
PANELm Structured Analysis and Object Oriented Analysis . 

Dennis de Champeaux, Hewlett-Packard Laboratories, Moderator 
Larry Constantine, Independent Consulfunf 

Ivar Jacobson, Objective Sysfems SF AZ3 
Stephen Mellor, Projecf Technology, Znc 

Paul Ward, Software Development Concepts 
Edward Yourdon, American Programmer 

The object-oriented paradigm still faces an open challenge: Delivering huge software systems 
routinely and cost effectively. To quote Ed Yourdon: “A system composed of 100,000 lines of 
C++ is not to be sneezed at, but we don’t have that much trouble developing 100,000 lines of 
COBOL today. The real test of OOP will come when systems of 1 to 10 million lines of code 
are developed.” 

Although the object-oriented community has an opening flirtation with exploratory 
pr!ogramming and rapid prototyping by exploiting reuse via inheritance, there is for now, in 
m:r opinion, no hope that huge systems can be developed without giving due attention to 
what a target system is supposed to do. Which should produce an (electronic) (graphical) 
(Pseudo-formal) document, the requirements, that a customer can initially sign off. We 
believe as well that for huge systems a programming language independent design activity, 
th(at bridges the requirements and the actual programming effort, is mandatory. It goes 
without saying that we do not suggest that these activities constitute a waterfall sequence. 

Consequently, the object-oriented community needs to address the question whether well 
established analysis techniques, like Structured Analysis, Jackson’s JSD, etc. can be reused 
for object-oriented system development or whether a dedicated object- oriented analysis (and 
design) method is called for. 

The panel members have been asked to consider the following of question: What is the 
re:lationship between Structured Analysis (SA) and Object Oriented Analysis (OOA)? 

More specifically: 

l Can SA be used effectively to produce the requirements for a system that will be 
designed and implemented in an 00 fashion? 

l If not, is it possible to adjust SA, what needs to be added? If SA cannot be used at 
all, what is the key obstacle? 

l In case SA and OOA have different applicability ranges, how do we circumscribe 
- positively and negatively - these ranges? Any overlap? 

We appreciate that the organizing committee of this conference has selected this crucial 
topic. 

October 21-25. 1990 ECOOP/OOPSLA ‘90 Proceedings 135 



Larry Constantine, Independent Consultant 

In coanventional structured methods, the model of a problem or application and the model of 
the software that solves the problem are quite distinct and are typically represented in 
completely different notations. Using object-oriented organization, it is possible to design 
software that models the structure of an application more closely. At least in principle the 
models developed in 00 analysis and in 00 design can be expressed in the same or 
equivalent notations based on common principles. 

Conventional structured analysis can be and has been used successfully as the “front end” to 
object-oriented design and programming, but the models produced may provide only 
somewhat limited leverage toward developing the object-oriented design model. Experience 
suggests that approaches based on entity- relationship models and their extensions are better 
for this purpose than are data flow models. As larger applications are developed, the need 
for specifically 00 analysis models and mthods increases. 

Iterative, exploratory, or prototyping approaches further blur the boundaries between OOA 
and OOD. Nevertheless, although more tightly coupled than SA and SD, OOA and OOD 
are not identical activities. From a managerial standpoint, it may even be desirable to 
artificially increase the differences in order to enhance the controllability of 00 software 
development. 

Ivan Jacobson, Objective Systems SF AP 

Two of the most used paradigms for software development are the function and data 
approach and the object-oriented approach. 

The function and data approach models a system in terms of two concepts. Without trying to 
be precise, functions are active and have behavior whereas data are passive containers of 
information that can be manipulated by the funtions. The function and data approach 
models abstractly the behavior of a traditional computer system with a program and a data 
store. Most traditional software engineering methods such as SA, JSD, SREM (RDD), SADT 
are function and data methods. 

In the object-oriented approach (and here I also include object- based techniques) a system is 
modeled in terms of objects only. These objects offer services (behavior) to the surrounding 
world and they contain information. Real-world entities are directly mapped onto objects in 
the model world. This is in contrast to the function and data approach whee the real-world 
entities are mapped onto two structures: functions and data. 

Both approaches have been in practical use many years, say 25 years. The function and data 
approach has more users particularly for data processing systems. The object-oriented 
approach has primarily been used for large complex applications such as telecommunication 
systems. It seems today that within five or ten years the object-oriented approach will 
dominate, for both technical applications and information systems. 

My position can briefly be summarized by: 

1) The object-oriented approach should be introduced as early as possible in the lifecycle of 
a system. Thus, one should use an object-oriented technique for enterprise modeling, use it for 
systems analysis, for systems design and for programming. A shift of paradigm from one 
development phase to another is very complex. It requires training in two different 

136 ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990 



paradigms. The developers must manually translate from one set of modeling concepts to 
another. 

2) Given that one has an analysis model based on a function and data approach, there is a 
way tl:, manually tranform this model into an object-oriented model. This way should be 
faster than starting from the original requirements specification. We recommend that the 
translation is done by those anlaysts that did the earlier model. 

3) Some of the diagramming techniques used in SA can also be used in OA. State transition 
graphs are useful to model some object types. Data flow diagrams can be used at a low level 
to model complex objects. 

Stephen Mellor, Project Technology Inc. 

The relationship between Structured Analysis and Object-Oriented Analysis depends 
primarily on the definition of the terms. The “structured” in SA can be defined to mean 
“organized” and “systematic” both in terms of the approach to the analysis effort, and the 
frame work for the resulting documentation. Functional decomposition (traditionally 
identified with SA), the event-response approach (McMenamin and Palmer, Ward/Mellor,) 
and ClOA can all, to a greater or lesser degree, be identified as members of the structured 
analysis family. 

Functional decomposition and event-response cannot be used effectively to construct systems in 
an 00 fashion because the analysis proceeds by examining processes in the former, and by 
considering events in the latter. In both approaches, data is organized only to support 
processing. On the other hand, abstract data types are the basis of OOA: first the analyst 
finds conceptual entities, then describes their behavior over time, and finally derives the 
processing. 

However, the other analysis approaches are less effective than OOA. Functional 
decomposition fundamentally fails to address the semantics of a problem. The event-response 
approach was defined precisely to address this issue, but solve it by taking a 
phenomenolgical view of systems more suited to specification (what other user sees) than 
analysis (what the world really is). Consequently, we should be asking if there are any 
obstacles to using OOA in traditional systems design, rather than the inverse. 

The applicability range of an analysis technique can be divided into types of problems, and 
types of designs to which the technique applies. All systems have semantics - even highly 
functional systems - so the semantically driven approach, of OOA applies. 

Design is the choice of the rules for the orgainization of data, control and algorithym in a 
system, independent of the analysis and the programming language. No analysis approach 
should incorporate concepts of a pre-chosen design approach, even an object-oriented design. 
This applies especially to inheritance which exists only to a limited extent in the real 
world. 

- prec:isely defines the semantics of a problem in terms of the conceptual entities; 

- is based on abstraction from the real world; and 

- permits the designer to choose the most appropriate inheritance structure. 

OOA meets these requirements in full. 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 137 



Paul Ward, Software Development Concepts 

Structured Analysis (SA) is an eclectic approach to systems development that has evolved 
to accommodate a variety of notations and model building heuristics. with the additon of 
some object-oriented modeling guidelines, SA can be used effectively to express a 
specification in terms of classes of objects with inheritance properties. Such a specification 
can then be translated in a straightforward way to an object-oriented design. 

The modeling notations of SA, originally confined largely to the data flow diagram, have 
evolved to include the entity- relationship diagram and its extensions, and various graphic 
and tabular state machine representations. This group of notations is capable of expressing 
various views of an objet-oriented specification model. A two-level data flow model can 
show interacting objects, and the operations and encapsulated data (instance variables) for 
each object. An entity-relationship model can show the structure and associations of the 
classes of objects in a problem domain. A state diagram or table can describe the life-cycle of 
an object. 

The model partitioning guidelines of SA, originally confined (for” logical” models) to 
functional process partitioning and ad- hoc data partitioning, have evolved to include as 
alternatives event-response process partitioning and object-based data partitioning. If 
responses are decomposed into components that access single data objects, an event-response 
model can be partitioned in terms of interacting objects. If the entity- relationship model 
identifies superclass objects, corresponding superclass process (operations) can be embedded in 
subclasses in the data flow model. 

The overall top-down structure characteristic of SA data flow models was originally closely 
tied to a functional decomposition strategy for model development. A more recent approach 
accepts a top-down organization of the final mode, preceded by a more “moddle-out” model 
building strategy. This permits object identification as a preliminary strategy, followed by a 
top-down packaging based on composite objects. 

Since many current CASE products implement the various SA notqtions, these products can be 
used, with the guidelines mentioned above, to create object-oriented specifications models. 

Edward Yourdon, American Programmer 

We have been asked to consider several questions about the relationship between structured 
analysis and object-oriented analysis. My position on these questions is as follows: 

1. Can SA be used effectively to produce the requirements for a system that will be designed 
and implemented in an 00 fashion? The key word in this question, I believe, is 
“effectively.” From this perspective, the answer is “no.” The tranition from structured 
analysis to structured design is difficult enough; the tranition from SA to OOD/OOP is even 
more difficult, because the modeling notation is so different, and because the emphasis is so 
different in SA (i.e., functions) than it is in OOD/OOP (objects). Brute-force methods can be 
used to move from SA to OOD, but it is not a seamless integration. 

138 

2. If not, is it possible to adjust SA, what needs to be added? If SA cannot be used at all, 
what is the key obstacle? Some people have claimed a successful marriage between SA and 
OOA by using the “event-partitioning” approach described by McMenamin and Palmer in 
Essential Systems Analysis to “objectify” a requirements model initially created with data 
flow diagrams; this would them make it possible to go from SA to OOA. But there are three 

ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



problems with “classical” SA that will render it, I believe, inadequate for a world that 
want to implement systems in an 00 fashion. These problems are: (1) separate disjoint 
notations for process (DFDs), data (ERDs), and time-dependent behavior (STDs), one of 
which (usually the DFD) usually dominates and eliminates the others in real world 
projecls; (2) thus subtly influences software engineers to approach each systems development 
project as a “design from first principles,” rather than the 00 paradigm of “design by 
exception.” (3) The SA notation provides no help in modeling the human interface, which is 
becoming more and more important in the world of GUI environments. 

3. In case SA and OOA have different ranges, how do we circumscribe - possitively and 
negatively - these ranges? Any overlaps ? I regard this more as a cultural issue than a 
technical issue. Even if OOA is more applicable than SA, from a technical perspective, 
many DP organizations have too much inertia to switch. New paradigms are generally 
accepted only when the old paradigm fails to solve new problems with which the 
organization is faced. Thus, I feel the OOA will be more politically acceptable in 
environments where SA has failed on large, visible projects; and also on projects where 
reusability and graphical user interfaces are seen as key issues from the onset. 

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings 139 


