
PANEL: Issues in Object Database Management 
Jacob Stein, ServioLogic, Moderator 

Tim Andrews, Ontologic 
Bill Kent, Hewlett-Packard 

Kate Rotzell, Versant Object Technology 
Dan Weinreb, Object Design 

While the availability of commercial systems from several vendors indicates maturity in 
object database management technology, there are numerous issues which remain. This panel 
will attempt to expose and discuss several of these issues. 

Part of the performance advantage realized by object database ,management systems comes 
from linking application programs with the database management system, and the use of 
large virtual memory caches. This is acceptable in engineering applications where 
previously large amounts of data were read from the file system into an application 
program’s data space. However, the potential impact on database integrity of giving 
application programs direct access to very large database management system caches will be 
of great concern in commercial applications. How can these concerns be addressed with 
minimal impact on the performance advantage of object database management? 

There appear to be two distinct approaches to object query languages: extensions to SQL and 
programming language extensions. SQL extensions might provide a fast path to a standard, 
but would have the traditional impedance mismatch problems associated with embedded 
query languages. Language extensions are elegant in that they use the same syntax as the 
programming language and do not suffer from impedence mismatch problems. However, 
language extensions would probably make standards more difficult to arrive at as it would 
require the coordination of extensions to multiple languages. Which of the approaches is 
most appropriate? In which order should these two approaches be addressed by the object 
database vendors and standards bodies? 

One might argue that a good deal of research in relational theory has had little or no 
impact on commercial relational systems (e.g., relational dependency theory). From a 
vendor’s perspective, what are the hard, interesting research issues whose resolution would 
allow you to build better systems? 

Tim Andrews, Ontologic 

In contrast to some Object Database vendors that realize high performance via a one track 
approach of mapping the database address space into the process address space and using 
large main memory caches, ONTOS achieves its performance by taking advantage of the 
flexibility of its abstract object interface and the client/server process distribution model to 
allow development of the right tool for the problem. Thus we do not rely on any one tactic to 
solve all performance problems. Using ONTOS one need not compromise the database process 
by allowing the programmer to run amuck with pointers, allowing us to use the same 
architecture for both commerical and CAD applications. Our performance derives from many 
sources including: 

l Fast and flexible development, allowing developers more iterations in building 
applications in which to try different strategies for performance gain. Thus our 
approach has aIways been a general rather than a specialized approach to 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 235 



solving the performance problem which will work without change in a commercial 
environment. 

l Asynchronous communication between client and server, allowing the client process 
to do profitable work instead of waiting for the server to complete. 

l Flexible client memory management, allowing developers to transparently try 
different client memory management strategies, including but not limited to large 
main memory caches. 

. Flexible storage management, allowing the use of different disk representations of 
objects in a manner transparent to the application programmer. For example, this 
allows the use of compressed representations for small CAD objects to cut overhead 
significantly. 

Regarding query languages, we have always maintained that SQL is the only query 
language worth standardizing for Object Database systems today. This is not because it is a 
great language, but because it is “intergalactic dataspeak”. The so called “impedance 
mismatch’ can be mitigated with an intelligent interface; the real mismatch today occurs as 
much from the embedded-language-that-gets-pre-processed approach as it does from the 
differing type models. ONTOS eliminates this part of the problem by providing a class 
based interface to the SQL language so that both queries and their results are treated as 
objects. The more interesting theoretical issue is combining predicate based programming 
with imperative, or procedural programming. We believe this is one of the areas where 
Object Database Systems can provide real power, as complex application development 
should have comfortable access to either programming paradigm. ONTOS allows the 
programmer to intermix the extended SQL and C++ freely in both directions; SQL queries can 
use arbitrary expressions including C++ member function calls. This allows the programmer 
to use predicates for set based access mixed with navigation for deterministic access (such as 
tree walking). 

The last issue we were asked to address is research areas. Relational theory research has 
not had a large impact in the object arena largely because the problems of commercial 
systems are not addressed. Data model issues are largely secondary problems. The hard 
problems arising today are: 

. Advanced concurrency control. This includes non-serializability, multiple levels of 
transaction visibility to support group activities, hybrid protocols that support 
more than one concurrency model, etc. 

l Methodological issues. There is as yet no accepted design methodology for object 
databases. As larger organizations with larger projects and staffs become involved, 
this will not be acceptable. The whole notion of “moving the domain of discourse 
up another level” or “after objects, what?” needs exploration. 

. Models for system areas lacking them. Is there an object model for concurrency 
control, transaction management, security, and the host of other things that a 
database system does that are not addressed by the basic data model? 

l Large class library organizations and interfaces. Re-use is only as good as the 
developer’s ability to find the right piece to re-use. There are as yet no accepted 
interfaces for assisting humans in this process, which will become increasingly 
important as larger and larger class libraries become available. 

236 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990 


