

Designing Refactoring Tools for Developers

Dustin Campbell

Microsoft Corporation

dustinca@microsoft.com

Mark Miller

Developer Express Inc.

markm@devexpress.com

Abstract

Because manual refactoring is both tedious and prone to

error, automatic refactoring tools have become increasingly

important to a programmer’s workflow. Unfortunately,

many refactoring tools suffer from deep discoverability and

usability problems that make them less useful for general

development. In this paper, we present three primary issues

that plague refactoring tools and present our approach to

solving these issues in a commercial add-in for Microsoft

Visual Studio.

1. Introduction

With the help of a good tool, refactoring can be a natural

part of any programmer’s general development process.

Tools should make the application of refactorings trivial at

any time during the development of program code. For

instance, a programmer might write a complex expression

and immediately refactor, breaking it into well-named va-

riables using the Introduce Explaining Variable [1] refac-

toring. Unfortunately, many refactoring tools inadvertently

place barriers between programmers and this natural style

of refactoring [2]. We will focus on three of the most com-

mon barriers.1

• Discoverability. Many refactoring tools are difficult to

learn to use—especially if the programmer is not al-

ready comfortable with refactoring [3].

• Lack of trust or lack of familiarity. Often, programmers

will not apply a refactoring because they are not sure

how it will transform their code.

• Productivity. Many programmers do not use refactoring

tools because they feel that they can apply refactorings

more efficiently by hand. While this might not be true

per se, the perception translates into disuse of tools.

In this paper, we explore each of these barriers in turn

and describe our solutions for them. Each solution is im-

plemented in a commercial add-in for Microsoft Visual

Studio, Refactor! Pro2.

2. Discoverablity as a Barrier

Refactoring tools often assume that a programmer already

knows how to refactor and is familiar with the catalog of

refactorings [1]. A programmer, however, might intuitively

refactor her code without knowing the names of any of the

refactorings she is applying [3]. This programmer would

need guidance in identifying how refactorings might be

useful in order to take full advantage of a tool.

To remove this barrier, we introduced a contextual

availability-checking system for refactorings. When a re-

factoring can be applied in the current editor context (based

on caret position, selection and language model), the refac-

toring appears in a menu, along with any other available

refactorings. In addition, the programmer is notified via a

smart tag if any refactorings can be applied in the current

context. To enhance discoverability further, we added a

background code analysis and highlight mechanism to

highlight code smells where powerful but perhaps less

well-known refactorings are available. These approaches

greatly improve the discoverability of when and how refac-

torings can be applied.

3. Trust or Familiarity as a Barrier

Some programmers fear that an automated tool might man-

gle their program code. With quality tools, this seldom

happens. However, distrust of a tool or a lack of familiarity

can prevent the programmer from experimenting with new

refactorings. Therefore, it is important to indicate what a

refactoring will do before the programmer decides whether

to apply it.

We chose to address this problem with a preview hinting

system that provides the programmer with a visualization

of the operations that a refactoring will perform, without

1
 The three barriers presented were derived from customer feedback ga-

thered during the authors' development of refactoring tools.
2
 http://devexpress.com/refactor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WRT'08 October 19, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ACM 978-1-60558-339-6/08/10…$5.00.

actually performing them. The visualization can take dif-

ferent forms. Some refactorings might provide a visualiza-

tion which looks very much as if a copy editor has used a

red pen to mark several corrections across the code (fig. 1).

Other refactorings might take a different approach. For

example, the Extract Method [1] visualization uses arrows

to represent the dependencies of the selected code in a style

reminiscent of how an American football coach might dia-

gram a play (fig. 2).

We have found that preview hinting can play a major

role in decreasing the resistance to applying refactorings by

helping to build the programmer’s trust for a tool. We have

also found that preview hinting is more effective than the

older convention of modal code preview confirmation win-

dows, which require a commitment on the part of the pro-

grammer to first apply the refactoring to see what it will do.

4. Productivity as a Barrier

A common complaint of refactoring tools is that many pro-

grammers feel that they can refactor more efficiently by

hand [2]. In many cases, this isn’t entirely true. A refactor-

ing tool performs enough code transformations that manual

code editing could not possibly best it. However, the per-

ception of low productivity is real and valid. We will focus

on two primary design choices made by many refactoring

tools that influence this perception.

First, many refactoring tools suffer from an explosion of

keyboard shortcuts. This usually occurs because each refac-

toring receives a different keyboard shortcut. Trying to

remember every shortcut can be taxing on a programmer’s

productivity. In contrast, we chose to assign only one key-

board shortcut for all refactoring. When pressed, that single

keyboard shortcut invokes the contextual availability-

checking system to determine which refactorings are cur-

rently available. If only one refactoring is available, that

refactoring is immediately applied. If more than one refac-

toring is available, a menu of all available refactorings is

displayed.

The second design choice that can detract from pro-

grammer productivity is the use of modal dialogs. Often, a

refactoring will have many optional behaviors. For exam-

ple, an implementation of Extract Method might provide

several options that affect the signature of the generated

method. In order to set options before applying a refactor-

ing, many tools choose to display a dialog. In addition, that

dialog is made modal to ensure that the programmer does

not modify any program code while setting options for a

refactoring to be applied.

Modal dialogs detract from programmer productivity by

presenting the programmer with new UI that must be dealt

with in order to return to writing code. This is an important

point: while working with the dialog, the programmer is no

longer writing program code. To make matters worse,

modal dialogs visually obscure the code below—the very

code that the programmer wants to transform. Furthermore,

modal dialogs are often littered with buttons, which tend to

result in a switch from hands on the keyboard to a reach for

the mouse. All of this adds up to a user interface that is

much less efficient than it should be.

Instead of the traditional modal dialog design choice, we

have gone to great lengths to minimize the questions a pro-

grammer must answer when applying a refactoring. We

separate interactive phases (where these questions are ans-

wered) into two areas. The first area is in the menu dis-

played before a refactoring is applied and is tightly

integrated with the preview hinting discussed above. For

example, if a refactoring has several flavors, we might

present those flavors in a submenu. Any additional interac-

tive states take place inside the code editor, with the appro-

priate UI weaved directly onto the surface of the editor

itself. These are a few of the techniques we use to enhance

productivity.

5. Conclusion

Building a refactoring tool is hard. Building a refactoring

tool that programmers want to use is harder yet. However,

with creative thinking and attention to productivity, the task

is not impossible.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Ro-

berts, Refactoring: Improving the Design of Existing

Code, Addison-Wesley Professional, 1999.

[2] E. Murphy-Hill, and A. Black, "Why Don’t People Use Re-

factoring Tools?," Proceedings of the First Workshop on Re-

factoring Tools, 2007.

[3] P. Weißgerber, B. Biegel, and S. Diehl, "Making Program-

mers Aware Of Refactorings," Proceedings of the First

Workshop on Refactoring Tools, 2007.

Figure 1. Preview hinting.

Figure 2. Code dependency arrows.

