
Actors as a Special Case of Concurrent Constraint Programming

Kenneth M. Kahn and Vijay A. Saraswat
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304, USA
(415) 494-4390; 494-4334 (FAX)

Kahn@PARC.Xerox.com

Keywords: Actors, Open Systems, Concurrent Programming, Constraint Programming

Abstract

Saraswat recently introduced the framework of con-
current constraint programming [14]. The essence of
the framework is that computations consist of concur-
rent agents interacting by communicating constraints.
Several concurrent constraint programming languages
have been defined. They differ in the kinds of con-
straints that can be used as well as the kinds of oper-
ations on constraints which are available. In this pa-
per we introduce a very simple concurrent constraint
language we call Lucy, designed to closely mimic the
actor model of computation. Agents can communi-
cate only by the posting of constraints upon bags (un-
ordered collections possibly with duplicate elements).
This very impoverished concurrent constraint language
is a syntactic subset of Janus, a concurrent constraint
language which closely resembles concurrent logic pro-
gramming languages such as Guarded Horn Clauses
[al], Strand [5], Parlog [2] and Flat Concurrent Pro-
log [13]. By identifying the subset of Janus which is
an actor language, we elucidate the relationship be-
tween actors and concurrent logic programming (and
its generalization as concurrent constraint program-
ming). Lucy is best not thought of as a unification
of logic and constraint programming with actor and
object-oriented programming, but as the missing link
between these programming language genera.

1 Introduction

Actors are a minimal model of distributed computa-
tion. The model is lean and simple and adequately
captures the essence of asynchronous message-passing
systems. A good model for studying distributed sys-
tems need not, however, be a good basis for the de-
sign of programming languages intended to support

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the put~lication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1990 ACM C89791-411-2/90/0010-0057...$1.50

the programming of large-scale distributed systems.
We conjecture that the lack of wide-spread use of ac-
tor languages, despite twenty years of development, is
due largely to the low-level nature of the actor model.
We shall attempt to make the case that Janus as
a superset of the Lucy actor language, enables the
direct expression of many more common patterns of
programming than actor languages while preserving
the necessary properties for open-systems program-
ming [lo].

A major technical shortcoming of the actor model is
that it is not directly compositional. A configuration
of actors, in general, is not itself an actor since it
can respond to messages arriving at different ports.
Introducing the concepts of receptionist and config-
uration enables compositionality while increasing the
complexity of the actor model [l]. A major advantage
of concurrent constraint programming is that the par-
allel composition of agents is itself an agent. Unlike
actors, an agent can be receptive to communications
on any number of ports.

In the actor literature there is often talk of “mail-
boxes” or “mail addresses”, though they are not part
of the actor model. They are only implicitly part of
an actor. This is because they are used in a standard
manner which usually picks off and processes messages
one by one. A major source of the expressiveness of
Janus is that mailboxes are made explicit, agents may
read from several of them, and separate read and write
accesses may be communicated in messages. In order
to mimic a simple Janus program in which agents use
and communicate mailbox access rights, an actor pro-
gram needs to build a relatively complex configuration
of actors. The ability to read from multiple mailboxes
also provides the basis for a simpler alternative mech-
anism for back communication than the continuations
of actor computations. Multiple communication chan-
nels per agent and the communication of various kinds
of access to communication channels are perhaps un-
usual programming language notions but are common
in distributed operating systems (e.g. Mach [22]). As
such, Janus models current practice in distributed

October 21-25, 1390 ECOOPIOOPSLA ‘90 Proceedinp 57

computation more directly than the lower-level mod- gether with the constraint Speed > 140.3, entail that
eling provided by actors. Car = Porsche.

2 Distributed and Concurrent Constraint Pro-
gramming

Concurrent constraint (cc) programming [14] is a syn-
thesis and fundamental generalization of constraint
logic programming (e.g. CLP(R) [S]) and concurrent
logic programming (e.g. Flat Guarded Horn Clauses
[21]). In the cc framework computation consists of
a collection of agents interacting by performing vari-
ous constraint operations upon shared variables. The
most central operations are ask and tell. (This termi-
nology was adapted from [12]. Agents may tell con-
straints thereby conjoining them to the pool of con-
straints that have hitherto been posted. The behavior
of an agent is typically conditional upon the result of
asking if this pool implies a given constraint, or its
negation. If the pool implies neither the given con-
straint nor its negation, the agent is blocked; that is,
it is inactive until other agents add constraints to the
pool such that the pool has enough information to
answer the given constraint. A configuration of the
system, therefore, consists of a collection of agents,
which collectively define the behaviors still to be exe-
cuted, together with the pool of constraints that have
been imposed hithert0.l

A language in the cc framework is obtained by choos-
ing a particular ask-and-tell constraint system (which
fixes the vocabulary of ask- and tell-constraints and
their underlying domains of interpretation), and choos-
ing a set of constraint operations (in addition to ask
and tell the framework defines other operations, such
as inform, check, initialize, etc. [14]). For example,
the so-called concurrent logic programming languages
such as Parlog, GHC and Atomic Herbrand are ob-
tained by instantiating the Ask-and-Tell cc languages
over the “Herbrand” constraint system, in which terms
denote finite trees, and only equality constraints can
be imposed. From an object-oriented perspective the
cc languages offer a very rich framework in which
entities may communicate over multiple l-to-l, l-
to-many, many-to-l, and many-to-many channels a
wide range of pieces of partial information, cooperat-
ing and competing in various ways, and possibly rely-
ing upon a sophisticated underlying inference mecha
nism. For example, an agent may tell the constraint
Speed > 140.3 thereby activating some other agent
suspended on the ask “Car = porsche”, because a
complex of constraints present in the store may, to-

The languages discussed in this paper are very impov-
erished, relative to other members of the concurrent
constraint programming family of languages. They
support a limited vocabulary of constraints over only
a few kinds of objects. This is because, like actors,
they are intended for programming large-scale dis-
tributed systems. Issues of scalability, trust, reliabil-
ity, and many more need to be taken into account
[7,10]. We identify the subset of cc programming lan-
guages which are suitable for distributed computing
as the distribzlted constraint (dc) programming lan-
guages. A major characteristic of dc languages is the
compile-time guarantee that the store of constraints
cannot become inconsistent at run-time. This means
that at run-time no constraint-solving is necessary-
in particular this means that for dc languages which
are defined over Herbrand-like constraint system (such
as the language Janus), no unification is necessary at
run-time. An inconsistent store implies all ask con-
straints, as well as their negations, leading to wide-
spread uncontrolled behavior. Instead of defining away
the possibility of inconsistencies, languages like Guarded
Horn Clauses [21] place responsibility on the program-
mer to keep the store consistent. In large-scale dis-
tributed systems this is unacceptable since the actions
(whether malicious or accidental) of one component
can bring chaos to all of the others. Another charac-
teristic of the dc framework is that it must be possibIe
to realize the constraint operations in a local manner.

One advantage of exploring new languages in the cc
and dc frameworks is that much of the work has al-
ready been done in a general or parameterized fash-
ion. Various combinators such as parallel composi-
tion or information hiding have already been formally
defined. Formal semantics, proof methods, program
transformations, etc. for large classes of cc and dc
languages are active areas of research [17]. Exploring
this space is a joy for a language designer who needs
only concentrate on the pieces that are new rather
than design a new language from scratch.

‘The pool of constraints is conceptually global, but is typi-
cally implemented in a distributed manner with only pairwise
coordination.

3 Actor Model of Computation

The actor model of computation is also a general frame-
work for describing distributed computations. It is
based upon the notion of asynchronous message-passing
between encapsulated entities called actors. Upon re-
ceiving a message, an actor can create new actors,
communicate by sending messages to other actors, and
designate a replacement actor to service subsequent
messages. An actor can only refer to its acquaintances,
i.e., the set of actors it was created knowing about,

58 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

those it learned about from messages it received, and
those it created. It can only send messages to acquain-
tances and only create actors whose acquaintances are
a subset of its acquaintances. More details can be
found in [l&7].

4 Lucy - A DC Programming Language

We present here Lucy, a dc language, and show that
it has the (informal) properties of an actor language.

The syntax used in this paper is a simple variation
on the clausal syntax common to many concurrent
constraint and logic programming languages, and used
in [14]. A program is a collection of clauses, of the
form:

behavioraanw(ask_term, ask-term)::agent.

where an ag,snt is, recursively, a tell-constraint, a sim-
ple agent (recursive invocation), a conditional agent
(an ask-constraint, followed by an agent), or a paral-
lel composition of agents:

agent:: =
telLcon:straint 1 name(tell+erm, tell-term)1
ask-consxraint+ agent 1 agent, agent.

This syntax has a few advantages over the more con-
ventional definite clauses. The choice of the syntax
“+” for “bl>cking ask” (conditional agents) is delib-
erate; this combinator can be construed as a logical
entailment operator. It naturally and elegantly allows
the specifica.tion of nested conditionals thus helping
avoid the need for choosing arbitrary procedure names
for every branch point in the program.

variables Xi, . . . , Xk which is conceptually generated
by attempting to answer the “query” 3x1, . . . Xk.c
given the constraint “database” u. (Note that be-
cause of the presence of bags, there may be more than
one answer to any such query. In such a case, any one
answer is chosen arbitrarily.)

Similarly, in one step, the agent p(tr, . . . , tn) reduces
in a store cr, if there is a clause in the program with
head p(ai, . . . , a,) such that the query 3Yr, . . . Yk .X1 =

X, = a, can be answered from the store u A
2; ‘i)tl _ . . X, = t,, where Yl, . . . ,Yk are the “lo-
cal” variables in the query. As for conditional agents,
the store is augmented with an answer for the query,
on the local variables. If there is enough information
in the store to show that the goal cannot match any
clause, then the goal is removed. [16] discusses why
this is logically defensible-the essential point is to
treat the bodies of clauses as certain kinds of implica-
tions rather than as conjunctions,

In Lucy the term !X (called the teller for X) is used
to indicate the right to tell constraints involving X.
Legal Lucy (and Janus) clauses must satisfy certain
syntactic restrictions designed to ensure that a be-
havior cannot use a !X term to “read” (i.e. match
on) the contents of X, and must use a !X term when
“writing” on (i.e. posting constraints on) X. The un-
adorned variable X is an ask right for X (called the
asker). In Lucy for any given variable there are only
two references - one the asker and the other the teller.
The rules for ensuring this are presented in [15]. Vari-
ables denote point-to-point communication channels.
Many-to-l communication is accomplished using bags
of askers.

The domain of the constraint system underlying Lucy
consists of a set of constants (“urelements”; these in-
clude arithmetic constants) and (possibly infinite) un-
ordered collections (bags) of such elements. Ask and
Tell constraints are interpreted over this domain. The
permissible ask constraints include:

The operational semantics of Janus (and thereby Lucy)
is easy to specify. A (non-terminal) configuration con-
sists of a pair (A,d), where A is an agent, and c is
the store, that is a pair of the form c : V, where c is a
constraint, and V is the set of variables occurring in A
and c. The “telling” of c in a store c’ : V, terminates
in one step, yielding the store (c A c’) : V. The exe-
cution steps of (Al, A) 2 are obtained by interleaving
the executi0.n steps of Al with those of A2 in any or-
der. The agent (c ---+ A) can, in store 0 reduce to the
agent A provided that u entails 3x1, . . . , Xk.c (where

XI,..., Xk ate the “Local,, variables which do not oc-
cur in the head of the clause). In this case the store is
augmented with an “answer constraint” on the local

l X = T where T is any non-bag term.

l Various type and arithmetic tests such as X 2 Y,
integer(X), etc.

l In addition, terms of the form {M} U B may occur
in the head of a clause, provided that M and B are
variables that do not occur elsewhere in the head
of the clause.

Intuitively, an invocation can “match” a clause-
head which contains the term {M} UB, if its corre-
sponding argument is known to be a non-empty
bag (for example, it may be a non-empty enumer-
ated bag, or a variable A on which a constraint of

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 59

the form A = X1 U . . . U Xn has been imposed and
at least one of the Xi has been equated to a sin-
gleton). The match succeeds by equating H to one
of the elements in the bag, and B to the “rest” of
the bag. (See Appendix for formal details.)

The tell constraints permitted in Lucy are:

l X = {T) where T can be a constant or a variable.

l B=XIU... U Xn. This declares that B is the bag
union of the Xis. The Xis are variables.

For convenience, we frequently write Fl = {T} U Bl

rather than B = Bg U I31 and Bg = {T}. In addi-
tion, arithmetic expressions and constants can occur
in simple agents.

Lucy programs must follow the syntactic restrictions
below:

1. An agent asks about only one asker. Simple agents
can have read access to multiple bags but they can
read from only one at a time. For example, the
head of a clause cannot be nme({Ml}UInl, (M2)U

In2) _

2. No communication of askers. If T in expressions
of the form X = {T} is a (unadorned) variable it
must be inferable from the ask conditions of the
clause that T is a constant or a teller.

3. No internal choice. An agent can have only one
clause. The agent in the body of the clause can
be conditional, of course. Each branch of a con-
ditional has mutually exclusive ask conditions.

The first restriction is to match the actor notion that
each actor always has exactly one mailbox it reads
from. Tellers correspond to actor handles or mail ad-
dresses. Simple agents correspond to actors. An actor
“becomes” (i.e. replaces itself by) the simple agent
which is given the remainder of the bag of incom-
ing messages. The second restriction is to fit the ac-
tor notion that mailboxes are implicit and cannot be
communicated. The last requirement makes the in-
ternal behavior of agents deterministic; the only non-
determinism in the program is the “arrival non-de-
terminism” of messages, that is, the non-determinism
involved in choosing one of possibly many messages in
a bag.

The similarity between the conception of bags and ac-
tor maiIboxes should now be clear. Roughly, asking
B = {M} U Bi is equivalent to removing the message M
from B and naming the remainder Bl. Unlike actors,

however, Lucy does not permit multiple tellers and
so an explicit operation is needed in order to split a
bag (reference) into privately accessible pieces. For
example, X = Xl U X2 U X3 “splits” the reference to X
into three references called Xl, X2, and X3. The stan-
dard idiom to send a message M on a channel C and to
name the channel for subsequent communications Cl
is C = {M} U Cl.

Lucy agents have the primitive ability to communi-
cate only constants and tellers. Here we present how a
Lucy agent can be defined which can represent struc-
tured messages. For simplicity, we consider a message
agent to be capable of responding to two kinds of re-
quests: “reply with your first component” and “re-
ply with your second”. More complex structures can
be built in a similar manner. The program is non-
trivial since the request itself needs to communicate
both which component it is requesting and where to
send the reply.

message({H}U In, One, Two)::
% a message has aTrived which is a teller,

96 acknowledge receipt,
% and make P&ale be a new private channel
n= !C+

(C = !PrivateUCi,
messagel(Private, !Cl, In, One, Tao)).

messagel({H}UFromClien~, !ToClient, OriginalIn, One, Two)::
M = 1, constant(One)+

(ToClient= {One},
message(OriginalIn, One, Tao)),

H = 2, constant(Tao)-+
(ToClient= (TWO},
message(OriginalIn, One, Tao)),

M=l,One= !Td
(T= TlUT2,
ToClient= {!Tl},
message(OriginalIn, !T2, Tao)),

H=2,Two= !T-+
(T = TlUT2,
ToClient= {!Tl},
message(OriginalIn, One, !T2)).

After receiving a request a message agent creates an-
other agent (mes sagei) to service messages received
in the original mailbox. message1 is like an insensi-
tive actor [l] in that, in addition to its own mailbox, it
holds onto the original mailbox (OriginalIn). In the
actor model an insensitive actor is implemented by a
complex configuration of actors which buffer messages

ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

and wrap l;hem with tokens indicating their source.
In Lucy the analog of insensitive actors are agents
with multiple askers only one of which is being “asked
about” (and the others are there only to pass on to
descendants). This enables a direct expression of the
problem. kJternatively, we could have defined Lucy
to restrict i,he number of askers per agent to one and
added the ability to ask and tell that a constant or
teller is “wrapped” with some token. This would re-
sult in clumsier programs but would adhere even closer
to the tradi.tional actor style of computation.

Note that a.essage agents maintain state even though
they correspond to pure (or “unserialized”) actors.
This is because in responding to a message they may
have to split a reference, handing out one and retain-
ing the other (as a replacement for the original refer-
ence).

We can now use these message agents to implement a
simple bank account program presented below which
accepts deF,osits, withdrawals, and balance queries:

account({!l}lJ In, Balance)::
n= !l'e % received tell rights to a message agent

(T :: !FromHUHi,

% start to set up a private channel to M

acc:ountl(FromM, !t41, In, Balance)).

accountl({t!) U From& Ton, OriginalIn, Balance)::

% rec:ived channel, so ask /OT first component
n= !l’-+

(T q : 1,

acc:ount2(FromH, TOM, OriginalIn, Balance)).

account2({H)U Ignore, !ToH, OriginalIn, Balance)::

% set up a fresh private channel to M

TotI= !FromMUIgnore,

U = doposit +

(deposit(FromH, OriginalIn, Balance),

H q : withdraw-+

aithdraa(FromH, OriginalIn, Balance),

Pl =I current-balance-+

baLance(FromH, OriginalIn, Balance)).

deposit({H}IJFromH, OriginalIn, Balance)::

% ask for the amount to deposit)
n= !I’+

(T=Z,

deporsitl(Fromti,OriginalIn,Balance)).

depositl({X)UIgnore, OriginalIn, Balance)::

x20-b

account(OriginalIn, Balance+ X).

. % and similarly for withdraw and balance

A typical configuration might be

account(A, loo),

AlUA2=A,

ownerl(!Af),

oaner2(!A2).

ownera, for example, can deposit fifty dollars in the ac-
count by spawningmessage(M, deposit, 50) and telling
A2 = { !M} UA2’.

4.1 Everything is an Actor

Most actor languages take the extreme stance that
everything is an actor including numbers, messages,
behaviors, etc.. A few such as Atolia [3], like Lucy,
have values as well as actors.

We are currently exploring how dc languages like Lucy
could also be designed so that primitive data types can
always be interchangeable with instances of user de-
fined data types which have the same behavior. We
are considering a more primitive version of Lucy with-
out constants but with the ability to ask to disjunc-
tively wait on input from several bags. We believe
that this “bare bones” Lucy is a general model of
computation that, unlike pure actor languages which
need “rock-bottom actors”, need not have any primi-
tive agents.

4.2 Fairness and Guaranteed Delivery

The actor model of computation is built upon an ab-
straction of “guaranteed delivery” of messages. Rough-
ly if a message is sent, eventually it will be received.
We feel that such a guarantee is not of much practical
importance since it permits delays of millions of years,
Consider the case where S has two clients Cr and Cz.
If Cl is a non-terminating process continually sending
messages to S, the actor model would require that if
Cz sent a message to S that it would eventually be
processed. It is interesting to note that this cannot be
truly guaranteed if Cl and (2’2 communicate to S via
an Ethernet.

If guaranteed delivery is desired for Lucy, one could
impose a similar restriction that if something is told to
be a member of a bag and there is a sequence of asks
splitting the bag into an element and the remainder,
then splitting the remainder, and so on an unbounded
number of times, that eventually the thing placed in
the bag will be selected. It is not clear how such a
fairness restriction could be expressed for the unre-
stricted Lucy language where agents may be receiving
messages from multiple bags.

October 21-25, * 990 ECOOPlOOPSLA ‘90 Proceedings 61

5 Janus - Lucy restrictions removed

The Lucy programs above are of course extremely
clumsy. The programs are built from a very mini-
mal foundation. Even low-level actor programs have
built-in primitive actors for messages, continuations,
and the like. From this crude binary message agent
one could build up much more convenient kinds of
messages. Rather than do that we consider the dc
language Janus which is a superset of Lucy.

Janus removes the restrictions listed above thereby
permitting agents to simultaneously read (either con-
junctively or disjunctively) from multiple bags and
to communicate askers as well as tellers. For con-
venience, Janus also permits tells of the form X =

{Tl , . . . , Tn} which sends n messages on the same chan-
nel. Similar restrictions limiting bag expressions to
singletons are removed.

Bags provide a more general and less ad-hoc alter-
native to the primitive merge servers found in many
other concurrent logic programming languages. Bags
can support message sending in which messages are
unordered as well as those in which the relative or-
der of sends from each client is preserved. Unlike
bags, primitive merges force servers to deal with lists
of items and clients to follow a system-wide protocol
for stream splitting. Rather than provide primitive
implementations for a particular library agent, bags
provide a more principled and general foundation for
accomplishing the same goals.

Janus also introduces arrays which provide primitive
support for structured messages. Not only do the pro-
grams become much more concise using arrays but the
implementation is able to implement them in a con-
ventional manner thereby bypassing a large number of
message exchanges. 2 Arrays are constructed as terms
oftheform<Ti,..., Tn > and can be matched using
the same syntax.3 The arrays of Janus, unlike agents
which implement arrays (in a manner similar to the
message agent), do not split references. Consequently
arrays that may have tellers in them cannot be shared
unlike the “sharing” of an agent via tellers to pieces
of a bag.

Janus supports tells of the form X = Y where Y can
be an expression including a variable. This provides
a very concise means of expressing transparent for-
warding of messages. In Lucy, as in actor languages,

2An interesting avenue for research is to explore whether
compilers can be built which eliminate this message overhead.

3 Janus has other array operations which support the same
kinds of functionality and efficiency that arrays have in impera-
tive progr amming languages while preserving the clean founda-
tion as a constraint language. This extra functionality, however,
is not used in this paper.

one is forced, instead, to spawn forwarding agents to
accomplish the same effect. This unnecessarily seri-
alizes the computation. Equivalence sets of variables
are implemented without this serialization by Janus
implementations; it is an open question as to whether
such optimizations are feasible for actor programs re-
lying instead upon transparent forwarders.

The ability to tell X = T could cause problems if the
constraint X U Y = Z had also been told, since T might
be a constant. Janus avoids this problem by redefin-
ing “X U Y” to be the union of X and Y if they are
bags and if either is a non-bag to treat it as the sin-
gleton bag containing that term. In Lucy this was
not a problem since tells are of the form X = {T}.

Another extension in Janus is the introduction of the
constant {} to denote the empty bag. It has the prop-
erty that 3 U {} = B. If clients explicitly drop their
ability to communicate with a server by imposing the
constraint T = {} then a client can detect when all
of its clients have dropped their connection (since the
bag it is reading is empty) and can therefore termi-
nate. In Lucy and other actor languages a garbage
collector is required to detect this and terminate the
agent. Only for unreferenced cycles of Janus agents
is a garbage collector needed.

Janus is a much more expressive language than Lucy.
For example, the simple bank account can be written
aS:

account({M}U In, Balance) ::

H = (deposit, X>, X > 0 -+

account(In, Balance + X),

I! = (withdraw, X, !Ack>, X 5 Balance, X 2 0 --)

(Ack = ok, account(In, Balance - X)),

M = <withdraw, X, !Ack>, X > Balance +

(Ack = (overdraw-attempt, X>, account(In, Balance)),

W = <current-balance, !Reply>, number(Balanca) +

(Reply = Balance, account(In, Balance)).

The guard number(Balance) was added to the last be-
havior of account to indicate that Balance is forced to
be a constant and can therefore occur multiple times.
Straightforward flow-analysis-based compilation tech-
niques can lead to the elimination of this test at run-
time.

Many useful programming techniques are excluded by
the actor/Lucy restrictions. For example, the bank
account can be extended to use multiple readers to
straight-forwardly program secure capabilities. Tellers
to different bags being read by the same agent can cor-
respond to capabilities or viewpoints. These idioms

62 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

rely upon “disjunctively” waiting for messages from
different sources. These techniques violate both the
an agent asks about only one asker and no inlernal
choice restrj.ctions. The last requirement limits the
source of non-determinism of Lucy to the arrival or-
dering of messages. Janus also has non-deterministic
choice which is used to arbitrate between incoming
requests on multiple ports. This yields the sort of
non-determinism generated by Milner’s “+‘I combina-
tor (see [17]:1.

We illustrate this with an example. Suppose we wish
to extend bank accounts to also receive input from
bank administrators who are the only ones authorized
to close accounts. We can give accounts ask rights to
another bag which only bank administrators have tell
rights to. T.he modified program includes the behav-
ior:

account(In, {II} U SysIn, Balance)::

H = <close-account>+ closed-account(In).

where closed-account warns senders of messages that
the account is closed, The original program is modi-
fied to pass l;hrough the extra parameter:

account({H}UIn, SysIn, Balance)::

M = <deposit, X>, X 2 O+

account(In, SysIn, Balance+ X),

.*..

“Conjunctively” waiting for inputs from multiple sources
before procee:ding is also concisely expressible in Janus,
as illustrated by the match agents in the queue server
presented below.

queue(Input) ::
split(Input, !Enq, !Deq), match(Enq, Deq).

split(<enqueus, X, Rest>, !En, De)::

En = <X, Eni>, split(Rest, !Enl, De).

split(<dequeuma, !X, Rest>, En, !De) ::

De = <!I(, Del>, split(Rest, En, !Del).

match(o[, Enq>, <!Y, Deq>) ::

Y = X, nlatch(Enq, Deq).

The first clause defines queue agents, which will re-
ceive a sequence of enqueue and dequeue messages

over time and will be able to respond as if these opera-
tions were being performed on a queue. Operationally,
a queue agent splits into two agents. One monitors
the input queue and distributes it into two queues,
one consisting of the enqueue requests received (pre-
serving order of arrival) and the other consisting of
dequeue requests received. Each enqueue request con-
tains the value to be enqueued. Each dequeue request
contains a teller for a variable, the asker for which is
retained by the agent sending the request. When an
enqueue request arrives, it is communicated via the
tell capability directly to the agent which requested
that the dequeue operation be performed. (Note that
the length of the dequeue list can be greater than the
length of the enqueue list, so that the queue may be
“negative” for a while.) The state of a positive length
queue is the first argument to match. If the queue is
negative its state is the second argument. If we wish
to give clients separate “enqueue” and “dequeue” ca-
pabilities then only the match program is needed.

The ability in Janus to communicate askers enables
configurations of agents doing either disjunctive or
conjunctive waiting to be flexibly reconfigurable. We
claim that these useful program idioms correspond to
the construction of much more complex configurations
of actors to accomplish the same ends.

Lucy corresponds to a low-level actor language like
Act [l]. Several higher-level actor languages have been
designed which provide a functional syntax that trans-
lates into a program using actor continuations. This
is not particularly satisfactory since one either needs
to give this higher-level language its own semantics
(which may not look much like asynchronous message
passing) or define it in terms of its translation to low-
level actors. In the latter case, the problem is that
the programmer while reasoning about and debugging
their programs is forced to deal with the translation
of his or her program to a form quite different from
the original sources.

This situation should be contrasted with the reiation-
ship between Lucy and Janus. Janus is a much more
expressive “higher-level” language which is a superset
of Lucy. The benefits arising from the Lucy restric-
tions on Janus to make it fit the actor model are few.
Most importantly, however, there is one uniform, sim-
ple, elegant and powerful way of viewing both Lucy
and Janus computations: they involve the posting
and checking of constraints by concurrently execut-
ing agents. This generalizes the fundamental notion
of communication in concurrent logic programming
languages, and provides a simple and elegant concep-
tual and semantic framework for analyzing these lan-
guages.

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings 63

We take Janus to be representative of concurrent logic
programming languages such as Strand [5] and Flat
Guarded Horn Clauses [al]. Nearly all of the program-
ming techniques commonly used in these languages
carry over to Janus. In particular, nearly all of the
object-oriented techniques and variants described in
[l l] are easy to reformulate in Janus. These program-
ming techniques are expressible in Janus but not in
Lucy. This extra expressiveness of Janus, was not
obtained by sacrificing the “spirit” of actors - agents
are still encapsulated, an agent can only communi-
cate with its acquaintances, communication is asyn-
chronous, etc. We have, however, introduced more
primitive data types (e.g. arrays) in violation of the
“everything should be an actor” principle.

Various Janus implementation efforts are underway.
Hand compilations of simple programs indicate that
Janus will run faster than Prolog and Strand. We
hope to obtain speeds comparable to C. A networked
version of Janus is also under construction. Since
Lucy is just a syntactic subset of Janus then such
implementations will also be Lucy implementations -
modulo the syntax checker that verifies that the addi-
tional restrictions Lucy imposes are followed.

6 Related Work

In an influential paper 1191, Shapiro and Takeuchi de-
scribed how actors could be programmed in Concur-
rent Prolog. This inspired various attempts to make
object-oriented languages based upon concurrent logic
programming languages (e.g. [9], [6], [4]). The work
reported here differs from these languages in many re-
spects. First we have identified a subset of a concur-
rent constraint (logic) programming language which
is an actor language - not one that can implement an
actor language. In [19] many-to-l communication,
for example, was accomplished by networks of merge
agents. Secondly we have explored the relationship
between actors and a very simple and small language,
based on asynchronous message-passing, and not on
complex operations such as atomic unification of trees
with “read-only” variables.

Various extensions to actor languages have been ex-
plored, some of which reify actor mailboxes (e.g. [20]).
We are unaware, however, of any which support agents
which can receive inputs on any number of “mail-
boxes” nor ones in which mailboxes can be commu-
nicated in messages.

In [ll], one of the authors of this paper explores use-
ful and significant variants of the basic object-oriented
programming technique of Shapiro and Takeuchi. The
paper presents examples illustrating the expressive-
ness that results from the ability to have multiple in-

put channels per agents and the ability to communi-
cate ask as well as tell rights. Equivalent actor pro-
grams are discussed and found to be much more com-
plex and cumbersome. All but one of the examples
presented there are easily written in Janus (the ex-
ception is the shared asker example for implicit multi-
casting).

7 Summary

We have explored the relationship of the distributed
constraint and actor frameworks by proposing a lan-
guage which plays the role of a missing link between
these frameworks. We presented Lucy a simple dc
language which is an actor language. Our stance is
that the actor model of distributed computation is a
good one, but too low level for the basis of a pro-
gramming language. Lucy is a syntactic subset of
Janus, and we argued that those syntactic restrictions
to fit the actor model are not well-motivated. Due to
the Janus agents’ ability to receive input from multi-
ple ports, a configuration of Janus agents is itself an
agent. This is not true of Lucy agent and actors. The
restrictions placed upon Lucy eliminate very useful
Janus programming techniques which rely upon mul-
tiple input ports and the ability to communicate input
ports.

8 Acknowledgements

We are grateful for the fruitful discussions of Lucy we
have had with Mark Miller, Volker Haarlsev, and Pat
Hayes. The work on Janus is being done in collabo-
ration with several other researchers, including Jacob
Levy, Saumya Debray, Seif Haridi, Bogumil Hausman,
and Mats Carlsson.

PI

PI

131

PI

[51

G. Agha. Actors: a model of concurrent compu-
tation in distributed systems. PhD thesis, Univer-
sity of Michigan, 1985.

K. L. Clark and S. Gregory. Parlog: parallel pro-
gramming in logic. TOPLAS, 8(1):1-49, January
1986.

W.L. Clinger. Foundations of Actor semantics.
PhD thesis, MIT, May. 1981.

A. Davison. Polka: A Parlog object oriented lan-
guage. Technical report, Department of Comput-
ing, Imperial College, London, 1988.

Ian Foster and Stephen Taylor. Strand: A prac-
tical parallel programming language. In Proceed-
ings of the North American Logic Programming
Conference, 1989.

64 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

PI

PI

PI

PI

PO1

Dl3

WI

PI

WI

WI

I161

[I71

K. Furusawa, Takeuchi. A., S. Kunifuji, H. Ya-
sukawa, M. Ohki, and K. Ueda. Mandala: A
logic barted knowledge programming system. In
ICOT, editor, Proc of the Internation Conference
on Fifth Generation Computer Systems, 1984.

Carl Hewitt. The Ecology of Computation, chap-
ter Offices are open systems. Elsevier Science
Publishers/North-Holland, 1988.

Joxan Jaffar, J-.L. Lasses, and Michael Maher.
Logic Programming: Functions, Relations and
Equations, chapter Logic Programming Language
Scheme. Prentice Hall, 1986.

K. Kahn, E. Tribble, M. Miller, and D. Bobrow.
Research Directions in Object-Oriented Program-
ming, chapter Vulcan: Logical Concurrent Ob-
jects, pages 75-112. The MIT Press, 1987.

Ken Kahn and Mark S. Miller. The Ecology
of Computation, chapter Language Design and
Open Systems. North Holland, 1988.

Kenneth Kahn. Objects - a fresh look. In Pro-
ceedings of the Third European Conference on
Object-Oriented Programming, pages 207-224.
Cambridge University Press, July 1989.

Hector J. Levesque. Foundations of a functional
approach to knowledge representation. Artifkiat
Intelligence, 23:155-212, 1984.

Colin Mierowsky. Design and implementation of
Flat Concurrent Prolog. Technical Report CS84-
21, Weizmann Institute of Science, December
1984.

Vijay A. Saraswat. Concurrent
constraint programming languages. Doctoral Dis-
sertation Award and Logic Programming Series.
MIT Press, 1990, forthcoming.

Vijay A. Saraswat, Kenneth Kahn, and Jacob
Levy. Janus-A step towards distributed con-
straint programming. North American Logic Pro-
gramming Conference, October 1990.

Vijay A. Saraswat, Kenneth M. Kahn, and Jacob
Levy. Distributed constraint programming-the
dc frame work and Janus. Technical report, Xerox
PARC, August 1989.

Vijay A. Saraswat and Martin Rinard. Concur-
rent constraint programming. In Proceedings of
Seventeenth ACM Symposium on Principles of
Programming Languages, San Francisco, January
1990.

P81

WI

WI

WI

PI

Vijay A. Saraswat, Martin Rinard, and Prakash
Panagaden. Fully abstract “may” semantics for
concurrent constraint languages. Technical re-
port, Xerox PARC, March 1990.

Ehud Shapiro and A. Takeuchi. Object oriented
programming in concurrent prolog. New Genera-
tion Computing, 1:25-48, 1983.

Chris Tomlinson and Vineet Singh. Inheritance
and synchronization with enabled-sets. In PTO-
ceedings of Conference on Object-Oriented Pro-
graming: Systems, Languages and Applications,
New Orleans, Louisiana, pages 103-112, October
1989.

K Ueda. Guarded Horn Clauses. Technical Re-
port TR-103, ICOT, June 1985.

M. Young, A. Tevanian, R. Rashid, D. Golub,
J. Eppinger, J. Chew, W. Bolosky, D. Black, and
D. Baron. The duality of memory and commu-
nication in the implementation of a multipro-
cessor operating system. In Proceedings of the
Eleventh Symposium on Operating System Prin-
ciples, November 1987.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 65

A Operational semantics

The following discussion is based primarily on [14],
which presents the semantics of the general frame-
work, though it does not, of course, discuss the partic-
ular constraint system underlying Lucy. A bisimula-
tion semantics for the cc languages is given in [17] and
a denotational semantics fully abstract with respect to
a notion of “may” observations is given in [18].

The following definitions will be useful in what fol-
lows. Let g G p(al, . . . , a,) and g’ E ~(tl, . . . ,tm)
be two atomic formulas. Then by g = g’ we mean
the constraint (p = Q, m = n, al = tl, . . . , ai = ti),
for i = min(m,n). Further, for any syntactic entity
4, by var(+) we denote the (finite) set of variables
that occur in 4, and by 6V.4 we denote the formula
3X 1, . . . , X,.4, where {Xl,. . . ,X,} = var(+) \ V.

Let IC E g :: A be a program clause, and let V =
var(g). Let I<’ be the clause obtained from I< by
replacing each sub-agent c -t A’ in A by (c5V.c) -+
(c, A). For P a set of program clauses, define

[P] d2 {I(’ 1 K is a variant of a clause in P}

The operational semantics of Lucy programs is de-
fined - as for all cc languages - by means of a binary
transition relation on a set of configurations I’. In the
following, let (T range over the set of stores, that is,
pairs of the form c : V, where V is a set of variables
(the variables underlying the store), and c is a con-
straint on V. A configuralion is either a store (such a
configuration is terminal), or a pair of the form (A, CT),
where A is an agent, and u a store. If u s c : V, we
say that u --) c’ iff c ---f c’. Also, we let 0 range over
the set of idempotent substitutions, that is, mappings
from the set of variables to the set of terms which are
equal to the identity mapping almost everywhere, and
which satisfy the condition that 0(0(X)) = O(X), for
any variable X. (We assume that 0 is extended to a
mapping from terms to terms in the usual way.)

Let P be a Lucy program. The binary transition re-
lation -c I x I’ is defined to be the smallest relation
which satisfies the axioms given below.

The simplest axiom has to do with the effect of a tell
operation:

(c, c’ : V) - (c A c’) : v (1)

To tell a constraint is merely to add it to the store.

Consider next the reduction of a simple agent. Let
Ii- = (g :: A) E [P] b e a clause such that I< n V = Q.
Let 0 be a substitution such that C /= (c + (g’ =

B(g))). Then we have:

(g’, c : V) - (e(A), (c A g’ = e(g)) : (V U var(K)))
(2)

Thus a simple agent can reduce with a clause provided
that it satisfies the ask conditions associated with the
clause.

The operational semantics of conditional agents is straight-
forward:

cl= U+C Cgc= u-c

c+A,u - A,u c-+A,u -u (3)

Finally, parallel composition of two agents just means
that their basic atomic steps are interleaved:

(AM) - (4,~‘) I u’
((AI, AZ), 4 - ((A’, , A217 4) I (A2 9 4

(4

((A2, Al), 4 - &42>4), 4) I (A24

66 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

