
Software Reuse: Nemesis or Nirvana? 
Panel Session 

Steven Fraser, Nortel (Chair); Maggie Davis, Boeing; Martin Griss, HP Labs; Luke Hohmann, SmartPatents; 
Ian Hopper, Nortel; Rebecca Joos, Motorola; Bill Opdyke, Lucent Technologies 

Context 
As we reach the end of the millennium, the con- 
cept of software reuse and the practice of software 
engineering has existed for almost thirty years. 
Both concepts were introduced into the literature 
in the late sixties. To set the context for this panel, 
Nirvana is taken to mean a state of great happi- 
ness, while Nemesis is understood to be a state of 
great frustration. The panelists will share their 
experiences and perspectives with the audience in 
a dialogue initiated by the following questions and 
positions: 
- What are the most challenging cultural barri- 

ers to software reuse? 
- What are the best-in-class successes achieved 

with software reuse? 
- How is software reuse success recognized and 

sustained? 
Perhaps the key determination of success for 
software reuse is how it can - as a combination 
of cultural and technology practices - deliver 
customer valued systems in “ webtime”? What 
are the challenges of: education; team communi- 
cation; design technology; economics; and leader- 
ship? What is the role of the customer; the man- 
ager; the designer; and the corporate executive? 

Steven Fraser 
Panel Chair 

Nortel, Santa Clara, CA, USA. 
sdfraser@nortel.com 

Steven Fraser is manager of the Software Design 
Process Engineering team at Nortel’s Meridian 
Systems Headquarters in Santa Clara, California. 
He is also Chair of the Nortel Design Forum, an 
annual three day proprietary interactive video con- 
ference with more than 25 participating sites 
world-wide. Previously, he spent four years at 
Nortel’s Computing Research Laboratory in Ot- 
tawa, Canada. In 1994 he was a Visiting Scientist 
at the Software Engineering Institute (SEI) col- 
laborating with the Application of Software 

Models project on the development of team-based 
domain analysis techniques. Since joining Nortel 
in 1987, Fraser has contributed to the develop- 
ment of 00-based CASE-Design Tools and to 
software development processes. Fraser com- 
pleted his doctoral studies at McGill University in 
Electrical Engineering. He holds a Master’s degree 
from Queen’s University at Kingston in applied 
Physics and a Bachelor’s degree from McGill 
University in Physics and Computer Science. He 
is an avid operatunist and photographer. 

Maggie Davis 
Boeing, Seattle, WA, USA. 

maggie.davis@pss.boeing.com 

Maggie Davis will discuss what barriers she has 
encountered working first in the large defense 
contractor culture of Boeing where products are 
extremely large, long-lived systems and now in 
the information systems culture supporting manu- 
facturing and assembly of complex airplanes. 

Davis is now a Computing Systems Architect us- 
ing object and domain modeling techniques to 
support development of a factory computing sys- 
tem architecture for Boeing Commercial Airplane 
Group. She was Principal Investigator (199.5 
1997) of the Boeing internal research and devel- 
opment project titled Enabling Technology for 
Product Reuse, which concentrated on architec- 
ture frameworks as a motivating factor in system- 
atic reuse adoption. Davis was Reuse Technology 
Area Lead for the Boeing STARS program from 
1988- 1995, participating in the joint development 
of the STARS Conceptual Framework for Reuse 
Processes (CFRP) and the Reuse Strategy Model 
(RSM). 

Martin L. Griss 
HP Laboratories, Palo Alto, CA, USA. 

griss@hpl.hp.com 

Technology is Not Enough - Cultures in Conflict 

Objects are believed to be crucial to achieving the 
long-sought after goal of widespread reuse. Un- 
fortunately, many people naively equate reuse 
with objects, libraries and other tools, expecting 
reuse to automatically emerge, but often do not 

417 



get much reuse. Based on our experience with re- 
use at HP, and with our many customers, we know 
that without extensive process and organizational 
changes to support systematic reuse, objects will 
not succeed in giving users reuse. 

In almost all cases of successful reuse, architec- 
ture, a dedicated component development and 
support group, management support, and a stable 
domain were the keys to success. These largely 
non-technical issues seem more important to suc- 
cessful reuse than the specific language or design 
method chosen. As Simos has pointed out, archi- 
tecting for reuse is a social process, involving 
numerous stakeholders with disparate personal, 
political and technical agendas. Teams and indi- 
viduals may choose to work with each other, or 
avoid collaboration and sharing based on trust, 
prior history, credibility or perceived importance 
of role. Management must employ systematic or- 
ganizational design techniques and even business- 
process re-engineering techniques to ensure a suc- 
cessful transition. 

Martin Griss is a senior Laboratory Scientist at 
Hewlett-Packard Laboratories, Palo Alto, Califor- 
nia where for the last 15 years he has researched 
software engineering processes and systems, sys- 
tematic software reuse, object-oriented reuse, and 
measurement system kits. He has had a defining 
role as senior reuse consultant within HP’s Profes- 
sional Services Organization. As HP’s reuse rabbi, 
he led research on software reuse process, tools, 
and software factories; the creation of an HP Cor- 
porate Reuse program; and the systematic intro- 
duction of software reuse into HP’s divisions. He 
was director of the Software Technology Labora- 
tory at Hewlett-Packard Laboratories, and has 
over 25 years of experience in software engineer- 
ing research. He was previously an associate pro- 
fessor of computer science at the University of 
Utah, where he is currently an adjunct professor. 
He is a member of the SIGSOFT executive com- 
mittee, and the UML 1.1 semantics and revision 
taskforces. He has authored numerous papers and 
reports on software engineering and reuse, writes 
a reuse column for Object Magazine, and is active 
on several reuse program committees. 

Luke Hohmann 
SmartPatents, Mountainview, CA, USA 

lhohmann@acm.org 

In this position statement I’d like to talk about a 
fundamentally different approach to reuse than my 
fellow panelists. Instead of talking about reuse 
from the perspective of components, objects, sub- 
systems, or the like, I’d like to talk about the reuse 
of knowledge. (Where does reuse start? Humans 

are reuse machines. We work at finding a solution 
to a problem what is the fastest way to drive to 
work?). Once found, we reuse this solution as 
much as possible (we drive to work the same way 
every day). When the reusable solution fails us, 
we try something new. Through this process we 
/earn something. We learn what didn’t work (don’t 
reuse that) and we learn what did (remember - 
reuse -that). 

Where does software reuse start? Software devel- 
opment is a special kind of problem solving, one 
that involves creating software systems to meet 
some number of defined needs. We know from 
empirical evidence that what makes an expert de- 
veloper different than the novice is that the expert 
has amassed, inside their head, a rich cognitive li- 
brary of reusable knowledge. It is this knowledge, 
traditionally acquired through years of hard work, 
that enables the expert to be an expert in problem 
solving. But we also know that expert-level 
knowledge is often tightly coupled to a specific 
problem domain, such as real-time embedded 
system programming or the design of large rela- 
tional databases. 

Note that this kind of reuse is very different from 
the kind of reuse most commonly referenced in 
the literature. I’m not talking about reusing an ob- 
ject, an OCX, a subsystem, or a framework. In- 
stead, I’m talking about the kind of reuse that is 
more commonly referred to as experience. 
How can we reuse expert knowledge? A central 
question in the reuse literature is how we can 
bringforth expert-level knowledge in such a way 
that it can be shared with novices in order to im- 
prove their performance quickly. This is the proc- 
ess of separating the cost (or pain) of creating ex- 
pert-level analysis or design knowledge with the 
cost of (re)using it. While many things have been 
tried over the years, the current patterns move- 
ment has proven beneficial as a means of sharing 
expert knowledge in an efficient, cost-effective 
means. Patterns exist for general design issues 
(such as the Builder pattern, which guides us in 
the creation of complex run-time object struc- 
tures), to teaching a complex subject in a class- 
room. Finally, we are starting to see more and 
more pattern languages, or sets of inter-related 
patterns that deal with solving problems in a well- 
defined problem domain. 

What is the reuse from patterns? Although many 
patterns and pattern languages move far beyond 
mere reuse in their sharing of expert knowledge, 
the practical software developer in me focuses 
primarily on how they directly impact my and my 
teams’ ability to write great software. Viewed in 
this light, patterns represent a form of reuse in 

418 



which the (re)user engages in the intelligent cus- 
tomization of expert-level knowledge to meet the 
specific demands of their problem. Pattern reuse is 
not the same kind of reuse that one achieves from 
using remove if() from the standard C-t+ library, 
nor is it the k&d of reuse that one achieves when 
they purchase an ActiveX component. Both of 
these forms of reuse are powerful in their own 
right, but they are qualitatively different than pat- 
tern-based reuse. Instead, pattern reuse is a deeper 
kind of reuse, one that also enables both the nov- 
ice and the expert to do more than simply reuse a 
component or a subsystem, for in reusing patterns, 
we learn as humans. 

Luke Hohmann is the Vice-President of Engi- 
neering at SmartPatents, Inc., the world-wide 
leader in the development of analytical software 
systems that enables companies to automate the 
process of analyzing, protecting, and maximizing 
the value of intellectual property assets. Mr. 
Hohmann has extensive experience in object- 
oriented analysis and design, software engineer- 
ing, user interface design, and project manage- 
ment. He is the author of Journey of the Software 
Professional: A Sociology of Software Develop- 
ment (Prentice Hall). Mr. Hohmann is currently 
working on two books, GUZs with Glue: Creating 
Usability Through Lo-Fi Design and Pattern Vi- 
gnettes: Using Design Patterns in the Real World. 
He has authored numerous papers on the sociol- 
ogy of software development. 

Ian Hopper 
Nortel, Santa Clara, USA. 

ihopper@nortel.ca 

Carry-Over Reuse: Hoisting 

Reuse appears to be in the realm of the real world; 
neither nemesis nor nirvana. Our solutions are 
very much in the rubber bullet category: insufti- 
cient to solve the biggest problems, but useful in 
some cases. Software engineering research has re- 
solved most of the smaller issues and is moving 
on to the larger issues, which involve soft- 
sciences like economics and psychology. Progress 
on programming in the large will be slow. 

As we explore new avenues and technologies for 
higher productivity, we tend to forget the basics. 
Old (existing) software is frequently a good- 
enough basis for the development of new soft- 
ware. In this discussion, I will review cultural and 
economic factors that may lead away from soft- 
ware reuse and suggest a practical middle course. 
Old software is difficult to sustain over time due 
to incremental development encroaching on ar- 
chitecture limitations, challenges in maintaining a 
high-productivity development environment and 

difficulties retaining staff. However, replacing the 
software of an existing product often forces dou- 
ble development of features until the new software 
completely covers all existing capabilities. Fi- 
nally, new software for a new product is higher 
risk due to vague requirements and resulting un- 
predictable schedules. The new product may be 
awkward in the marketplace due to functionality 
overlap and integration expectations. 

We have had success with software evolution us- 
ing a pattern that I call hoisting. It is practical to 
put a new series of layers below an entire software 
structure. The classic and lowest risk variant is to 
port to a more sophisticated operating system, 
which allows new development to exploit the new 
platform and to be marketed easily as new fea- 
tures for a proven product. In the more general 
case, the new layers creatively interpret the for- 
merly low-level operations to allow new capabili- 
ties to be controlled by the older software. 

Ian Hopper is the Software Architect for the 
Nortel Meridian 1 PBX product in Santa Clara, 
California. He joined the Nortel, Ottawa lab in 
1983 as a software designer on multi-media and 
data communications systems. He worked on 
early voice-data integration and twisted pair LAN 
technology (802.9). Hopper has been exploring 
and applying the object-oriented computation 
model since 1981. He is an Honors B.Math./CS 
graduate of the University of Waterloo. His week- 
ends are often spent wind surfing on San Fran- 
cisco bay. 

Rebecca Joos 
Motorola, Arlington Heights, lL, USA. 

joos@cig.mot.com 

When is Too Much Enough? 
and 

When is It Too Little? 

The first hurdle of introducing software reuse is 
the selling and support phase. The success of this 
phase depends upon getting the right kind of sup- 
port from the right level of management. Once 
that is accomplished the next phase, or hurdle, is 
selling the troops i.e., the engineers. Joos will ad- 
dress some of the issues (a what has worked and 
what hasn’t approach) of getting reuse into the en- 
gineering culture. 

Rebecca Joos is a Principal Staff Engineer at the 
Cellular Infrastructure Group looking into new 
and better methods, techniques, and tools to more 
accurately and efficiently develop software in the 
switching division. Her concentration on software 
reuse has been extended to basic software engi- 

419 



neering and quality issues. She has been instru- 
mental in introducing and supporting process (SE1 
capability matrix) and promoting reuse as a pro- 
ductivity and quality enhancer. Her immediate 
concern is how this technology can be made a 
cultural part of the engineering environment. 

William F. Opdyke 
Lucent Technologies/Bell Labs, 

Naperville, IL, USA. 
wopdyke@lucent.com 

Nemesis? Nirvana? Neither! Neglected! Needed! 

Let’s consider what the terms nemesis and nirvana 
really mean (based on their definitions in the New 
American Heritage Dictionary) and whether either 
term comes close to characterizing software reuse. 
Then, let’s reflect on the current state - and 
speculate about the future - of software reuse. 

Is software reuse a nemesis - something that in- 
flicts relentless destruction on organizations that 
attempt a reuse program? No - at least not relent- 
lessly. Organizations have pursued reuse efforts 
for many reasons and in many different ways. If 
the organizational culture is supportive of reuse 
(as per the areas well enumerated by Griss in his 
position statement), software reuse can play a 
supportive (rather than destructive) role in ena- 
bling an organization to achieve or at least come 
closer to achieving its cost, quality and schedule 
targets for application developments. If the culture 
doesn’t support reuse, most organizations will 
eventually abandon their reuse program and thus 
the pain won’t be relentless. 

Is software reuse nirvana - providing blissful free- 
dom from pain and care? No, at least not for long. 
Software applications must function in the real 
world, where change is rapid along several dimen- 
sions, including technologies, user needs, external 
and component interfaces, and designers’ under- 
standing of the family of applications they are 
supporting. I have yet to meet a software devel- 
oper who could credibly claim omniscience; 
hence, software that is intended to be reusable 
must be able to adapt to unforeseen changes. A 
culture supporting reuse will support the adapta- 
tion of existing components in a way that mini- 
mizes - but doesn’t eliminate - the pain. 

Geoffrey Moore, in his book Crossing The 
Chasm, notes that many ideas and products are 
embraced by the innovators and early adopters 
(the folks who embrace new technologies, have 
visions of new paradigms, etc.), but ultimately fail 
because they are never embraced by the main- 
stream - the early and late majorities. That audi- 

ence cares about reliability, technological matur- 
ity, cost and customer support. They also want to 
see how others, with problems similar to theirs, 
have already successfully applied whatever new 
idea or product is being marketed to them. For 
decades, the champions of software reuse have 
been unsuccessful in delivering solutions that 
meet the needs of this mainstream audience - and, 
hence, software reuse has been neglected by the 
mainstream. 

Software reuse is now being viewed afresh in in- 
dustries such as telecommunications, where com- 
petition for both customers and technical talent is 
fierce, and where cost pressures are relentless and 
increasing. The mainstream is taking more notice 
of software reuse. Technologies such as object- 
oriented technology (with its focus on reusable 
components and cross-application frameworks) 
and domain analysis (with its focus on supporting 
application families) are among the tools being 
successfully applied to reduce costs across related 
applications. Some of the critical, non-technical 
issues are being addressed in organizational cul- 
tures that are embracing systematic reuse. Success 
stories are beginning to appear (while others are 
kept secret, to retain a competitive advantage) - 
and I predict that we will see more success stories 
in the future. 

Bill Opdyke has conducted several software reuse 
and platform related projects at Lucent Technolo- 
gies/Bell Labs, including cross-application design 
and advanced development, consulting with prod- 
uct development teams on platform technologies 
and vendor component selection, publishing a 
newsletter that focuses on experience reports, 
technologies and other issues related to reuse. Op- 
dyke’s research at the University of Illinois (which 
Ralph Johnson supervised) focused on refactoring 
object-oriented frameworks to support evolution 
and reuse. Opdyke’s most recent research related 
to organization issues and reuse was presented at 
WISR ‘97 (the International Workshop on Soft- 
ware Reuse) and PLOP ‘97 (Pattern Languages 
conference). 

420 


