An Experiment in Teaching Innovation in Software Engineering

Video Presentation

Bernd Bruegge

Technische Universitact Muenchen
Chair for Applied Software Engineering

bruegge@in.tum.de

Abstract

The DOLLI project was a large-scale educational student
project course with a real customer, offered to students in
their second year. In the time frame of a single semester a
functional system was developed and delivered to the cus-
tomer. We experimented with a shift from a traditional life-
cycle to an agile process during the project, and used video
techniques for defining requirements and meeting capture.

Categories and Subject Descriptors K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation - Computer science education. K.6.1 [Management
of Computing and Information Systems]: Project and
People Management - Systems analysis and design, Sys-
tems development, Management techniques.

General Terms Management, Experimentation, Human
Factors

Keywords Video-based requirements engineering, scenario-
based design, teaching software engineering, single project
course

1. Introduction

In the 1992 OOPLSA conference we first reported about a
large single project course offered to 30 senior students [1].
In the meantime, software engineering has experienced
some significant progress in many areas. We have moved
from OMT to UML, we developed the course into a glob-
ally distributed project course [2] [3], and Wikis and agile
methodologies such as Scrum have appeared. Continuous
integration has turned build and release management into a
routine affair, and open source tools such as Eclipse,
Maven, and Cruse Control have become indispensible tools
in the arsenal of many software engineers. In addition we
have observed the appearance of digital video, made possi-
ble by faster computers, larger storage capacities, and pow-
erful but inexpensive video cameras.

In this paper we report about an experiment to incorpo-
rate these recent developments into teaching. In particular,
we wanted to investigate whether it is feasible to use them
together in a large single project course, and offer it even
earlier in the curriculum.

Copyright is held by the author/owner(s).
OOPSLA 08, October 19-23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Harald Stangl

Technische Universitact Muenchen
Chair for Applied Software Engineering

stanglh@in.tum.de

807

Maximilian Reiss

Technische Universitaet Muenchen
Chair for Applied Software Engineering

reissm@in.tum.de

The DOLLI (Distributed Online Logistics and Location
of Information) project was a student project course with
over 50 participants in the winter term 2007 at the Tech-
nische Universitaet Muenchen. The students—most of
them sophomores in their 3rd semester—worked together
as one big team instead of in small groups, and they had to
solve a real problem that was posed by a real customer: the
Munich Airport.

The general problem to solve was “location tracking”,
and consisted of four requirements. The first was to provide
a way to track luggage on its way from the belt system to
the airplane. The second was to provide mechanisms to
track movable resources at the airport like dollies and tow-
ing bars using WiFi tags and the existing WiFi localization
infrastructure. The third was to design and build a novel
visualization mechanism that merges these location data
with a 3D representation of the airport using a video game
metaphor and touch-based interaction. The final require-
ment was to provide a mobile system to the IT Field Serv-
ice to inform employees about new incidents on their
mobile communication devices while they are en route.
Moreover, these incidents should automatically be dis-
patched to the employee closest to the reported problem by
using traceable devices.

2. Infrastructure Setup

At the beginning of the project, a top-level design was
developed by a software architect who was a member of the
teaching staff together with the customer. The identified
subsystems defined the structure for the team organization.

Based on this team distribution the communication in-
frastructure of the DOLLI project was set up featuring
mailing lists, team wikis, team blogs, the teams’ software
version control repositories, and meeting room distribution.
We also set up a mechanism based on Podcast Producer so
that videos from all team meetings to be posted automati-
cally on the team Wikis.

The teams organized themselves after they were as-
signed their subsystem tasks.

In addition to the subsystem teams, several cross-
functional teams were defined, in particular an architecture
team, a coach team, and a film team. Inter-team communi-
cation and coordination was facilitated by members of the
coach team, staffed primarily by students from higher se-
mesters. The role of the coaches was to facilitate the team
meetings and to provide the communication between the
teams and project management.



The task of the architecture team was to develop the
overall system architecture from the given top-level design
and coordinate API request from the various subsystem
teams.

The task of the film team was to create scripts and shoot
three films: A scenario film that visualizes the functional
requirements, a making-of film that describes the interac-
tion and the atmosphere between the project participants,
and a trailer that can be used to market the project. The
video described in this paper is based on the making-of film
produced by the students.

The project was scheduled for a 4-month duration to fit
the semester structure of the university. To deal with the
workload caused by the final exams at the end of the se-
mester, we paused the project during the exam time for 4
weeks and resumed the development afterwards for a two-
week full-time block. The initial development was done at
laboratories provided by the Chair of Applied Software
Engineering. After the exam pause, we moved all the
equipment needed for the continued development to the
airport using office space of a floor in an empty building
provided to us by the Munich Airport. For the demonstra-
tion of the system, we moved the equipment once more to
the target environment at Terminal 1 at the Munich airport.

2.1 Different Software Development Methodologies

One of our objectives was to teach the students to work on
a real software project. Another was to expose them to tra-
ditional and agile software development methodologies.
We started in June 2008 with an architecture-centric soft-
ware lifecycle based on the Unified Process. The inception
phase focused on four workflows: the definition of the pro-
ject scope, elicitation of the requirements, the development
of the software architecture, and the setup of the environ-
ment, in particular the IT and communication infrastruc-
ture. The elaboration phase started with a project kickoff
event at the beginning of the semester, when the customer
presented the problem to the students, and the problem
statement was given to them. In the elaboration phase we
focused on the workflow Requirements Engineering,
Analysis, System Design, and Object Design. Reviews with
the customer led to several iterations, in particular in the
system design. After the system design was fairly stable,
we switched to Scrum. In Scrum terms, we entered a 2-
week sprint, focusing on the delivery of the system. During
the sprint we revised the acceptance scenarios, addressed
changes to the object design, and performed integration and
system testing tests. From a research perspective, we
wanted to investigate how well a switch from a traditional
to an agile process in the middle a project works. The pro-
ject results demonstrate that such a switch can be done.

2.2 Continuous Integration

Another objective was to teach the students the idea of con-
tinuous integration right from the beginning, that is, we
wanted to expose them to build and release management
issues from the very beginning. From the unified process
perspective, we started the deployment workflow when we
started the elaboration phase. From a pedagogical perspec-
tive, we replaced the “Hello World” program usually taught
to beginners with a program in which all subsystems of the
top-level design compile successfully and can be built and
run together on the first day of the project. We called it
“Hello DOLLIL.” Our project metrics demonstrate, that this

808

can successfully be done with 2™ year students. On some
days we had more than 80 builds of the complete system.
The total build count for the duration of the DOLLI project
was 1373.

The project was truly interdisciplinary because the stu-
dents developed software as well as custom hardware to
track individual resources at the airport.

2.3 Use of Video

We used video throughout the whole project duration to
visualize the requirements and to teach soft skills. All re-
views (with and without the customer) were filmed to pro-
vide feedback to the students on their presentation skills.
All team meetings were filmed to record decisions and to
keep team members who could not be present up to speed.
The teams recorded their meetings themselves with cam-
eras attached to a Podcast Producer system. With the Pod-
cast Producer technology, the videos were automatically
converted and made accessible on the team specific web
pages.

To visualize the project requirements, we used a tech-
nique called Video-based Requirement Engineering [4].
This technique is based on scenario-based design [5], but it
uses multi-path video in addition to text to describe the
scenarios. We painted a video picture of a scenario of a
field service employee receiving incident reports on a mo-
bile device. Such a scenario-based video eases the commu-
nication between customer and developer, and helps
resolve misunderstandings and ambiguities. The use of
green-screen technology enables us to create videos of the
use of a device even when the user interface is not yet
available (see Figure 1).

Figure 1 Green-Screening Technology is used to insert a GUI
prototype developed on a desktop-based simulator into the display



3. Project Results

At the end of the project, the students presented their re-
sults in the target environment of the terminal 1 at the Mu-
nich airport with real passenger and baggage data. In the
client acceptance test the participants successfully demon-
strated the project requirements:

The positioning manager, containing the components
under control of the data-management and the knowledge-
management teams, is able to receive location update in-
formation from existing airport positioning systems as well
as from newly developed DOLLI systems components. The
problem of storing and serving information about traceable
objects was solved in a very flexible manner. It even han-
dles traceable objects contained in other traceable objects,
e.g., a piece of luggage inside a container on a dolly. It is
possible for a subsystem to register for events like “the
object is moving faster than it ever could” or “is the object
in an area it is not allowed to enter.”

The WiFi subsystem provides an interface to the Cisco
Location Appliance to receive position updates for moving
objects (and if possible, also telemetry data) to feed them
into the positioning manager. The Munich Airport has full
WiFi coverage. But to provide more flexibility, the DOLLI
WiFi-team developed a circuit board with its own pro-
grammed processor to connect a GPS receiver with a key-
board and a WiFi tag to provide a cheap and small GPS
location device.

The luggage tracking team successfully demonstrated
how RFID-tagged luggage could be identified when placed
into containers. With this information entered into the posi-
tioning manager other subsystems could now trace the
movement of luggage between the belt system and the air-
plane.

The IT Field Service Team successfully demonstrated
the information flow from a new incident entered into the
desktop-based Remedy Action Request system to a Black-
berry used by the field technician. After closing the inci-
dent, a message is then sent from the Blackberry to the
Action Request system. Another successful demonstration
was the repeated update of the technician’s position with
the help from WiFi and GPS in the Blackberry. The posi-
tion information, accessible via the positioning manager,
can now be used by the field technician dispatcher to dis-
patch the nearest suitable technician to an urgent SLA
(Service Level Agreement) incident.

Finally, the Visualization Team demonstrated a new ap-
proach to 3D visualization of the Munich Airport based on
the metaphor of interactive video games and touch. The
DOLLI interface supports multiple displays and can show
all traceable objects available via the positioning manager.

Overall the DOLLI system was produced in an equiva-
lent of 100 person months and consists of 125 KLOC new
code including adapter code interfacing with the existing
airport systems. The DOLLI code breaks down into 8
KLOC Blackberry code, 17 KLOC for the 3D visualization
(OpenGL, Shader Language, Objective-C++) and 98
KLOC for the other Java components.

4. Conclusion

The course structure described in this paper enables us to
tackle large-scale software projects even with second year
students. It scales to a large number of students because

809

they work in a self-organizing way after they are assigned
their tasks. Their high motivation came not least from the
fact that they knew their results would be used in produc-
tion or developed further in subsequent projects.

What the students accomplished in the DOLLI project is
quite impressive; it could be a fluke, but we don’t think so
for the following reasons. First, today’s first year students
have already been exposed to programming when they en-
ter the university. In Bavaria, for example, computer sci-
ence is now offered as subject in high school
("Gymnasium"), the students learn about object-orientation
in the 8" grade. As a result, we can teach advanced object-
oriented programming languages in the first semester and
software engineering in the second semester.

Second, the top-level software design and the build
server infrastructure are set up before the course starts. The
same applies for the setup of the tools and the communica-
tion infrastructure. This requires a substantial amount work
for the system administrators, but it can be done before the
students join the project.

Third, the use of digital video has become surprisingly
easy. In fact, using Podcast Producer is considered fun, not
work by the students. From the videos, we can provide im-
mediate feedback to the students without offering a sepa-
rate course on soft skills. For the students this was a strong
motivator.

Finally, the state of open source development tools has
become quite mature, in particular Eclipse, Maven, and
Cruise Control had a great impact on delivering a working
system. Social software, in particular Wikis and Blogs,
helped a lot in connecting the students in a very short time
frame.

Acknowledgments

We would like to thank our clients, Harald Ranner, Marc
Lindike, and Michael Zaddach from the Munich Airport,
who had the vision to go along with us in this experiment,
helping us in every phase of the project. We thank them
especially for their generous provision of office space dur-
ing the Scrum phase. This research was supported by a
grant from Siemens Corporation. In particular, we would
like to thank Klaus Beetz and Oliver Creighton from Sie-
mens CT for their continued support of the video-based
requirement engineering idea. We would also like to ac-
knowledge the support from Gertraud Unger from Apple.

References

[1] B. Bruegge, J. Blythe, J. Jackson and J. Shufelt, Conference on Object-
Oriented Programming Systems, Languages and Applicati-
ons,Vancouver, ACM Press, pp. 359-376, October 1992.

[2] B. Bruegge, A.H. Dutoit, R. Kobylinski, G. Teubner Transatlantic
Project Courses in a University Environment 7th Asia-Pacific Soft-
ware Engineering Conference, Singapore, December, 2000.

[3] O. Creighton, A.H. Dutoit, B. Bruegge, Supporting an Explicit Orga-
nizational Model in Global Software Engineering Projects Interna-
tional Workshop on Global Software Development, ICSE. Portland,
Oregon, May 9, 2003.

[4] O. Creighton, M. Ott, B. Bruegge, “Software Cinema: Video-based
Requirements Engineering”, in Proc. of the 14th IEEE International
Requirements Engineering Conference, Minneapolis/St. Paul, Min-
nesota, USA, September 11-15 2006, pp. 109-118.

[5] JM. Carroll (ed.), “Scenario-Based Design: Envisioning Work and
Technology in System Development”, Wiley, New York, 1995.



