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Abstract
Design and implementation defects that lead to inefficient
computation widely exist in software. These defects are dif-
ficult to avoid and discover. They lead to severe performance
degradation and energy waste during production runs, and
are becoming increasingly critical with the meager increase
of single-core hardware performance and the increasing con-
cerns about energy constraints. Effective tools that diagnose
performance problems and point out the inefficiency root
cause are sorely needed.

The state of the art of performance diagnosis is pre-
liminary. Profiling can identify the functions that consume
the most computation resources, but can neither identify
the ones that waste the most resources nor explain why.
Performance-bug detectors can identify specific type of in-
efficient computation, but are not suited for diagnosing gen-
eral performance problems. Effective failure diagnosis tech-
niques, such as statistical debugging, have been proposed
for functional bugs. However, whether they work for per-
formance problems is still an open question.

In this paper, we first conduct an empirical study to un-
derstand how performance problems are observed and re-
ported by real-world users. Our study shows that statistical
debugging is a natural fit for diagnosing performance prob-
lems, which are often observed through comparison-based
approaches and reported together with both good and bad in-
puts. We then thoroughly investigate different design points
in statistical debugging, including three different predicates
and two different types of statistical models, to understand
which design point works the best for performance diagno-
sis. Finally, we study how some unique nature of perfor-
mance bugs allows sampling techniques to lower the over-
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head of run-time performance diagnosis without extending
the diagnosis latency.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification – statistical meth-
ods; D.2.5 [Software Engineering]: Testing and Debugging
– debugging aids

General Terms Languages, Measurement, Performance,
Reliability

Keywords empirical study; performance diagnosis; perfor-
mance bugs; statistical debugging

1. Introduction
1.1 Motivation
Implementation or design defects in software can lead to
inefficient computation, causing unnecessary performance
losses at run time. Previous studies have shown that this
type of performance-related software defects1 widely exist
in real-world [10, 21, 24, 35, 41]. They are difficult for de-
velopers to avoid due to the lack of performance documenta-
tion of APIs and the quickly changing workload of modern
software [21]. A lot of performance bugs escape the in-house
testing and manifest during production runs, causing severe
performance degradation and huge energy waste in the field
[21]. Making things worse, the negative impact of these per-
formance problems is getting increasingly important, with
the increasing complexity of modern software and workload,
the meager increases of single-core hardware performance,
and the pressing energy concerns. Effective techniques to di-
agnose real-world performance problems are sorely needed.

The state of practice of performance diagnosis is prelimi-
nary. The most commonly used and often the only available
tool during diagnosis is profiler [1, 38]. Although useful,
profilers are far from sufficient. They can tell where com-
putation resources are spent, but not where or why compu-
tation resources are wasted. As a result, they still demand a
huge amount of manual effort to figure out the root cause2

of performance problems.

1 We will refer to these defects as performance bugs or performance prob-
lems interchangeably following previous work in this area [21, 24, 37].
2 In this paper, root cause refers to a static code region that can cause
inefficient execution.
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void start_bulk_insert(ha_rows rows)
{
...

- if (!rows)
- { //slow path where caching is not used
- DBUG_VOID_RETURN;
- }
- rows = rows/m_tot_parts + 1;
+ rows = rows ? (rows/m_tot_parts + 1) : 0;
...
//fast path where caching is used
DBUG_VOID_RETURN;

}

Figure 1: A real-world performance bug in MySQL (the
‘-’ and ‘+’ demonstrate the patch)

Figure 1 shows a real-world performance problem in
MySQL. MySQL users noticed surprisingly poor per-
formance for queries on certain type of tables. Profil-
ing could not provide any useful information, as the top
ranked functions are either low-level library functions, like
pthread getspecific and pthread mutex lock,
or simple utility functions, like ha key cmp (key com-
parison). After thorough code inspection, developers fi-
nally figured out that the problem is in function
start bulk insert, which does not even get ranked by
the profiler. The developer who implemented this function
assumed that parameter-0 indicates no need of cache, while
the developers who wrote the caller functions thought that
parameter-0 indicates the allocation of a large buffer. This
mis-communication led to unexpected cache-less execution,
which is extremely slow. The final patch simply removes the
unnecessary branch in Figure 1, but it took developers a lot
of effort to figure out.

Most recently, non-profiling tools have been proposed to
help diagnose certain type of performance problems. For
example, X-Ray can help pin-point the configuration entry
or input entry that is most responsible for poor performance
[7]; trace analysis techniques have been proposed to figure
out the performance-causality relationship among system
events and components [11, 48]. Although promising, these
tools are still far from automatically identifying source-code
level root causes and helping figure out source-code level fix
strategies for general performance problems.

Many automated performance-bug detection tools have
been proposed recently, but they are ill suited for perfor-
mance diagnosis. Each of these tools detects one specific
type of performance bugs, such as inefficient nested loops
[37], under-utilized data structures [46], and temporary ob-
ject bloat [12, 44, 45], through static or dynamic program
analysis. They are not designed to cover a wide variety of
performance bugs. They are also not designed to focus on
any specific performance symptom reported by end users,
and would inevitably lead to false positives when used for
failure diagnosis.

1.2 Can we learn from functional failure diagnosis?
Automated failure diagnosis has been studied for decades
for functional bugs3. Many useful and generic techniques
[16, 19, 20, 22, 29, 50] have been proposed. Among these
techniques, statistical debugging is one of the most effec-
tive [20, 22, 29]. Specifically, statistical debugging collects
program predicates, such as whether a branch is taken, dur-
ing both success runs and failure runs, and then uses statisti-
cal models to automatically identify predicates that are most
correlated with a failure, referred to as failure predictors. It
would be nice if statistical debugging can also work for di-
agnosing performance problems.

Whether statistical debugging is useful for performance
bugs is still an open question. Whether it is feasible to apply
the statistical debugging technique to performance problems
is unclear, not to mention how to apply the technique.

Is it feasible to apply statistical debugging? The prereq-
uisites for statistical debugging are two sets of inputs, one
leading to success runs, referred to as good inputs, and one
leading to failure runs, referred to as bad inputs. They are
easy to obtain for functional bugs, but may be difficult for
some performance bugs.

For functional bugs, failure runs are often easy to tell
from success runs due to clear-cut failure symptoms, such as
crashes, assertion violations, incorrect outputs, and hangs.
Consequently, it is straightforward to collect good and bad
inputs. In the past, the main research challenge has been
generating good inputs and bad inputs that are similar with
each other [50], which can improve the diagnosis quality.

For some performance bugs, failure runs could be dif-
ficult to distinguish from success runs, because execution
slowness can be caused by either large workload or mani-
festation of performance bugs.

Empirical study is needed to understand whether statis-
tical debugging is feasible for real-world performance bugs
and, if feasible, how to obtain good inputs and bad inputs.

How to conduct effective statistical debugging? The ef-
fectiveness of statistical debugging is not guaranteed by the
availability of good and bad inputs. Instead, it requires care-
ful design of predicates and statistical models that are suit-
able for the problem under diagnosis.

Different predicates and statistical models have been de-
signed to target different types of common functional bugs.
For example, branch predicates and function-return predi-
cates have been designed to diagnose sequential bugs [29,
30]; interleaving-related predicates have been designed to di-
agnose concurrency bugs [6, 20]; ∆LDA statistical model [5]
has been used to locate failure root causes that have weak
signals. What type of predicates and statistical models, if

3 Any software defects that lead to functional misbehavior, such as incorrect
outputs, crashes, and hangs. They include semantic bugs, memory bugs,
concurrency bugs, and others.
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any, would work well for performance diagnosis is still an
open question.

1.3 Contributions
This paper presents a thorough study of statistical debugging
for real-world performance problems. Specifically, it makes
the following contributions.

An empirical study of the diagnosis process of real-
world user-reported performance problems To under-
stand whether it is feasible to apply statistical debugging
for real-world performance problems, we study how users
notice and report performance problems based on 65 real-
world user-reported performance problems in five repre-
sentative open-source applications (Apache, Chrome, GCC,
Mozilla, and MySQL). We find that statistical debugging is
feasible for most user-reported performance problems in our
study, because (1) users notice the symptoms of most per-
formance problems through a comparison-based approach
(more than 80% of the cases), and (2) many users report
performance bugs together with two sets of inputs that look
similar with each other but lead to huge performance dif-
ference (about 60% of the cases). Furthermore, we also find
that performance diagnosis is time consuming, taking more
than 100 days on average, and lacking good tool support,
taking more than 100 days on average even after profiling.
Although our work is far from a full-blown study of all real-
world user-reported performance bugs, its findings still pro-
vide guidance and motivation for statistical debugging on
performance problems. The details are in Section 2.

A thorough study of statistical in-house performance di-
agnosis To understand how to conduct effective statistical
debugging for real-world performance problems, we set up a
statistical debugging framework and evaluate a set of design
points for user-reported performance problems. These de-
sign points include three representative predicates (branches,
function returns, and scalar-pairs) and two different types
of statistical models. They are evaluated through experi-
ments on 20 user-reported performance problems and man-
ual inspections on all the 65 user-reported performance prob-
lems collected in our empirical study. Our evaluation demon-
strates that, when the right design points are chosen, statis-
tical debugging can effectively provide root cause and fix
strategy information for most real-world performance prob-
lems, improving the state of the art of performance diagno-
sis. More details are presented in Section 3.

A thorough study of sampling-based production-run per-
formance diagnosis We apply both hardware-based and
software-based sampling techniques to lower the overhead
of statistical performance diagnosis. Our evaluation using 20
real-world performance problems shows that sampling does
not degrade the diagnosis capability, while effectively low-
ering the overhead to below 10%. We also find that the spe-
cial nature of loop-related performance problems allows the

sampling approach to lower run-time overhead without ex-
tending the diagnosis latency, a feat that is almost impossible
to achieve for sampling-based functional-bug failure diagno-
sis. More details are presented in Section 4.

2. Understanding Real-World Performance
Problem Reporting and Diagnosis

This section aims to understand the performance diagnosis
process in real world. Specifically, we will focus on these
two aspects of performance diagnosis.

1. How users notice and report performance problems. This
will help us understand the feasibility of applying statis-
tical debugging to real-world performance problems, as
discussed in Section 1.2. Particularly, we will study how
users tell success runs from failure runs in the context of
performance bugs and how to obtain success-run inputs
(i.e., good inputs) and failure-run inputs (i.e., bad inputs)
for performance diagnosis.

2. How developers diagnose performance problems. This
will help us understand the state of practice of perfor-
mance diagnosis.

2.1 Methodology

Application Suite Description (language) # Bugs
Apache Suite 16
HTTPD: Web Server (C)
TomCat: Web Application Server (Java)
Ant: Build management utility (Java)
Chromium Suite Google Chrome browser (C/C++) 5
GCC Suite GCC & G++ Compiler (C/C++) 9
Mozilla Suite 19
Firefox: Web Browser (C++, JavaScript)
Thunderbird: Email Client (C++, JavaScript)
MySQL Suite 16
Server: Database Server (C/C++)
Connector: DB Client Libraries (C/C++/Java/.Net)
Total 65

Table 1: Applications and bugs used in the study

The performance problems under this study include
all user-reported performance problems from a real-world
performance-bug benchmark suite collected by previous
work [21]. We briefly discuss this baseline benchmark suite
and our refinement below.

The baseline benchmarks [21] contain 110 fixed real-
world performance bugs randomly sampled from five rep-
resentative open-source software suites. These five software
suites are all large and mature, with millions lines of codes
and well maintained bug databases. They also provide a
good coverage of different types of software projects, as
shown in Table 1. The 110 bugs contained in this baseline
suite are from on-line bug databases and are tagged by de-
velopers as performance bugs.
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Categories Apache Chrome GCC Mozilla MySQL Total
Comparison within one code base 9 3 7 7 12 38

Comparing the same input with different configurations 2 1 1 1 5 10
Comparing inputs with different sizes 6 2 4 4 6 22
Comparing inputs with slightly different functionality 2 0 3 2 4 11

Comparison cross multiple code bases 7 3 8 5 4 27
Comparing the same input under same application’s different versions 4 2 8 3 3 20
Comparing the same input under different applications 4 1 1 2 1 9

Not using comparison-based methods 3 1 0 9 1 14

Table 2: How performance problems are observed by end users (There are overlaps among different comparison-based
categories; there is no overlap between non-comparison and comparison-based categories)

We cannot directly use this baseline benchmark suite,
because it contains bugs that are discovered by developers
themselves through code inspection, a scenario that perfor-
mance diagnosis does not apply. Consequently, we carefully
read through all the bug reports and identify all the 65 bugs
that are clearly reported by users. These 65 bug reports all
contain detailed information about how each performance
problem is observed by a user and gets diagnosed by de-
velopers. They are the target of the following characteristics
study, and will be referred to as user-reported performance
problems or simply performance problems in the remainder
of this paper. The detailed distribution of these 65 bugs is
shown in Table 1.

Caveats Similar with all previous characteristics studies,
our findings and conclusions need to be considered with our
methodology in mind. The applications in our study cover
a variety of important software categories, workload, devel-
opment background, and programming languages. However,
there are still uncovered categories, such as scientific com-
puting software and distributed systems.

The bugs in our study are collected from an earlier bench-
mark suite [21] without bias. We have followed users and
developers’ discussion to decide what are performance prob-
lems that are noticed and reported by users, and finally di-
agnosed and fixed by developers. We did not intentionally
ignore any aspect of performance problems. Of course, our
study does not cover performance problems that are not re-
ported to or fixed in the bug databases. It also does not cover
performance problems that are indeed reported by users but
have undocumented discovery and diagnosis histories. Un-
fortunately, there is no conceivable way to solve these prob-
lems. We believe the bugs in our study provide a representa-
tive sample of the well-documented fixed performance bugs
that are reported by users in representative applications.

2.2 How users report performance problems
In general, to conduct software failure diagnosis, it is crit-
ical to understand what are the failure symptoms and what
information is available for failure diagnosis. Specifically, as
discussed in Section 1.2, to understand the feasibility of ap-
plying statistical debugging for performance diagnosis, we

will investigate two issues: (1) How do users judge whether
a slow execution is caused by large workload or inefficient
implementation, telling success runs from failure runs? (2)
What information do users provide to convince developers
that inefficient implementation exists and hence help the per-
formance diagnosis?

How are performance problems observed? As shown in
Table 2, the majority (51 out of 65) of user-reported perfor-
mance problems are observed through comparison, includ-
ing comparisons within one software code base and compar-
isons across multiple code bases.

Comparison within one code base is the most common
way to reveal performance problems. In about 60% of cases,
users notice huge performance differences among similar
inputs and hence file bug reports.

Sometimes, the inputs under comparison have the
same functionality but different sizes. For example,
MySQL#44723 is reported when users observe that insert-
ing 11 rows of data for 9 times is two times slower than
inserting 9 rows of data for 11 times. As another exam-
ple, Mozilla#104328 is reported when users observe a super-
linear performance degradation of the web-browser start-up
time in terms of the number of bookmarks.

Sometimes, the inputs under comparison are doing
slightly different tasks. For example, when reporting
Mozilla#499447, the user mentions that changing the width
of Firefox window, with a specific webpage open, takes a
lot of time (a bad input), yet changing the height of Firefox
window, with the same webpage, takes little time (a good
input).

Finally, large performance difference under the same in-
put and different configurations is also a common reason
for users to file bug reports. For example, when reporting
GCC#34400, the user compared the compilation time of
the same file under two slightly different GCC configura-
tions. The only difference between these two configurations
is that the “ZCX By Default” entry in the configuration file
is switched from True to False. However, the compilation
times goes from 4 seconds to almost 300 minutes.

Comparison across different code bases In about 40% of
the performance problems that we studied, users support

564



Apache Chrome GCC Mozilla MySQL Total
Total # of bug reports 16 5 9 19 16 65

# of bad inputs provided
0/?: No bad input 0 0 0 0 0 0
1/?: One bad input 0 1 5 6 7 19
n/?: A set of bad inputs 16 4 4 13 9 46

# of good inputs
?/0: No good input 7 2 2 12 4 27
?/1: One good input 0 0 3 0 3 6
?/n: A set of good inputs 9 3 4 7 9 32

Table 3: Inputs provided in users’ bug reports (n: developers provide a way to generate a large number of inputs)

their performance suspicion through a comparison across
different code bases. For example, GCC#12322 bug report
mentions that “GCC-3.3 compiles this file in about five min-
utes; GCC-3.4 takes 30 or more minutes”. As another ex-
ample, Mozilla#515287 bug report mentions that the same
Gmail instance leads to 15–20% CPU utilization in Mozilla
Firefox and only 1.5% CPU utilization in Safari.

Note that, the above two comparison approaches do not
exclude each other. In 14 out of 27 cases, comparison re-
sults across multiple code bases are reported together with
comparison results within one code base.

Non-comparison based For about 20% of user-reported
performance problems, users observe an absolutely non-
tolerable performance and file the bug report without any
comparison. For example, Mozilla#299742 is reported as the
web-browser frozed to crawl.

What information is provided for diagnosis? The most
useful information provided by users include failure symp-
tom (discussed above), bad inputs, and good inputs. Here,
we refer to the inputs that lead to user-observed performance
problems as bad inputs; we refer to the inputs that look sim-
ilar with some bad inputs but lead to good performance, ac-
cording to the users, as good inputs.

Bad inputs Not surprisingly, users provide problem-
triggering inputs in all the 65 cases. What is interesting is
that in about 70% of cases (46 out of 65), users describe a
category of inputs, instead of just one input, that can trigger
the performance problem, as shown in Table 3. For example,
in MySQL#26527, the user describes that loading data from
file into partitioned table can trigger the performance prob-
lem, no matter what is the content or schema of the table.

Good inputs Interestingly, good inputs are specified in al-
most 60% of bug reports, as shown in Table 3. That is, users
describe inputs that look similar with the bad inputs but have
much better performance in all the 38 bug reports where
“comparison within one code base” is used to observe the
performance problem. Furthermore, in 32 bug reports, users
describe how to generate a large number of good inputs, in-
stead of just one good input. For example, when reporting
MySQL#42649, the user describes that executing queries on
tables using the default charset setting or the latin1 charset

setting (good inputs) will not cause lock contention, while
queries on tables using other types of charset settings (bad
inputs) may cause lock contention. Note that, this is much
rarer in functional bug reports, which is why special tools
are designed to automatically generate inputs that execute
correctly and are similar with bad inputs, when diagnosing
functional bug failures [50].

2.3 How developers diagnose performance problems
To collect the diagnosis time, we check the bug databases
and calculate the time between a bug report being posted and
a correct fix being proposed. Of course, strictly speaking,
this time period can be further broken down to bug-report
assignment, root-cause locating, patch design, and so on.
Unfortunately, we cannot obtain such fine-grained informa-
tion accurately from the databases. Most Apache, Chrome,
and MySQL bugs in our study do not have clear assignment
time in record. For GCC bugs in study, report assignment
takes about 1% of the overall diagnosis time on average; for
Mozilla bugs in study, report assignment takes about 19% of
the overall diagnosis time on average.

Our study shows that it takes 129 days on average for
developers to finish diagnosing a performance problem re-
ported by users. Among the 5 software projects, the Chrome
project has the shortest average performance-diagnosis time
(59 days), and Apache project has the longest average di-
agnosis time (194 days). Comparing with the numbers re-
ported by previous empirical studies, the time to diagnose
user-reported performance problems is slightly shorter than
that for non-user-reported performance problems [21], and
similar or longer than that of functional bugs [21, 33].

We also studied how developers diagnose performance
problems. The only type of diagnosis tools that are men-
tioned in bug reports are performance profilers. They are
mentioned in 13 out of the 65 reports. However, even af-
ter the profiling results are provided, it still takes developers
116 days on average to figure out the patches.

2.4 Implications of the study
Implication 1 Performance bugs and functional bugs are ob-

served in different ways. Intuitively, the symptoms of many
functional bugs, such as assertion violations, error messages,
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and crashes, can be easily identified by looking at the fail-
ure run alone [28]. In contrast, the manifestation of perfor-
mance bugs often gets noticed through comparison. We have
randomly sampled 65 user-reported functional bugs from
the same set of applications (i.e., Apache, Chrome, GCC,
Mozilla, and MySQL) and found that only 8 of them are
observed through comparison. Statistical Z tests [42] show
that the above observation is statistically significant — at the
99% confidence level, a user-reported performance bug is
more likely to be observed through comparison than a user-
reported functional bug.

Implication 2 Although judging execution efficiency
based on execution time alone is difficult in general, dis-
tinguishing failure runs from success runs and obtaining
bad and good inputs are fairly straightforward based on
performance-bug reports filed by users. Our study shows
that most user-reported performance problems are observed
when two sets of similar inputs demonstrate very differ-
ent performances (38 out of 65 cases). Most of these cases
(32 out of 38), users provide explicit good and bad input-
generation methodology. In other cases (27 out of 65), users
observe that an input causes intolerably slow execution or
very different performances across similar code bases. Dis-
tinguishing failure runs from success runs and bad inputs
from good inputs are straightforward in these cases based
on the symptoms described in the bug reports, such as
“frozed the GUI to crawl” in Mozilla#299742 and 10X more
CPU utilization rate than Safari under the same input in
Mozilla#515287.

Implication 3 Statistical debugging is naturally suitable
for diagnosing many user-reported performance problems,
because most performance bugs are observed by users
through comparison and many performance bug reports (38
out of 65) already contain information about both bad and
good inputs that are similar with each other. Statistical tests
[42] show that with 90% statistical confidence, a user-filed
performance bug report is more likely to contain both bad
and good inputs than not. Comparing the 65 randomly sam-
pled functional bugs mentioned above with the 65 perfor-
mance bugs, statistical tests [42] show that, at the 99% con-
fidence level, a user-filed performance bug report is more
likely to contain good inputs than a user-filed functional bug
report. Previous statistical debugging work tries hard to gen-
erate good inputs to diagnose functional bugs [50]. This task
is likely easier for performance problem diagnosis.

Implication 4 Developers need tools, in addition to pro-
filers, to diagnose user-reported performance problems.

3. In-house statistical debugging
During in-house performance diagnosis, users send detailed
bug reports to the developers and developers often repeat
the performance problems observed by the users before they
start debugging. Following the study in Section 2, this sec-
tion designs and evaluates statistical debugging for in-house

diagnosis of real-world performance problems. We aim to
answer three key questions.

1. What statistical debugging design is most suitable for
diagnosing real-world performance problems;

2. What type of performance problems can be diagnosed by
statistical debugging;

3. What type of performance problems cannot be diagnosed
by statistical debugging alone.

3.1 Design
In general, statistical debugging [4, 6, 20, 22, 29, 30, 40] is
an approach that uses statistical machine learning techniques
to help failure diagnosis. It usually works in two steps. First,
a set of run-time events E are collected from both success
runs and failure runs. Second, a statistical model is applied
to identify an event e ∈ E that is most correlated with the
failure, referred to as the failure predictor. Effective statisti-
cal debugging can identify failure predictors that are highly
related to failure root causes and help developers fix the un-
derlying software defects.

There are three key questions in the design of statistical
debugging.

1. Input design – what inputs shall we use to drive the in-
correct execution and the correct execution during sta-
tistical debugging. If the good runs and the bad runs are
completely different (e.g., they do not cover any common
code regions), the diagnosis will be difficult.

2. Predicate design – what type of run-time events shall
we monitor. Roughly speaking, a predicate Pi could be
true or false, depending on whether a specific property is
satisfied at instruction i at run time. To support effective
diagnosis, one should choose predicates that can reflect
common failure root causes.

3. Statistical model design – what statistical model shall
we use to rank predicates and identify the best failure
predictors among them.

The input design problem is naturally solved for perfor-
mance diagnosis, as discussed in Section 2. We discuss dif-
ferent predicate designs and statistical model designs below.

3.1.1 Predicate designs
Many predicates have been designed to diagnose functional
bugs. We discuss some commonly used ones below.

Branches. There are two branch predicates associated
with each branch b: one is true when b is taken, and the other
is true when b is not taken [29, 30].

Returns. There are a set of six return predicates for each
function return point, tracking whether the return value is
ever < 0, ≤ 0, > 0, ≥ 0, = 0, or 6= 0 [29, 30].

Scalar-pairs. There are six scalar-pair predicates for each
pair of variables x and y, tracking whether x is ever < y,≤ y,
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> y, ≥ y, = y, or 6= y [29, 30]. Whenever a scalar variable
x is updated, scalar-pair predicates are evaluated between x
and each other same-type variable y that is in scope, as well
as program constants.

Instructions. Instruction predicate i is true, if i has been
executed during the monitored run [4, 22, 40].

Interleaving-related ones. Previous work on diagnosing
concurrency bugs [20] has designed three types of predicates
that are related to thread interleaving. For example, CCI-
Prev predicates track whether two consecutive accesses to
a shared variable come from two distinct threads or the same
thread.

In the remainder of this section, we will focus on three
predicates: branch predicates, return predicates, and scalar-
pair predicates. We skip instruction predicates in this study,
because they are highly related to branch predicates. We
skip interleaving-related predicates in this study, because
most performance problems that we study are deterministic
and cannot be effectively diagnosed by interleaving-related
predicates.

3.1.2 Statistical model designs
Many statistical models have been used before for anomaly
detection [13, 18, 26, 27] and fault localization [4, 5, 20,
22, 29, 30, 40]. Although the exact models used by pre-
vious work differ from each other, they mostly follow the
same principle — if a predicate is a good failure predictor,
it should be true in many failure runs, and be false or not-
observed in many success runs. They can be roughly catego-
rized into two classes. The first class only considers whether
a predicate has been observed true for at least once in a run
(e.g., whether a branch b has been taken for at least once).
The exact number of times the predicate has been true in
each run is not considered in the model. The second class
instead considers the exact number of times a predicate has
been true in each run. Naturally, by considering more infor-
mation in the model, the second class could complement the
first class, but at the cost of longer processing time. Most
previous work on functional bug diagnosis has found the
first class sufficient [6, 20, 29, 30] and did not try the sec-
ond class.

To cover both classes of statistical models for perfor-
mance diagnosis, our study will look at two models: a ba-
sic model proposed by CBI work [29, 30] that belongs to
the first class discussed above and a ∆LDA model proposed
by Andrzejewski et al. [5] that belongs to the second class
discussed above. We leave investigating other existing sta-
tistical models and designing new models to future work.
Since our evaluation will use exactly the same formulas, pa-
rameters, and settings for these two models as previous work
[5, 29, 30], we briefly discuss these two models below. More
details about these two models can be found in their original
papers [5, 29, 30].

Basic model This model works in two steps. First, it
checks whether an execution is more likely to fail when
a predicate P is observed true, whose probability is com-
puted by formula Failure(P), than when P has merely being
observed during the execution, whose probability is com-
puted by formula Context(P). Consequently, only predi-
cates, whose Increase values computed below are higher
than 0 with certain statistical confidence, will appear in the
final ranking list. By default, statistical Z-tests and 0.99 con-
fidence level are used in CBI [29].

Failure(P) =
F(Ptrue)

S(Ptrue)+F(Ptrue)

Context(P) =
F(Pobserved)

S(Pobserved)+F(Pobserved)

Increase(P) = Failure(P)−Context(P)

F(Ptrue) is the number of failure runs in which P is true,
and F(Pobserved) is the number of failure runs in which P is
observed, no matter true or false. S(Ptrue) is the number of
success runs in which P is true, and S(Pobserved) is the number
of success runs in which P is observed.

Importance(P) =
2

1
Increase(P) +

1
log(F(Ptrue))/log(F)

The final ranking is based on an Importance metric. This
metric reflects the harmonic mean of the Increase metric
and the conditional probability of a predicate P being true
given that an execution has failed. F is the total number
of failure runs in the formula above. Previous work [30]
has tried different variants of the harmonic mean and found
the formula above, with a logarithmic transformation, to be
the best. As mentioned above, we reuse all the formulas,
parameters, and settings from previous work.

∆LDA model ∆LDA [5] model is derived from a famous
machine learning model, called Latent Dirichlet Allocation
(LDA) [8]. By considering how many times a predicate is
true in each run, it can pick up weaker bug signals, as shown
by previous work [5]. Imagine the following scenario —
during a success run, predicate P is true for 10 times and
false for 100 times; during a failure run, P is true for 100
times and false for 10 times. The basic model will consider
P as useless, as it has been observed both true and false in
every run. However, ∆LDA model will notice that P is true
for many more times during each failure run than that in each
success run, and hence consider P as failure predictor. The
exact ranking formula of ∆LDA model is very complicated,
and is skipped here. It can be found in previous work [5].

How to apply the models A statistical debugging frame-
work collects the following information from each run: (1)
whether the run has succeeded and failed; (2) a list of pred-
icates that have been observed true and for how many times
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Static # of predicates Static # of Reported Inputs

BugID KLOC Language Branch Return Scalar-pair Loops (bad/good)

Mozilla258793 3482 C++ 385722 1126770 * 10016 n/0
Mozilla299742 3482 C++ 385720 1126698 * 10016 1/0
Mozilla347306 88 C 26804 38634 271968 951 n/n
Mozilla416628 105 C 28788 39306 302496 1420 1/0

MySQL15811 1149 C++ 13508 15576 * 760 n/n
MySQL26527 986 C++ 90128 128610 * 4222 n/n
MySQL27287 995 C++ 92316 119322 * 4683 n/n
MySQL40337 1191 C++ 103686 138582 * 4510 n/n
MySQL42649 1164 C++ 126822 155766 * 5688 n/n
MySQL44723 1164 C++ 126822 155766 * 5688 1/1

Apache3278 N/A Java 10 126 204 7 n/n
Apache34464 N/A Java 22 42 342 8 n/n
Apache47223 N/A Java 24 36 390 9 n/n
Apache32546 N/A Java 6 66 120 5 n/n

GCC1687 2099 C 183496 296058 4187586 6476 n/n
GCC8805 2538 C 207188 327804 4161012 7309 n/n
GCC15209 2586 C 192108 304800 3705558 7310 1/1
GCC21430 3844 C 238514 447510 3768078 9078 n/n
GCC46401 5521 C 337810 713532 5625606 15159 1/1
GCC12322 2341 C 177098 284484 3750912 6563 1/0

Table 4: Benchmark information. (N/A: since our statistical debugging tools only work for C/C++ programs, we have
reimplemented the four Java benchmarks in C programs. *: we have no tools to collect scalar-pair predicates in C++
programs. The 1s and ns in the “Reported Inputs” column indicate how many bad/good inputs are reported by users.)

each (the latter only for ∆LDA model). After collecting such
information from several success runs and failure runs, the
framework will naturally obtain values, such as the number
of failure runs where a predicate is observed/true, for the
formulas discussed above and produce a rank list of failure
predictors.

3.2 Experimental evaluation
3.2.1 Methodology
To evaluate how statistical debugging works for real-world
performance problems, we apply three types of predicates
and two types of statistical models on real-world user-
reported performance problems. All our experiments are
conducted on an Intel i7-4500U machine, with Linux 3.11
kernel.

Benchmark selection Among the 65 user-reported per-
formance problems discussed in Section 2, we have tried
our best effort and successfully repeated 20 of them from
four different C/C++/Java applications. In fact, most of the
65 performance problems are deterministically repeatable
based on the bug reports. We have failed to repeat 45 of them
for this study mainly because they depend on special hard-
ware platforms or very old libraries that are not available to
us or very difficult to set up. The detailed information for the
20 performance problems used in our experiments is shown
in Table 4. Specifically, the static number of branch predi-

cates is counted based on the fact that there are two predi-
cates for each static branch instruction in the user program
(excluding library code). The static numbers of other predi-
cates are similarly counted.

To make sure these 20 benchmarks are representative,
we also conduct manual source-code inspection to see how
statistical debugging could work for all the 65 user-reported
performance problems in our study. We will show that our
manual inspection results on all the 65 cases are consistent
with our experimental evaluation on these 20 benchmarks.

Input design To conduct the statistical debugging, we run
each benchmark program 20 times, using 10 unique good in-
puts and 10 unique bad inputs. For each performance prob-
lem, we get its corresponding 20 inputs based on users’
bug report. For 13 of them, the bug reports have described
how to generate a large number of good and bad inputs,
which makes our input generation straightforward. For the
remaining 7 bugs, with 3 from Mozilla, 3 from GCC, and
1 from MySQL, we randomly change the provided inputs
and use the user-provided failure-symptom information to
decide which inputs are good or bad. We make sure that in-
puts generated by us are still valid HTML webpages, valid
JavaScript programs, valid C programs, or valid database ta-
bles/queries. The process of judging which inputs are good
or bad is straightforward, as discussed in Section 2.4. For
example, Mozilla#299742 reports a webpage that leads to a
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consistent CPU usage rate above 70%, while some similar
webpages lead to less than 10% CPU usage rate. We gen-
erate many inputs by randomly replacing some content of
this webpage with content from other randomly picked web-
pages, and judge whether the inputs are good or bad based
on CPU usage.

Techniques under comparison We will evaluate three
predicates (branches, returns, scalar-pairs) and two statisti-
cal models (basic, ∆LDA) for statistical debugging. For C
programs, we use CBI [29, 30] to collect all these three
types of predicates4. For C++ programs, we implement our
own branch-predicate and return-predicate collection tools
using PIN binary-instrumentation framework [34]. Scalar-
pair predicates are very difficult to evaluate using PIN, and
hence are skipped for C++ programs in our experimental
evaluations. They will be considered for all benchmarks in
our manual study (Section 3.3). Since the exact execution
time is not the target of our information collection, we did
not encounter any observer effect in our experiment.

We use the default settings of the CBI basic model and
the ∆LDA model for all the benchmarks in our evaluation.
Specifically, CBI model only has one parameter — the sta-
tistical confidence level for filtering out predicates based on
the Increase metric. We use the default setting 0.99. The key
parameter in ∆LDA model is the number of bad topics. We
use the default setting 1.

We also use OProfile [38] to get profiling results in our
experiments. We provide two types of profiling results, both
of which are under the “Profiler” column in Table 5. “Fun”
demonstrates where the root-cause function ranks in the pro-
filer result and what is the distance between the root-cause
function and where patches are applied. “Stack” considers
the call-chain information provided by OProfile for each
function in its ranking list. It first checks whether any di-
rect or indirect caller functions of the top OProfile-ranked
function is related to the root cause; if not, it then checks the
callers, callers’ callers, and so on of the second top ranked
function; and so on. Among the 65 bug reports in our study,
13 of them mentioned the use of profilers. Among these 13,
4 of them mentioned the use of call-chain information pro-
vided by the profilers. For the simplicity of explanation, we
will use the “Fun” setting as the default setting for discussing
profiler results, unless specified otherwise.

3.2.2 Results for basic model
Overall, 8 out of 20 performance problems can be success-
fully diagnosed using the basic statistical model. Further-
more, in all these 8 cases, the failure predictor that is ranked
number one by the statistical model is indeed highly related
to the root cause of the performance problem. Consequently,

4 CBI [29, 30] is a C framework for lightweight instrumentation and sta-
tistical debugging. It collects predicate information from both success and
failure runs, and utilize statistical model to identify the likely causes of soft-
ware failures.

1 notified = false;
2 while(!notified) {
3 rc = pthread_cond_timedwait(
4 &cond, &lock, &timeToWait);
5 if(rc == ETIMEDOUT) {
6 break;
7 }
8 }

Figure 2: An Apache bug diagnosed by Return

1 //ha_myisam.cc
2 /* don’t enable row cache if too few rows */
3 if (! rows || (rows > MI_MIN_ROWS_TO_USE_WRITE_CACHE) )
4 mi_extra(...);
5 //mi_extra() will allocate write cache
6 //and zero-fill write cache
7 // fix is to remove zero-fill operation
8 ....
9 // in myisamdef.h:

10 // #define MI_MIN_ROWS_TO_USE_WRITE_CACHE 10

Figure 3: A MySQL bug diagnosed by Branch

developers will not waste their time in investigating spurious
failure predictors.

Among all three types of evaluated predicates, the branch
predicate is the most useful, successfully diagnosing 8
benchmarks.

The scalar-pair predicate and function-return predicate
are only useful for diagnosing one performance problem,
as shown in Figure 2. In Apache#3278, users describe that
Tomcat could non-deterministically take about five seconds
to shut-down, which is usually instantaneous. When ap-
plied to Tomcat executions with fast and slow shut-downs,
statistical debugging points out that there are strong fail-
ure predictors from all three types of predicates — (1)
the if(rc==ETIMEDOUT) branch on line 5 being taken
(branch predicate); (2) the pthread cond timedwait
function returning a positive value (function-return predi-
cate); (3) the value of rc on line 3 after the assignment is
larger than its original value before the assignment (scalar-
pair predicate)5. These three predicates actually all indicate
that pthread cond timedwait times out without get-
ting any signal. A closer look at that code region shows
that developers initialize notified too late. As a result,
another thread could set notified to be true and is-
sue a signal even before the notified is initialized to
be false on line 1 of Figure 2, causing a time-out in
pthread cond timedwait. This problem can be fixed
by moving notified=false; earlier.

5 CBI does not consider program constants for its scalar-pair predicates
by default, and hence cannot capture the comparison between rc and
ETIMEDOUT here.
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# of candidate predicates Basic model ∆LDA model Profiler Developers’ fix strategy

BugID Branch Return S-pair Branch Return S-pair Branchloop Return S-pair Fun Stack

Mozilla258793 62822 149354 * X1(0) - * - - * - - Change branch condition
Mozilla299742 61256 148688 * X1(0) - * - - * - - Change branch condition
Mozilla347306 3931 4062 21590 - - - X1(1) X1(1) X1(1) X1(7) X1[0] Remove the loop
Mozilla416628 3719 3598 19428 - - - X1(.) - X1(.) X1(.) X1[0] Reduce # loop iterations

MySQL15811 1198 866 * - - * X1(.) X1(0) * X1(.) X1[0] Remove the loop
MySQL26527 6422 6823 * X1(0) - * - - * - - Change branch condition
MySQL27287 5377 5752 * - - * X1(0) - * X1(0) X1[0] Remove the loop
MySQL40337 7868 8160 * X1(1) - * - - * - - Change branch condition
MySQL42649 12569 9696 * X1(.) - * - - * - - Optimize branch body
MySQL44723 10476 9108 * X1(.) - * - - * - X1[2] Optimize branch body

Apache3278 7 63 102 X1(3) X1(2) X1(2) - - - - - Synchronization adjustment
Apache34464 17 23 193 - - - X3(0) X1(2) - X5(2) X1[1] Combine loop instances
Apache47223 17 15 237 - - - X1(.) - X1(.) X1(.) X1[0] Combine loop instances
Apache32546 5 34 69 - - - X1(8) X1(7) X1(7) - X5[0] Combine loop iterations

GCC1687 22602 17787 428103 - - - X1(.) X2(.) - X1(.) X1[0] Combine loop iterations
GCC8805 23891 20467 404594 - - - X4(0) X1(0) - - - Reduce # loop iterations
GCC15209 8956 9403 155007 X1(13) - - - - - - - Change branch condition
GCC21430 45494 51270 647228 - - - X1(0) - X1(0) X1(2) X1[0] Remove the loop
GCC46401 34365 38263 479508 - - - X2(.) X3(.) X1(.) X5(.) X1[2] Reduce # loop iterations
GCC12322 46721 38269 878823 - - - - - - - X1[1] Reduce # loop iterations

Table 5: Experimental results for in-house diagnosis (Xx(y): the x-th ranked failure predictor is highly related to the
root cause, and is y lines of code away from the patch. (.): the failure predictor and the patch are more than 50 lines of
code away from each other or are from different files. Xx[y]: a y-th level caller of the x-th ranked function in a profiler
result is related to the root cause; x[0] means it is the function itself that is related to the root cause. -: none of the top
five predictors are related to the root cause or no predicates reach the threshold of the statistical model.).

In most cases, the failure predictor is very close to the
final patch of the performance problem (within 10 lines of
code). For example, the patch for the Apache bug in Figure 2
is only two lines away from the failure predictor. As another
example, the top-ranked failure predictor for the MySQL
bug shown in Figure 1 is at the if (! rows) branch, and the
patch exactly changes that branch.

There are also two cases, where the failure predic-
tor is highly related to the root cause but is in differ-
ent files from the final patch. For example, Figure 3 illus-
trates the performance problem reported in MySQL#44723.
MySQL44723 is caused by unnecessarily zero-filling the
write cache. Users noticed that there is a huge perfor-
mance difference between inserting 9 rows of data and
11 rows of data. Our statistical debugging points out
that the failure is highly related to taking the (row >
MI MIN ROWS TO USE WRITE CACHE) branch. That is,
success runs never take this branch, yet failure runs always
take this branch. This is related to the root cause — an ineffi-
cient implementation of function mi extra, and the patch
makes mi extra more efficient.

Note that identifying the correct failure predictor is not
trivial. As shown by the “# of candidate predicates” column
of Table 5, there is a large number of predicates that have
been observed true for at least once in failure runs. Statistical
debugging is able to identify the most failure predicting ones

out of thousands or even hundreds of thousands of candidate
predicates.

Comparing with the profiler For eight cases where the
basic statistical model is useful, profilers fail miserably. In
terms of identifying root causes (i.e., what causes the in-
efficient computation), among these 8 cases, the root-cause
functions are ranked from number 11 to number 1037 for 5
cases. In the other 3 cases, the function that contains the root
cause does not even appear in the profiling result list (i.e.,
these functions execute for such a short amount of time that
they are not even observed by profilers).

Even if we consider functions in the call stacks of top-
ranked profiler functions, profiler is helpful for only one out
of these eight cases, as shown by the “Stack” column of Ta-
ble 5. That is, for MySQL44723, the root cause function is
the caller’s caller of the top ranked function in profiler re-
sults. For the other seven benchmarks, the root cause func-
tions do not appear on the call stacks of the top five ranked
functions in profile results.

In terms of suggesting fix strategies, profiler results pro-
vide no hint about how to solve the performance problem.
Instead, the statistical debugging results are informative. For
example, among the 7 cases where branch predicates are best
failure predictors, the fixes either directly change the branch
condition (5 cases) or optimize the code in the body of the
branch (2 cases). For the one case where a return predicate
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Apache Chrome GCC Mozilla MySQL Total
Total # of bugs 16 5 9 19 16 65

# of bugs the default CBI model can help
Branches 1 0 2 5 5 13
Returns 1 0 0 0 1 2
Scalar-Pairs 0 0 0 0 0 0

# of bugs ∆LDA model can help
Branchesloop 10 4 7 12 10 43
Returns 0 0 0 0 0 0
Scalar-Pairs 0 0 0 0 0 0

# of bugs above designs cannot help
4 1 0 2 0 7

Table 6: How different predicates work for diagnosing user-reported performance bugs (In this manual inspection, if
more than one predicate can help diagnose a problem, we only count the predicate that is most directly related to the
root cause)

is the best failure predictor, the fix affects the return value of
the corresponding function.

3.2.3 Results for ∆LDA model
We also tried statistical debugging using the ∆LDA model
together with the branch, return, and scalar-pair predicates.
For branch predicates, we focus on predicates collected at
loop-condition branches here and we will refer to them as
“Branchloop” in Table 5.

As shown in Table 5, ∆LDA model well complements
the statistical debugging designs discussed earlier (i.e., basic
statistical model). In 11 out of 12 cases where the basic
statistical model fails to identify good failure predictors,
useful failure predictors are identified by the ∆LDA model.

Among the three different types of predicates, branch
predicates are the most useful — help diagnosing 11 cases
under ∆LDA model. In general, when a loop-branch predi-
cate b is considered as a failure predictor by the ∆LDA statis-
tical model, it indicates that b’s corresponding loop executes
many more iterations during failure runs than during success
runs.

In eight cases, the loop ranked number one is exactly
the root cause of computation inefficiency. Developers fix
this problem by (1) completely removing the inefficient loop
from the program (indicated by “Remove the loop” in Table
5); (2) reduce the workload of the loop (indicated by “Re-
duce # loop iterations” in Table 5); or (3) remove redundancy
across loop iterations or across loop instances (indicated by
“Combine loop iterations” or “Combine loop instances” in
Table 5).

In three cases, the root-cause loop is ranked within top
four (second, third, and fourth, respectively), but not number
one. The reason is that the loop ranked number one is actu-
ally part of the effect of the performance problem. For ex-
ample, in GCC#8805 and GCC#46401, the root-cause loop
produces more than necessary amount of work for later loops
to handle, which causes later loops to execute many more it-
erations during failure runs than success runs.

In one case, GCC#12322, the root-cause loop is not
ranked within top five by ∆LDA model. Similar with
GCC#8805 and GCC#46401, the root cause loop produces
many unnecessary tasks. In GCC#12322, these tasks hap-
pen to be processed by many follow-up nested loops. The
inner loops of those nested loops are all ranked higher than
the root-cause loop, as they experience many more iteration-
number increases from success runs to failure runs.

Return predicates and scalar-pair predicates can also
help diagnose some performance problems under the ∆LDA
model, but their diagnosis capability is subsumed by
branchloop predicates in our evaluation, as shown in Table 5.
For the six cases when a scalar-pair predicate p is identified
as a good failure predictor, p is exactly part of the condi-
tion evaluated by a corresponding branchloop failure predic-
tor. For the seven cases when a function-return predicate f is
identified as a good failure predictor, f is ranked high by the
statistical model because it is inside a loop that corresponds
to a highly ranked branchloop failure predictor.

Comparing with the profiler ∆LDA model is good at iden-
tifying root causes located inside loops. Since functions that
contain loops tend to rank high by profilers, profilers per-
form better for this set of performance problems than the
ones discussed in Section 3.2.2. In comparison, statistical
debugging still behaves better.

In terms of identifying root causes, ∆LDA model always
ranks the root cause loop/function equally good (in 7 cases)
or better (in 4 cases) than profilers. There are mainly two rea-
sons that ∆LDA is better. First, sometimes, the root-cause
loop does not take much time. They simply produce un-
necessary tasks for later loops to process. For example, in
GCC#8805, the function that contains the root-cause loop
only ranks 20th by profiler. However, it is still ranked high by
∆LDA model, because the loop-iteration-number change is
huge between success and failure runs. Second, sometimes,
functions called inside an inefficient loop take a lot of time.
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Fix Categories Apache Chrome GCC Mozilla MySQL Total
Total # of loop-related bugs 10 4 7 12 10 43
Remove the loop 0 1 2 4 3 10
Combine loop instances (removing cross-loop redundancies) 3 2 0 4 1 10
Reduce # loop iterations (reduce the workload of the loop) 0 0 4 2 2 8
Combine loop iterations (removing cross-iteration redundancies) 6 1 1 1 1 10
Others 1 0 0 1 3 5

Table 7: Fix strategies for loop-related bugs

Profilers rank those functions high, while those functions ac-
tually do not have any inefficiency problems.

Considering call-stack functions in the profiling results
(“Stack” column in Table 5) does not make profiler much
more useful. For example, the root cause function of
GCC#46401 ranks fifth in the profiling result. This func-
tion is also one of the callers’ callers of the top-ranked func-
tion in the profiling results. However, since the profiler re-
ports three different callers, each having 1–3 callers, for the
top-ranked function, the effective ranking for the root-cause
function does not change much with or without considering
call stacks.

3.3 Manual inspection
In addition to the above experimental study, we also man-
ually checked which predicate, if any, would help diagnose
each of the 65 user-reported performance bugs in our bench-
mark set. The result is shown in Table 6.

Assuming the basic statistical model, traditional predi-
cates (i.e., branches, returns, and scalar-pairs) can diagnose
15 out of 65 performance problems. Among them, branch
predicates are the most helpful, able to diagnose 13 perfor-
mance problems; return predicates can diagnose 2 perfor-
mance problems; scalar-pair predicates are the least useful
among the three in our study.

Among the ones that cannot be diagnosed by the basic
statistical model, 43 of them are caused by inefficient loops.
We expect that the ∆LDA statistical model can identify root-
cause related branch predicates (denoted as “Branchesloop”
in Table 6). That is, the loop-condition branch related to
the loop that is executed for too many times during fail-
ure runs will be ranked high by the ∆LDA model. Some
scalar-pair predicates and function-return predicates could
also help failure diagnosis under the ∆LDA model. For ex-
ample, the loop-condition of an inefficient loop could in-
volve the comparison between two scalar variables; the inef-
ficient loop could invoke a function that happens to always
return positive values; and so on. However, these predicates
will not provide more information than branch predicates.
Therefore, we do not mark them in Table 6.

The remaining 7 performance problems are mostly
caused by unnecessary I/Os or other system calls, not related
to any predicates discussed above.

3.4 Discussion
Putting our manual inspection results and experimental eval-
uation results together, we conclude the following:

1. Statistical debugging can help the diagnosis of many
user-reported performance problems, improving the state
of the art in performance diagnosis;

2. Two design points of statistical debugging are particu-
larly useful for diagnosing performance problems. They
are branch predicates under basic statistical model and
branch predicates under ∆LDA model. These two de-
sign points complement each other, providing almost full
coverage of performance problems that we have studied;

3. The basic statistical model that works for most functional
bugs [4, 6, 20, 22, 29, 30, 40] is very useful for perfor-
mance diagnosis too, but still leaves many performance
problems uncovered; statistical models that consider the
number of times a predicate is true in each run (e.g.,
the ∆LDA model) is needed for diagnosing performance
problems.

4. Statistical debugging alone cannot solve all the problem
of diagnosing performance problems. Although statisti-
cal debugging can almost always provide useful informa-
tion for performance diagnosis, developers still need help
to figure out the final patches. Especially, when an ineffi-
cient loop is pointed out by the ∆LDA model, developers
need more program analysis to understand why the loop
is inefficient and how to optimize it.

To guide future research on performance diagnosis, we
further studied those 43 loop-related performance problems,
and manually categorized their fix strategies, as shown in
Table 7. We expect future performance diagnosis systems
to use static or dynamic analysis to automatically figure out
the detailed root causes, differentiate effects from causes,
and suggest detailed fix strategies, after statistical debugging
identifies root-cause loop candidates.

4. Production-run statistical debugging
In-house performance diagnosis discussed in Section 3 as-
sumes that users file a detailed bug report and developers
can repeat the performance problem at the development site.
Unfortunately, this does not always happen. In many cases,
production-run users only send back a simple automatically
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generated report, claiming that a failure has happened, to-
gether with a small amount of automatically collected run-
time information.

The key challenge of diagnosing production-run failures
is how to satisfy the following three requirements simulta-
neously:

1. Low run-time overhead. The diagnosis tool will not be
accepted by end users, if it incurs too much slow down to
each production run.

2. High diagnosis capability. The diagnosis tool is useful to
developers only when it can accurately provide failure
root cause information.

3. Short diagnosis latency. Short diagnosis latency can
speed up patch design and improve system availability.

This section discusses this issue in the context of perfor-
mance bugs.

4.1 Design
The state of the art on production-run functional bug di-
agnosis [6, 20, 29, 30] proposes to satisfy the first two re-
quirements (i.e., low overhead and high capability) by com-
bining sampling techniques with statistical debugging. By
randomly sampling predicates at run time, the overhead can
be lowered; by processing predicates collected from many
failure and success runs together, the diagnosis capability
can be maintained for the diagnosis of most functional bugs
[6, 20, 29, 30]. The only limitation is that sampling could
affect diagnosis latency — the same failure needs to occur
for many times until sufficient information can be sampled.
This is especially a problem for software that is not widely
deployed and bugs that do not manifest frequently. We plan
to follow this approach and apply it for production-run per-
formance diagnosis.

Different from production-run functional failure diagno-
sis [6, 20, 29, 30], production-run performance diagnosis
needs to have a slightly different failure-reporting process.
Traditional functional failure diagnosis assumes that a pro-
file of sampled predicates will be collected after every run.
This profile will be marked as failure when software encoun-
ters typical failure symptoms such as crashes, error mes-
sages, and so on; the profile will be marked as success oth-
erwise. The same process does not apply to performance
failures, because most performance failures are observed
through comparisons across runs, as discussed in Section 2.

To adapt to the unique way that performance problems
are observed, we expect that users will explicitly mark a pro-
file as success, failure, or do-not-care (the default marking),
when they participate in production-run performance diag-
nosis. For most performance problems (i.e., those problems
observed through comparisons), do-not-care profiles will be
ignored during statistical debugging. For performance prob-
lems that have non-comparison-based symptoms (i.e. appli-

cation freeze), all profiles collected from production runs
will be considered during statistical debugging.

One issue not considered in this paper is failure bucket-
ing. That is, how to separate failure (or success) profiles re-
lated to different software defects. This problem is already
handled by some statistical models [29, 30] that can dis-
cover multiple failure predictors corresponding to different
root causes mixed in one profile pool, as well as some failure
bucketing techniques [15] that can roughly cluster profiles
based on likely root causes. Of course, performance diagno-
sis may bring new challenges to these existing techniques.
We leave this for future research.

4.2 Experimental evaluation
Our evaluation will aim to answer two key questions:

1. Can sampling lower the overhead and maintain the ca-
pability of performance-related statistical debugging? A
positive answer would indicate a promising approach to
production-run performance diagnosis.

2. What is the impact of sampling to diagnosis latency?
Traditionally, if we use 1 out of 100 sampling rate, we
need hundreds of failure runs to achieve good diagnosis
results. Since many performance bugs lead to repeated
occurrences of an event at run time, it is possible that
fewer failure runs would be sufficient for performance
diagnosis. If this heuristic is confirmed, we will have
much shorter diagnosis latency than traditional sampling-
based failure diagnosis for functional bugs.

4.2.1 Methodology
Benchmarks and inputs We reuse the same set of bench-
marks shown in Table 1. We also use the same methodol-
ogy to generate inputs and drive success/failure runs. The
only difference is that for the four performance problems
that users do not report any good inputs, we will use com-
pletely random inputs to produce success-run profiles.

Tool implementation To sample return predicates, we di-
rectly use CBI [29, 30]. CBI instruments program source
code to conduct sampling. Specifically, CBI instrumentation
keeps a global countdown to decide how many predicates
can be skipped before next sample. When a predicate is sam-
pled, the global countdown is reset to a new value based on
a geometric distribution whose mean value is the inverse of
the sampling rate.

To sample branch predicates, we directly use CBI for
benchmarks written in C. For all MySQL and some Mozilla
benchmarks that are written in C++, since CBI does not
work for C++ code, we conduct sampling through hardware
performance counters following the methodology described
in previous work [6]. Specifically, hardware performance
counters are configured so that an interrupt will be triggered
every N occurrences of a particular performance event (e.g,
branch-taken event), with no changes to the program.
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Metrics and settings We will evaluate all three key metrics
for failure diagnosis: (1) run-time overhead, measured by the
slow down caused by information collection at every run; (2)
diagnosis capability, measured by whether top ranked failure
predictors are related to failure root causes, as discussed in
Section 3.2. (3) diagnosis latency, measured by how many
failure runs are needed to complete the diagnosis.

By default, we keep the sampling rate at roughly 1 out of
10000 and use samples collected from 1000 failure runs and
1000 success runs for failure diagnosis.

In addition to experiments under the default setting, we
also evaluate the impact of different numbers of failure/suc-
cess runs, ranging from 10 to 1000, while keeping the sam-
pling rate fixed, and evaluate the impact of different sam-
pling rates, ranging from roughly 1 out of 100 to roughly 1
out of 100000, while keeping the number of failure/success
runs fixed. Particularly, we will try using only 10 success
runs and 10 failure runs, under the default sampling rate, to
see if we can achieve good diagnosis capability, low diagno-
sis latency, and low run-time overhead simultaneously.

Since sampling is random, we have repeated our evalua-
tion for several rounds to confirm that all the presented re-
sults are stable.

For every performance problem benchmark, the results
presented below are obtained under the combination of pred-
icate and statistical model that is shown to be (most) effec-
tive in Table 5 (Section 3). That is, basic model plus branch
predicates are used for seven benchmarks; basic model plus
return predicates are used for one benchmark; ∆LDA model
plus branchloop predicates are used for the remaining twelve
benchmarks, including GCC12322. Since sampling can only
lower overhead and cannot improve the diagnosis capability,
those combinations that fail to deliver useful diagnosis re-
sults in Table 5 still fail to deliver useful diagnosis results in
our sampling-based evaluation.

4.2.2 Results
Run-time overhead As shown in Table 8, the run-time
overhead is small under the default sampling rate (i.e., 1 out
of 10000). It is below 5% in all but three cases, and is always
below 8%.

As expected, the overhead is sensitive with the sampling
rate. As shown in Table 9, it can be further lowered to be
mostly below 2% under the 1

105 sampling rate, and could be
as large as over 40% under the 1

100 sampling rate.

Diagnosis capability As shown by Table 8, with 1000 suc-
cess runs and 1000 failure runs, sampling did very little
damage to the diagnosis capability of statistical debugging.
Apache#3278 is the only one, among all benchmarks, where
failure diagnosis fails under this sampling setting. For all
other benchmarks, the rankings of the ideal failure predic-
tors remain the same as those without sampling in Table 5.

Also as expected, the diagnosis capability would decrease
under sparser sampling or fewer failure/success runs. As

BugID Diagnosis Capability Overhead

(# of runs) (10) (100) (500) (1000) per run

Mozilla258793 - X1 X1 X1 2.39%
Mozilla299742 - - X1 X1 4.27%
Mozilla347306 X1 X1 X1 X1 1.42%
Mozilla416628 X1 X1 X1 X1 2.03%

MySQL15811 X1 X1 X1 X1 2.25%
MySQL26527 - - X1 X1 6.05%
MySQL27287 X1 X1 X1 X1 3.02%
MySQL40337 - X1 X1 X1 2.69%
MySQL42649 - - X2 X1 6.10%
MySQL44723 - X1 X1 X1 3.16%

Apache3278 - - - - 0.23%
Apache34464 X3 X3 X3 X3 0.18%
Apache47223 X1 X1 X1 X1 0.13%
Apache32546 X1 X1 X1 X1 0.38%

GCC1687 X1 X1 X1 X1 0.80%
GCC8805 X4 X4 X4 X4 1.81%
GCC15209 - - X1 X1 2.37%
GCC21430 X1 X1 X1 X1 7.55%
GCC46401 X2 X2 X2 X2 2.91%
GCC12322 - - - - 2.33%

Table 8: Run-time overhead and diagnosis capability
evaluated with the default sampling rate (1 out of 10000);
10, 100, 500, 1000 represents the different numbers of
success/failure runs used for diagnosis.

shown in Table 9, under the default setting of 1000 success/-
failure runs, the diagnosis capability is roughly the same be-
tween 1

103 sampling rate and 1
104 sampling rate, but would

drop with 1
105 sampling rate. Four benchmarks that can be

diagnosed with more frequent sampling cannot be diagnosed
with 1

105 sampling rate. Clearly, more runs will be needed to
restore the diagnosis capability with a lower sampling rate.

Diagnosis latency Diagnosis latency versus run-time over-
head and diagnosis capability is a fundamental trade-off fac-
ing sampling-based statistical debugging for functional bugs
[20, 29, 30]. With sampling, intuitively, more failure runs
are needed to collect sufficient diagnosis information. This
is not a problem for widely deployed software projects. In
those projects, the same failure tends to quickly occur for
many times on many users’ machines [15]. However, this is
a problem for software that is not widely deployed.

We quantitatively measured the impact of sampling to di-
agnosis latency in Table 8. As we can see, three benchmarks
need about 100 failure runs for their sampling-based diag-
nosis to produce useful results; four benchmarks need about
500 failure runs; and one benchmark, Apache#3278, needs
more than 1000 failure runs. This indicates longer diagnosis
latencies than the non-sampling-based diagnosis evaluated
in Section 3, where only 10 failure runs are used.
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BugID Diagnosis Capability Overhead Avg. # of sampled predicates

(sampling rate) ( 1
102 ) ( 1

103 ) ( 1
104 ) ( 1

105 ) ( 1
102 ) ( 1

103 ) ( 1
104 ) ( 1

105 ) ( 1
102 ) ( 1

103 ) ( 1
104 ) ( 1

105 )

Mozilla258793 * X1 X1 X1 * 24.36% 2.39% 1.84% * 1.42∗106 1.45∗105 1.49∗104

Mozilla299742 * X1 X1 X2 * 30.84% 4.27% 4.16% * 1.87∗105 1.77∗104 1.82∗103

Mozilla347306 X1 X1 X1 X1 69.73% 8.27% 1.42% 0.56% 7.13∗106 7.13∗105 7.13∗104 7.13∗103

Mozilla411722 X1 X1 X1 X1 24.64% 4.31% 2.03% 1.36% 8.18∗105 8.18∗104 8.17∗103 816.56

MySQL15811 * X1 X1 X1 * 7.65% 2.25% 1.53% * 3.67∗105 1.67∗105 1.66∗104

MySQL26527 * X1 X1 - * 6.40% 6.05% 4.53% * 3.23∗103 921.41 92.60
MySQL27287 * X1 X1 X1 * 4.63% 3.02% 0.61% * 2.52∗106 1.15∗106 1.19∗105

MySQL40337 * X1 X1 - * 10.88% 2.69% 2.28% * 5.10∗106 1.66∗106 1.42∗105

MySQL42649 * X1 X1 - * 8.28% 6.10% 3.93% * 7.25∗103 1.14∗103 128.53
MySQL44723 * X1 X1 X1 * 7.10% 3.16% 2.24% * 3.23∗105 1.83∗105 1.46∗104

Apache3278 X1 - - - 0.23% 0.23% 0.23% 0.23% 0.21 0.01 0 0
Apache34464 X3 X3 X3 X3 29.45% 2.62% 0.18% 0.04% 2.50∗107 2.50∗106 2.49∗105 2.50∗104

Apache47223 X1 X1 X1 X1 12.58% 1.28% 0.13% 0.12% 6.27∗106 6.26∗105 6.27∗104 6.27∗103

Apache32546 X1 X1 X1 X1 0.24% 0.39% 0.38% 0.40% 9.75∗103 977.72 99.01 9.5

GCC1687 X1 X1 X1 X1 47.30% 5.34% 0.80% 0.43% 3.18∗107 3.18∗106 3.18∗105 3.17∗104

GCC8805 X4 X4 X4 X4 50.92% 7.33% 1.81% 1.05% 1.63∗107 1.63∗106 1.63∗105 1.63∗104

GCC15209 X1 X2 X1 X2 41.06% 8.43% 2.37% 1.27% 3.35∗104 3.35∗103 334.72 33.64
GCC21430 X1 X1 X1 X1 64.98% 13.68% 7.55% 5.07% 9.15∗107 9.15∗106 9.15∗105 9.15∗104

GCC46401 X2 X2 X2 X2 88.97% 13.04% 2.91% 0.46% 8.88∗107 8.88∗106 8.88∗105 8.88∗104

GCC12322 - - - - 15.55% 2.33% 2.33% 0.56% 9.97∗107 9.97∗106 9.97∗105 9.97∗104

Table 9: Diagnosis capability, overhead, and average number of samples in each run under different sampling rates by
using 1000 success/failure runs (*: no results are available, because hardware-based sampling cannot be as frequent as
1/100 and software-based CBI sampling does not apply for these C++ benchmarks. )

Interestingly, there are 11 benchmarks, whose diagnosis
latency is not lengthened by sampling. As shown in Table 8,
even with only 10 failure runs, the sampling-based diagno-
sis still produces good failure predictors. These are exactly
all the 11 benchmarks that ∆LDA model suits in Table 5.
For all these benchmarks, the rankings are exactly the same
with or without sampling, with just 10 failure runs. Conse-
quently, sampling allows us to achieve low run-time over-
head (<10%), high diagnosis capability, and low diagnosis
latency simultaneously, a feat that is almost impossible for
sampling based functional bug diagnosis.

The nice results for these 11 benchmarks can be explained
by a unique feature of performance bugs, especially loop-
related performance bugs — their root-cause related predi-
cates are often evaluated to be true for many times in one run,
which is why the performance is poor. Consequently, even
under sparse sampling, there is still a high chance that the
root-cause related predicates can be sampled, and be sam-
pled more frequently than root-cause unrelated predicates.

Finally, even for the other 9 benchmarks, 1
104 sampling

rate does not extend diagnosis latency by 104 times. In fact,
for most of these benchmarks, 100 – 500 failure runs are suf-
ficient for failure diagnosis under 1

104 sampling rate. Our in-
vestigation shows that the root-cause code regions in these
benchmarks are all executed for several times during the
user-reported failure runs, which is likely part of the rea-
son why users perceived the performance problems. Con-

sequently, the negative impact of sampling on diagnosis la-
tency is alleviated.

5. Related Work
5.1 Empirical study of performance bugs
Recently, several empirical studies have been conducted for
real-world performance bugs. They all have different fo-
cuses. Some of them [49] compare the qualitative differ-
ence between performance bugs and non-performance bugs
across impact, context, fix and fix validation; some of them
[21] look at how performance bugs are introduced, how
performance bugs manifest, and how performance bugs are
fixed; some of them [32] focuses on performance bugs in
smart-phone applications. Different from all previous stud-
ies, our study aims to provide guidance to performance prob-
lem diagnosis, and hence focuses on how performance prob-
lems are noticed and reported by end users.

A most recent study conducted by Nistor et al. [36] is
similar with our bug characteristics study (Section 2) in that
it also finds that performance problems take long time to
get diagnosed and the help from profilers is very limited.
However, the similarity ends here. Different from our study,
this recent work did not study how performance problems
are observed and reported by end users. Its bug set includes
many problems that are not perceived by end users and
are instead discovered through developers’ code inspection,
which is not the focus of our study. In short, it does not aim

575



to guide automated diagnosis of performance problems, and
is hence different from our work.

5.2 Performance problem diagnosis
Diagnosis tools aim to identify root causes and suggest fix
strategies when software failures happen. Tools have been
proposed to diagnose certain type of performance problems.

X-ray [7] aims to diagnose performance problems caused
by end users. The root causes discussed in the X-ray paper
are unexpected inputs or configurations that can be changed
by end users. X-ray pin-points the inputs or configuration
entries that are most responsible for a performance problem,
and help users to solve the performance issues by themselves
(by changing the inputs or configuration entries). The main
technique used in X-ray is called performance summariza-
tion, which first attributes a performance cost to each ba-
sic block, and then estimates the possibility that each block
will be executed due to certain input entry, and finally ranks
all input entries. Techniques discussed in our paper aim to
help developers. We want to provide information to help de-
velopers change inefficient code and fix performance bugs.
IntroPerf [25] automatically infers the latency of user-level
and kernel-level function calls based on operating system
tracers. StackMine [17] automatically identifies certain call-
stack patterns that are correlated with performance problems
of event handlers. Yu et al. [48] automatically processes
detailed system traces to help developers understand how
performance impact propagates across system components,
and what are the performance causality relationships among
components and functions. All these diagnosis tools are very
useful in practice, but have different focus from our work.
They do not aim to identify source-code fine-granularity root
causes of performance problems reported by end users.

Many techniques been proposed to diagnose performance
problems in distributed systems [2, 14, 23, 39, 47]. These
techniques often focus on identifying the faulty compo-
nents/nodes or faulty interactions that lead to performance
problems, which are different from our work.

5.3 Performance bug detection
Many performance bug detection tools have been proposed
recently. They each aims to find a specific type of hidden
performance bugs before the bugs lead to performance prob-
lems observed by end users.

Some tools [12, 44, 45] detect runtime bloat, a com-
mon performance problem in object-oriented applications.
Xu et al. [46] targets low-utility data structures with unbal-
anced costs and benefits. Jin et al. [21] employ rule-based
methods to detect performance bugs that violate efficiency
rules that have been violated before. Chen et al. [9] detect
database related performance anti-patterns, like fetching ex-
cessive data from database and issuing queries that could
have been aggregated. WAIT [3] focuses on bugs that block
the application from making progress. Liu and Berger [31]
build two tools to attack the false sharing problem in multi-

threaded software. There are also tools that detect inefficient
nested loops [37] and workload-dependent loops [43].

These bug-detection tools have different focus from our
work. They do not focus on diagnosing general performance
problems reported by end users. Most of them are also not
guided by performance symptoms.

6. Conclusion
Software design and implementation defects lead to not only
functional misbehavior but also performance losses. Diag-
nosing performance problems caused by software defects
are both important and challenging. This paper made several
contributions to improving the state of the art of diagnos-
ing real-world performance problems. Our empirical study
showed that end users often use comparison-based methods
to observe and report performance problems, making statis-
tical debugging a promising choice for performance diagno-
sis. Our investigation of different design points of statistical
debugging shows that branch predicates, with the help of two
types of statistical models, are especially helpful for perfor-
mance diagnosis. It points out useful failure predictors for
19 out of 20 real-world performance problems. Furthermore,
our investigation shows that statistical debugging can also
work for production-run performance diagnosis with sam-
pling support, incurring less than 10% overhead in our eval-
uation. Our study also points out directions for future work
on fine-granularity performance diagnosis.
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