
There Is No Impedance Mismatch
(Language Integrated Query In Visual Basic 9)

 Erik Meijer
Microsoft SQL Server

emeijer@microsoft.com

Abstract
Language Integrated Query (LINQ) is a framework that is rooted
in the theoretical ideas of monads and monad comprehensions to
allow seamless querying over objects, XML, and relational data.
Instead of blindly gazing at the perceived impedance mismatch
between the structure of these various data models, LINQ
leverages the commonalities between the operations on these data
models to achieve deep semantic integration.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Contructs and Features – frameworks.
Language Classifications – Applicative languages, Object-
oriented languages. H.2.3 [Database Management]: Languages
– Database (persistent) languages, Query languages.

General Terms Algorithms, Design, Languages, Theory.

1. Introduction
Today’s three most prevalent data models each come tightly
coupled with a query language. The relational model has sets of
tuples and SELECT-FROM-WHERE queries. The XML model
has ordered sets of nodes and FROM-LET-WHERE-ORDERBY-
RETURN queries. The OO model has a wide variety of
collections and an even larger assortment of looping and
conditional control structures.

What is common in each of these models is the notion of
"collection" of items that can be filtered, transformed, and
flattened. In addition, each data model provides domain-specific
operations (non-proper morphisms). The collection type, together
with the (second-order) transformation, forms a monad or
Standard Query Operators in LINQ-speak.

The real payoff from the monadic approach comes from defining
syntactic sugar over the underlying monadic operations via query
comprehensions. This is very similar to the usual translation of
SQL into relational algebra. However, instead of dealing with just
sets of tuples, query comprehensions work over any data model
that supports the monad pattern.

2. LINQ to Objects
Perhaps the simplest example monads in the context of an OO
language such as Visual Basic, C# or Java are co-inductive (lazy)
collections of the interface IEnumerable(Of T). This
interface defines a single method GetEnumerator() that

returns an iterator over the collection, which is exposed via the
generic interface IEnumerator(Of T) that contains the two
members MoveNext() As Boolean and Current As T.
The consumer of the collection repeatedly calls MoveNext and
Current to advance from one item in the collection to the next
until eventually MoveNext returns False.

The following query selects the names and phone numbers of all
customers older than 42 given an enumerable source collection of
customers.

 Dim Customers
 As IEnumerable(Of Customer) = …

 Dim Q As IEnumerable(Of
 { Name As String, Phone As Integer}) =
 From C In Customers
 Where C.Age > 42
 Select C.Name, C.Phone

The query gets translated into the following calls to the static
methods defined in the System.Query.Sequence class that
implement the standard query operators on IEnumerable(Of
T):

Select
 (Where
 (Customers
 , Function(C) C.Age > 42
)
 , Function(C)
 New With { C.Name, C.Phone }
)

The Where operator removes all items from the source collection
that do not satisfy the given predicate

Shared Function Where(Of T)
 (Src As IEnumerable(Of T)
 , Pred As Func(Of T, Boolean)
)
As IEnumerable(Of T)

The Select operator applies a function to each item in the
source collection. Similarly, the SelectMany operator applies a
function that returns a collection and flattens the results into a
single target collection.

Functional programmers will recognize Where as the standard
filter function, Select as map, and SelectMany as monadic
bind. The actual implementation in Visual Basic, Java or C# is
standard.

Copyright is held by the author/owner.
OOPSLA’06, October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

710

 Shared Function Select(Of T,S)
 (Src As IEnumerable(Of T)
 , F As Func(Of T, S)
)
 As IEnumerable(Of S)

 Shared Function SelectMany(Of T,S)
 (Src As IEnumerable(Of T)
 , F As Func(Of T, IEnumerable(Of S))
)
 As IEnumerable(Of S)

3. LINQ To SQL
In our example query, the lambda expression Function(C)
C.Age > 42 is implicitly converted to a delegate (the intrinsic
representation of higher-order functions in .NET) of type
Func(Of Customer, Boolean).

An alternative implementation of the standard query operators,
based on the IQueryable(Of T) collection type, passes an
intensional representation of the predicate (and selector functions)
as an expression tree to the Where, Select and SelectMany
methods:

Shared Function Where(Of T)
 (Src As IQueryable(Of T)
 , Pred As Expression(Of
 Func(Of T, Boolean))
)
As IQueryable(Of T)

The implementation of Where can use the expression tree to
build up concrete representation of the complete query. Using
syntax for quasi-quoting with ⎡ ⎤ for quote and ⎣ ⎦ for unquote,
the following example implementation of the Where operator
reconstructs an explicit representation of itself:

Shared Function Where(Of T)
 (Src As IQueryable(Of T)
 , Pred As Expression(Of
 Func(Of T, Boolean))
)
As IQueryable(Of T)
 Return ⎡Where(⎣Src⎦, ⎣Pred⎦)⎤
End Function

The conversion from IQueryable to IEnumerable can now
look at the complete query in order to produce the requested
result. The LINQ to SQL and LINQ to EDM (ADO.Net vNext)
implementations of IQueryable implements this by compiling
the query expression to SQL and executing the resulting program
on a SQL database back-end via standard ADO.Net connection.

Like most O/R mapping infrastructures, the LINQ to SQL
implementation also maintains a context for mapping relational
tuples to objects, keeping track of changes, and interacting with
the database transaction manager.

4. LINQ To XML
To produce query results we must be able to create complex
values using expressions instead of via a sequence of imperative
commands.

To allow for this, both Visual Basic 9 and C# 3.0 introduced the
notion of object initializers, or object literals. Constructing

complex object instances using expressions should be familiar to
anyone that has used functional languages with algebraic data
types such as Haskell or SML or JavaScript with object literals.

For instance, in order to return a business-card object from our
example query, we can use the following object intializer
expression:

 Dim Q =
 From C In Customers
 Where C.Age > 42
 Return New BusinessCard With {
 .Person = With { C.Name },
 .Contact = With {
 C.Phone, C.Email }
 }

Note that this query uses the Return operator since it creates a
collection of BusinessCard values as opposed to the Select
operator that returns a collection of tuples.

Another situation where we need to return complex expressions is
when we are generating XML from a query. Unfortunately, the
W3C XML DOM does not support expression-based construction
and hence it is not a natural fit for LINQ. The LINQ to XML
framework is a new API for querying and manipulating XML
designed specifically to complement LINQ.

Visual Basic 9 adds further syntactic sugar on top of LINQ to
XML for constructing XML literals, and for accessing XML axis
members.

Inside XML literals, the brackets <%= %> unquote embedded
Visual Basic expressions in any position where the underlying
API allows us to pass a computed value:

Dim Cards =
 From C In Customers
 Where C.Age > 42
 Return <Business-Card>
 <Person>
 <Name>
 <%= C.Name %>
 </Name>
 </Person>
 <Contact
 Email=<%= C.Email %>>
 <Phone Work="True">
 <%= C.Phone %>
 </Phone>
 </Contact>
 </Business-Card>

XML axis members provide XPath-like accessors over XML
documents. The child axis Cards.<Person> selects all the
direct child elements named "Person" from Cards. The
descendant axis Cards...<Phone> selects all descendant
elements named "Phone" from the Cards document. Finally
the attribute axis Cards...<Phone>.@Work selects all
"Work" attributes from all "Phone" elements in the Cards
document.

Acknowledgements
We would like to thank the Visual Basic, C#, LINQ to SQL,
LINQ to XML, and the Tesla I and II teams for their support and
inspiration

711

