be eliminated. If the object is used later
at return or in code that bails out to the interpreter, then
our JIT compiler inserts an object allocation using the scalar
value. This approach makes our unboxing widely applicable
than the previous approach [18]. Our JIT compiler uses
unboxing as shown in Figure 5 (c).

4.4.3 Late Reference Count Injection
For reference counting, our JIT compiler does not generate
code for maintaining the reference counting for an object,
which means that the IL ignores reference counting during
most of the optimization phases. Instead, we inject late-stage
code for handling reference counting using the algorithm
in [30]. This late expansion avoids fragmentation of the basic
blocks, which makes the code more data-flow friendly.

4.4.4 Semantic Inlining of Runtime Helpers
This technique inlines the fast-path implementation of the
LOAD ATTR and STORE ATTR bytecodes directly into the
IL representation without calling slow runtime helpers. This
is a form of specialization from the generic implementations
of these opcodes.
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Benchmark Description
django use the Django template system to build a

150x150 cell HTML table
float artificial, floating point heavy benchmark
nbody the n-body shootout benchmark
nqueens small solver for the 8-queens problem
pystone Dhrystone written in Python
richards the classic Richards benchmark
rietveld macrobenchmark for Django using the ri-

etveld code review application
slowpickle serializaing Python objects using the python

pickle module
slowspitfire use the Spitfire template system to build a

1000x1000 cell HTML table
slowunpickle deserializing Python objects using the

python pickle module
spambayes run a canned mailbox through the Spam-

bayes ham/spam classifier

Table 2. Description of the Unladen-Swallow benchmarks

4.4.5 Specialization of isinstance and hasattr
Built-ins

The isinstance built-in checks whether an object is an
instance of a class. The hasattr built-in checks whether
an attribute name exists in an object. The generic form of
hasattr has a cost similar to that of LOAD ATTR. Because
both built-ins deal with the “type” metadata of a Python
object and return a true or false result, one can specialize
the results of these built-ins if the type of the input object is
known (either via type propagation or as deduced from its
type guards) [29].

5. Evaluation of the Fiorano JIT Compiler
We next examine the effectiveness of our JIT compiler. We
first discuss the overall performance of our JIT compiler at
different optimization levels. We then analyze the efficacy
of different specialization techniques. In the next section we
compare our approach against several other approaches and
discuss their relative advantages and shortcomings.

5.1 Methodology
We performed our experiments on a 3.8-GHz Intel i7 2600k
processor with 8GB RAM, running Fedora Core 15 Linux.
We used CPython version 2.6.4 [2] as our baseline inter-
preter, and eleven benchmarks from the Unladen Swallow
benchmark suite [14]. Table 2 summarizes the benchmarks
used. All eleven benchmarks are single-thread python pro-
grams, ranging from simple microbenchmarks like float
and pystone to benchmarks based on real-world Web ap-
plications like django and rietveld. For the JIT com-
piler performance data (for both our and other approaches),
we report the post-warmup, steady-state performance, since
we are targeting long-running Web applications.

5.2 Performance at Different Optimization Levels
Figure 6 shows the performance for different optimization
levels of our JIT compiler compared to the standard CPython
interpreter. Each higher optimization level performs addi-
tional optimizations in addition to lower level optimizations.
Note that, the Fiorano JIT compiler does not yet perform in-
lining of user-level Python methods.

The noOpt-level disables almost all local and global op-
timizations in the IL optimization phase of the origi-
nal JIT compiler. In essence, only the IL generation and
code generation components of the original JIT com-
piler are exercised with no Python-level specialization.
Interpreter-level profiling is also always enabled at all op-
timization levels.

The cold-level enables basic-block-level (local) optimiza-
tion, such as common sub-expression elimination, value
propagation, and dead-store elimination, as well as opti-
mizations specific to Python, including local type prop-
agation, type specialization, semantic inlining of run-
time helpers, and reference counting optimizations. This
level performs most optimizations for dynamically typed
languages during the IL translation (Section 4.3). The
isinstance and hasattr (Section 4.4) specializa-
tions are also enabled since these optimizations do not
rely on data-flow analysis and are inexpensive to perform.

The warm-level enables standard data-flow optimizations
across basic blocks (global) as well as Python-specific
optimizations such as unboxing optimization and global
type propagation.

The hot-level enables more expensive global optimizations
such as partial redundancy elimination.

As shown in Figure 6, the Fiorano JIT compiler achieves
an average speedup of 2 over CPython. The noOpt-level
achieves a 1.2x performance improvement over the CPython
interpreter. For typed languages, a basic (naive) compiler
that directly translates Python bytecodes into calls to the
Python runtime produces code that looks like subroutine
threaded code. The gain from such compilation is limited
since, according to an earlier study [32], the interpreter dis-
patch overhead accounts for less than 5% of the CPython
execution time.

The biggest gains are observed when switching to the
cold level. Most of these gains at the cold-level come from
basic Python specific optimizations that do not rely on the
IL-level optimizations in the original JIT compiler. For in-
stance, most of the improvement in django comes from
effective specialization of the isinstance and hasattr
built-ins.

Another observation is that the cold- and warm-level op-
timizations are a lot more effective on small kernels, such as
float and nbody. At the cold level, the benefits of type
specialization and the semantic lining of runtime helpers for
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Figure 6. Performance by optimization level

LOAD ATTR are easily observed in float, where we dou-
ble the performance going from noOpt to cold. At the warm-
level, the JIT compiler removes object allocations and heap
accesses from the critical path of hot loops via unboxing of
the integer and float objects. As a result, we achieved signif-
icant speedups of 5 and 4 for float and nbody, respec-
tively.

In contrast, the gains from higher-level optimizations, ei-
ther traditional or Python-specific, are not as significant on
benchmarks with mostly non-hotspots, such as django,
rietveld, slowspitfire, and spambayes. We ob-
serve almost no performance gain when moving from the
warm to hot level of optimization. We believe this is due
to several limitations of our current implementation, such
as the lack of Python-level method inlining and PC-specific
profiling that is context-insensitive, both of which are more
relevant to larger workloads. Also, our reliance on a data-
flow framework to perform common specializations such as
name resolution specialization (e.g., for LOAD ATTR) and
the unboxing optimization may become unreliable for larger
workloads, since these optimizations often require accurate
heap analysis to confirm the legality of the transformations.

5.3 Effectiveness of Specialization
We instrumented the JIT compiler and the CPython inter-
preter to track the numbers and types for the Python byte-

codes executed for a complete run of all of the benchmarks.
These results are shown in Figure 7. The different data sets
in this figure are:

• Bytecodes executed by the interpreter, which is further
divided into Interpreted, meaning those interpreted be-
fore the method is compiled; and Interpreted-guard-
failure, meaning those interpreted due to a guard failure
in a compiled method, which occurs when a guard or
watchpoint fails in the JITted code, forcing a branch to a
side exit routine that returns execution to the interpreter
for the remainder of that function.

• Bytecodes executed in the JITted code, which are subse-
quently divided into:

Compiled-unspecializable, which are simple byte-
codes such as those that manipulate the interpreter
stack (i.e. POP TOP), load a constant (LOAD CONST)
or access a local variable (LOAD FAST). The com-
piler will remove these operations during IL genera-
tion or by using standard optimizations. This group in-
cludes control flow bytecodes (i.e. JUMP IF FALSE)
which are translated to CFG edges by the JIT com-
piler. Unspecializable also includes bytecodes for
complex data structures that we currently do not spe-
cialize such as BUILD LIST.
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Benchmark Total Success Failure Total Success Failure Total Success Failure
django 46M 31.43 0.04 113M 2.51 0.02 87M 61.14 0.08
float 72M 99.78 0.00 36M 42.76 0.00 138M 99.78 0.00
nbody 359M 95.20 0.00 10K 0.00 0.00 8K 0.00 0.00
nqueens 103M 99.91 0.00 15M 0.00 0.00 8K 0.00 0.00
pystone 169M 80.61 0.00 57M 0.00 0.00 78M 0.00 0.00
richards 38M 79.27 0.00 26M 0.00 0.00 102M 25.02 3.97
rietveld 50M 56.74 0.11 125M 3.73 0.00 149M 64.10 5.21
slowpickle 50M 74.63 0.00 116M 10.05 0.00 95M 27.22 0.00
slowspitfire 52M 97.95 0.00 156M 0.00 0.00 49K 0.88 0.00
slowunpickle 82M 80.17 0.00 88M 3.25 0.00 45M 1.55 0.00
spambayes 158M 75.76 0.00 117M 15.29 0.00 150M 42.07 0.17

Figure 7. Effectiveness of Specialization

Specializable bytecodes, which are Python bytecodes
that are subject to specialization by the compiler.
These bytecodes are Compiled-unspecialized because
we do not have enough runtime information at com-
pile type to decide on a specialization strategy. They
are Compiled-specialization-succeeded if we success-
fully specialize the bytecodes (and the guards do not
fail) or Compiled-specialization-failed if the guards
for specialization fails.

All of the benchmarks execute the majority of their byte-
codes in the JITted code, where the warmup phase (except
for slowpickle) is less than 10% of the total amount of
bytecode. In all cases, there are very few guard failures, al-
though in django this results in about 20% of bytecodes
being executed in the interpreter. We narrowed this specific
case down to a particular call site for a builtin function (len)
for PyListObject types: although for 90% of the cases
in this specific call site the specialization is correct, the re-
maining 10% of failures have a major impact on the all of
the other bytecode.

Benchmarks that rely on data structures that we special-
ize effective such as float or nbody result in around
40% of successful specializations, but for most of the other
more complex benchmarks the successful specialization rate
is less than 20%. These benchmarks also show that we are
missing approximately 20% of the potentially specializable
bytecode, either because we lack sufficient runtime informa-
tion or because we currently do not specialize those object
types.

The table in Figure 7 gives further insight into the cov-
erage and failures observed for three sets of specializ-
able bytecodes: unary, binary, or compare operations (i.e.
BINARY ADD), function calls (i.e. CALL FUNCTION) and
attribute access (i.e. LOAD ATTR). The total column rep-
resents the total number of bytecode instructions executed
for each group and for each benchmark, while the next two
columns show the success and failure rates of specializa-
tion. For each benchmark we show up to three of the most
relevant types (from a total of approximately 100 types in
CPython). From this table, it is clear that our JIT compiler
can successfully specialize most compare and binary opera-
tions for most benchmarks, as well as the attribute access for
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several of the benchmarks. But our success rate is still low
for approximately half of the attribute access benchmarks
and for most of the function call bytecodes.

5.4 Allocation Removal
Another way to evaluate the effectiveness of our environ-
ment is to analyze the number of CPython objects that we
were able to remove during optimization. Table 3 shows the
total number of PyObjects initialized by the interpreter
and the percentage reduction we observed in our JIT com-
piler at the hot optimization level for a complete run. Note
that at the noOpt level both the interpreter and the JIT com-
piler allocate the same number of Python objects. The table
also lists, for each benchmark, the top two object types by
percent reduction along with the contribution of each object
type to the total reduction.

Not surprisingly, the Python objects that we specialize
and box and unbox effectively are easily removed by the
compiler from simple benchmarks like float and nbody
where standard optimization techniques like value propaga-
tion work well. These are the benchmarks where we obtain
some of our biggest speedups. For the float benchmark,
we are able to remove 56.25% of all the PyFloatObjects
and 45.48% of the total objects. Also the JIT compiler spe-
cializes a generic mechanism for calling init object
initializers. This specialization removed PyMethod objects
(shown as instancemethod) by 33.33% for float. These
specializations significantly reduce the complexity of the
JITted code, but the improvement remains limited to 5 times
or lower.

In web applications like the django and rietveld
benchmarks the specialization for the isinstance builtin
call resulted in the removal of PyCFunction objects
(builtin functions or methods). We removed approximately
68.38% of PyCFunction objects in the django bench-
mark. Also specialization for name resolution removed
PyStringOjbects (str) by keeping the resolved val-
ues of IMPORT NAME bytecode. For django, we removed
90.60% of all the PyStringObjects and 50.02% of the
total objects.

5.5 Method Inlining
Method inlining is a well-know and important optimization
in a optimizing compiler. This embeds a callee body into
a caller at method invocation call sites, and expands the
compilation scope. In addition, method inlining can reduce
the overhead of complicated argument passing in Python
such as is used for keyword arguments.

In Section 5.2, we mentioned that our JIT compiler does
not currently support inlining of user-level python functions.
In order to evaluate the potential of expanding the compila-
tion scope, we manually embedded a callee body into a caller
at method invocation call sites for float and richards.
We observed 1.05x and 1.81x performance improvements
for float and richards compared to the original ver-

sions, respectively. This improvement is fairly constant be-
tween optimization levels, and since the gains in hot are not
relatively higher than noOpt, this indicates that we are not
automatically taking advantage of larger scopes. Note that
this is an idealized upper-bound on what can currently be
achieved with the current implementation (since manually
inlining we modified the original program).

We are currently implementing method inlining. Ideally,
when a compiler applies method inlining, it is better for per-
formance to allocate only one incorporated frame instead of
allocating and deallocating the callee frames. In some cases,
a callee frame is referenced at runtime. To correctly support
the Python runtime, these two cases must be supported:

• reflection: Dynamically typed languages support more
powerful reflection features such as the inspection of
live objects including a PyFrameObject. To inspect a
PyFrameObject with sys. getframe() requires
preparing the complete status of PyFrameObject. If
the method inlining allocates only one object, the run-
time needs to reconstruct the PyFrameObject when
sys. getframe() is executed [17], which is a rela-
tively complicated implementation.

• bailing out to the interpreter: When the execution bails
out to the interpreter, the execution environment should
restore the state of the interpreter frame PyFrameobject
to be consistent with the stack frame for the JIT com-
piler, which includes local variables, the operand stack,
and the interpreter PC. If the method inlining allo-
cates only one object, the runtime needs to reconstruct
a PyFrameobject that was implemented in another
language [28], which is again a relatively complicated
implementation.

6. Understanding Other Dynamically Typed
Language JIT Compilers

This section evaluates several other Python JIT compil-
ers against our system, and contrasts other approaches to
improve the performance of dynamically typed languages
against the RJIT compiler approach.

6.1 Evaluation of Other Python JIT Compilers
We evaluated our Fiorano JIT compiler against three other
Python JIT compilers: Jython 2.5.24 [7], Unladen Swal-
low [13], and PyPy 1.8 [17], two of which are RJIT compil-
ers except for PyPy. Figure 8 shows the performance of the
four JIT compilers relative to CPython on the Unladen Swal-
low benchmarks. At one end of the spectrum is PyPy, which
is by far the best performing Python JIT compiler and which
can sometimes significantly outperform CPython. Jython is
at the other end of spectrum, with a performance that is al-
ways below that of CPython. While the Fiorano JIT compiler

4 Jython 2.5.2 does not take advantage of the new InvokeDynamic and
Method Handles in Java 7.
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% Reduction (top two object types)
Benchmark Objects allocated per run (interpreter) %Reduction (total) Object type %Reduction %Contribution to total

django 1,667,456 50.02 builtin function or method 68.38 70.32
str 90.60 24.28

float 499,745 45.48 float 56.25 90.00
instancemethod 33.33 10.00

nbody 5,460,067 42.49 float 42.59 99.15
int 100.00 0.85

nqueens 692,209 0.0027 int 4.76 100.00

pystone 349,255 0.00

richards 540,501 0.00

rietveld 928,134 15.10 builtin function or method 28.83 62.72
instancemethod 11.09 16.90

slowpickle 246,801 1.46 traceback 100.00 66.67
str 1.46 33.33

slowspitfire 2,733,040 0.00

slowunpickle 12,800 3.23 traceback 50.0 100.0

spambayes 559,302 1.89 float 16.28 98.12
builtin function or method 0.10 1.85

Table 3. Allocation Removal
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Figure 8. Speedup over CPython on the Unladen Swallow benchmark suites.
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Figure 9. Speedup over CPython on common Python primitives measured in pybench.

consistently outperforms the Unladen Swallow, it can only
come close to PyPy on small benchmarks such as float
and nbody. It is important to highlight that in this figure
Jython executes on top of the same Java VM that was the
base of our Fiorano JIT compiler and uses the same standard
compiler optimizations.

The weakness of the RJIT compilers is evident when
comparing the performance of common Python operations
measured by pybench. The pybench benchmark consists
of kernels to evaluate common Python idioms wrapped in
tight loops. While the benchmark is designed to measure
the performance of interpreters rather than compilers, low
or negative performance improvements for common Python
primitives reveal weaknesses in a compiler. As shown in Fig-
ure 9, Jython is unable to optimize any category of Python
primitives. While the Fiorano JIT compiler performs well
on arithmetic operations, it falls short on call, lookup (of
attribute or global value), and the handling of non-numeric
data (i.e., string, unicode, dictionary, list, and
tuple). In both broad categories of call and lookup oper-
ations, we do quite well on the invocation and lookup of
the built-in functions, but not on other types of calls and
lookups.

In contrast, a new JIT compiler based on a new object
model (like Jython or PyPy) complicates the compatibil-
ity with existing CPython modules and extensions. These
modules (like NumPy or cPickle) typically interact with
CPython’s internal representation. Therefore, new JIT com-
pilers either require rewriting these modules to avoid using

CPython objects, or conversions between their own internal
objects and CPython’s objects at the module boundaries.

6.1.1 PyPy
As shown in Figure 8, PyPy achieves by far the most gains
and consistently outperforms the other JIT compilers except
for slowspitfire.5 PyPy is a meta-tracing JIT compiler
for a custom Python VM written in RPython. It is similar to
Jython in two ways: (1) the entire runtime is readily avail-
able to the JIT compiler; (2) it relies heavily on data-flow
optimization to remove redundant computation in generic
implementations.

So why is PyPy relatively more effective than Jython?
The effectiveness of PyPy comes from two characteristics.
PyPy’s custom runtime enables more effective specializa-
tion, such as its object model implementation that promotes
specialization of runtime constants [19] and the use of hid-
den classes [21] to maximize successful specialization for
lookup operations. The second characteristics is that PyPy’s
optimizing JIT compiler is designed to overcome the two
major inhibitors of effective data-flow on generic language
runtime, limitation on the analysis scope and on the heap
redundancy elimination.

Using a trace selection algorithm customized for the
Python runtime, PyPy is able to form compilation scopes
that encompass all runtime code executed in a Python-level
loop. Such customization includes annotating the runtime to

5 The modest improvement of slowspitfire is because the benchmark
produces an object allocation pattern for which PyPy’s garbage collector is
not optimal.
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direct the tracer to unroll loops or to avoid tracing through
methods with too many side-exits.

To enable heap redundancy elimination, PyPy takes ad-
vantage of the lack of any split or inner-join in a trace to per-
form a very aggressive abstract interpretation on each trace.
Such abstract interpretation yields accurate must-points-to
and must-aliasing information to allow aggressive heap re-
dundancy removal [18].

6.2 JVM Languages and InvokeDynamic
A typical approach to RJIT compilers is to convert a dynam-
ically typed language program to a Java application and let
the Java JIT compiler optimize the program. This is typical
for JVM languages. Jython [7] and JRuby [6] fall into this
category. The Iron languages like IronPython [5] and map
scripting languages for the .Net CLR framework form a sim-
ilar group. The performance hopes of JVM-based dynam-
ically typed languages are largely unfulfilled. All of them
suffer from similar optimization difficulties.

In Java 7, InvokeDynamic was introduced to improve
the performance of method invocation in dynamically typed
languages. As shown in [34], InvokeDynamic has not
produced any dramatic performance improvements in Jython
or JRuby. Fundamentally, no conventional Java JIT compiler
has shown an ability to dramatically reduce the redundant
computation in JVM language runtimes that are laden with
heap operations and invocations.

6.3 Trace- vs. Method-based Dynamically Typed
Language JIT Compilers

While PyPy is the best performing Python JIT compiler,
there is no clear evidence to prove that trace-based compila-
tion is more effective for dynamically typed languages than
method-based compilation. In particular, in the domain of
JavaScript, where the competition for performance is quite
fierce, all of the major leading commercial JIT compilers
are method-based. Some have even replaced trace-based
ones [15, 24].

Indeed, whether or not a JIT compiler is trace-based is
not the main factor determining its effectiveness. For exam-
ple, the published results for two trace-based Java JIT com-
pilers [25, 38] show only accelerations (less than 30%) for
pybench using Jython over using a standard method-based
Java JIT compiler.

6.4 Discussion
Almost all of the dynamically typed language JIT compil-
ers share the common traits of a custom language runtime
to assist the JIT compiler with specialization and a carefully
tuned, custom design of the object layout for efficiency. For
example, LuaJIT [33] is a highly-tuned re-implementation
of the Lua language, with both an interpreter and a JIT com-
piler. The interpreter is a customized, hand-written, direct
threaded, architecture-specific design that trades increased
complexity for increased speed. The interpreter preserves

considerable semantic and contextual information in its in-
ternal representation, including about type inference and
loop analysis. The internal representation also stores un-
boxed constants directly in the IL and predictively narrows
the values used as induction variables and index expressions
to integers.

Dynamic language interpreters have taken two basic
approaches. One can implement a fairly simple, easy-to-
understand interpreter, parsing the program into fat, high-
level bytecodes or abstract syntax trees that retain much of
the dynamism while deferring the semantic details to the
runtime support functions. Alternatively, there are intricate,
complicated parsers with powerful analyses to uncover more
of the program semantics and express them in a richer IL
representation.

Developing JIT compilers for these dynamically typed
languages must choose between the same, basic top-down
or bottom-up approaches. The safety and correctness of op-
timization transformations depend on semantic knowledge
and understanding of the program by the compiler. This in-
formation needs to be transmitted to the compiler or the
compiler must infer the information from somewhere. In the
case of dynamically typed languages, this depends on where
the information is represented and stored.

Dynamic programming languages have a rich, expressive
syntax with many high-level constructs. This allows the pro-
grams to capture lots of semantic information and knowl-
edge. The compiler can discover these semantics from the
parser and early program analysis, annotating a rich IL with
knowledge gleaned from the program and the original con-
text. Alternatively, the IL can remain abstract and opaque
with semantic knowledge in the runtime, from which the JIT
compiler must extract the information.

7. Conclusion
In the realm of dynamically typed language JIT compilers,
why is the reuse of JIT compilers, much less effective than
designing from scratch and using non-traditional optimiza-
tions? Why can’t we extend JIT compilers designed for stat-
ically typed languages?

In this paper, we offered our insights into the reasons
based on our own experience of building a RJIT compiler
for Python and through evaluations of other Python JIT com-
pilers. We identified common pitfalls of RJIT compilers: (1)
not focusing sufficiently on the right optimization opportuni-
ties such as specialization; and (2) not finding the right place
to tackle the specialization problems and frequently relying
too much on existing optimizations. Our point, however, is
not to argue against the repurposing of JIT compilers, but to
define guiding principles and to promote techniques to con-
struct an effective RJIT compiler.

The problem boils down to how to design an effective
dynamically typed language JIT compiler based on an op-
timization engine designed for statically typed languages,
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where there is a clear shift of optimization opportunities
when moving from statically to dynamically typed lan-
guages. Dynamically typed languages present new chal-
lenges and require new optimization strategies not present
in previous-generation JIT compilers. To effectively reuse a
JIT compiler, we need to prepend more optimizations tar-
geted at dynamically typed language features and simplify
the representation to a form more easily consumed by an
RJIT compiler. We offer three guiding principles:

• Effective specialization should be the top design priority
of any RJIT compiler. Many RJIT compilers fall into the
common trap of overreliance on existing optimizations
for specialization.

• The importance of specialization explains the benefits
of some common best practices in non-RJIT compilers
and VMs, such as the use of hidden classes [21] to help
specialize dynamic name resolution. These best practices
should be beneficial to and adopted by RJIT compilers.

• Traditional data-flow optimizations do improve perfor-
mance. There are general techniques to maximize the
benefits of traditional optimizations, such as early, guard-
based specialization, semantic inlining, and IL exten-
sions.
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