
Just-in-Time Data Structures
Towards Declarative Swap Rules

Mattias De Wael
Software Languages Lab

Vrije Universiteit Brussel (Belgium)
madewael@vub.ac.be

Abstract
Just-in-Time Data Structures are an attempt to vulgarise the
idea that changing the representation (i.e., implementation)
of a data structure at runtime can improve the performance of
a program compared to its counter part that relies on a single
representation. In previous work, we developed a language
to develop such Just-in-Time Data Structures. To express
“when” to change between representations, a dedicated lan-
guage construct was introduced: the swap rule. A swap rule
analyses the state and usage of a just-in-time data structure
and reacts as defined by a developer. Opposed to what the
name suggest, swap rules are currently implemented as im-
perative statements woven into the codebase. Their intend,
however, is declarative and therefore we think that swap
rules should become real declarative rules.

This extended abstract presents Just-in-Time Data Struc-
tures as a case for applying state-of-the-art in low overhead
dynamic analysis. Changing from an imperative to a declar-
ative implementation of swap rules will allow for more effi-
cient execution of our programs by reducing the overhead of
continuous analysis.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Data structures, algorithms, dynamic reclassifi-
cation, performance

1. Introduction
Today, software engineering practices focus on finding the
single “right” data representation for a program. The “right”
data representation, however, might not exist: relying on
a single representation of the data for the lifetime of the

program can be suboptimal in terms of performance. Just-in-
Time Data Structures are an attempt to vulgarise the idea that
changing the representation of a data structure at runtime can
improve the performance of a program over its counter part
that relies on a single representation only. Or in other words:
Just-in-Time Data Structures are an attempt to shift the focus
from finding the “right” data structure to finding the “right”
sequence of data representations.

A Just-in-Time Data Structure enables online representa-
tion changes based on declarative input from a performance
expert programmer, expressed in the form a dedicated lan-
guage construct: the internal swap rule. Classically, such
an internal swap rule describes for which state of the data
structure which representation should be used. Their intend
is clearly declarative, for instance: “if the matrix is sparse,
change to a sparse representation.”. In the current imple-
mentation, however, internal swap rules are imperative state-
ments woven into the codebase.

2. Matrices and Representation Changes
In previous work we present an elaborate and convincing
motivation for the need of Just-in-Time Data Structures [1].
Here, we merely introduce an example without any evalua-
tion: Imagine a simple data interface which allows the user
to get(row,col) and set(row,col,val) values from
a 2 dimensional Matrix. Further, a Matrix implements
the operations getRows and getCols. For this interface,
many possible implementations (representations) are possi-
ble. Here, consider both ArrayMatrix and SparseMatrix

to implement Matrix. ArrayMatrix stores all values in an
2d array, whereas SparseMatrix uses a more clever storage
scheme that only stores non-zero values, e.g., Compressed
Row Storage (CRS1). Because there exist specialised algo-
rithms for sparse matrices, it would be interesting for an
ArrayMatrix to “automagically” change its representation
to SparseMatrix when it actually becomes a sparse ma-
trix, i.e., when the number of zero values greatly exceeds the
number of non-zero values.

1 See for instance http://netlib.org/linalg/html templates/node91.html

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

WODA’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3909-4/15/10
http://dx.doi.org/10.1145/2823363.2823371

33

Listing 1. A class that combines two implementations.
1 J i t M a t r i x combines ArrayMat r ix , S p a r s e M a t r i x {
2 # s e t (row , co l , v a l) ;
3 # z e r o S e t as s e t (row , co l , v a l){ count−if (v a l = = 0) ; }
4 # nonZeroSe t as s e t (row , co l , v a l){ count−if (v a l ! = 0) ; }
5
6 swaprule A r r a y M a t r i x {
7 i n t s i z e = t h i s . getRows () ∗ t h i s . g e t C o l s () ;
8 boolean f r e q u e n t S e t = (# s e t > (0 .3∗ s i z e)) ;
9 boolean s p a r s e S e t = (# z e r o S e t > # nonZeroSe t∗#nonZeroSe t) ;

10 i f (f r e q u e n t S e t && s p a r s e S e t)
11 t h i s to S p a r s e M a t r i x ;
12 }
13 }

Swap Rules and Invocation Counters. Of course data
structures do not “automagically” change their representa-
tion. Therefore our language allows developers to express
declarative statements about their data structures and when
they need to change representation. An example thereof is
given in Listing 1.

The two language constructs demonstrated in Listing 1
are swap rules and invocation counters. Lines 2-4 show def-
initions of invocation counters. These, as the name suggest,
count the number of invocations of a given operation. For
non-static operations these counters are allocated per in-
stance. For instance, #set(row,col,val), the simplest in-
vocation counter of the three, creates a new “counter” ad-
dressable by the name of the “instrumented” method, here
#set. More complex invocation counters, such as #zeroSet
and #nonZeroSet, allow to specify a name for the counter
and allows the developer to put conditions on when to incre-
ment the counter. #zeroSet, for instance, only counts those
invocations of set where val is 0.

The swap rule definition (see line 6) describes when an
ArrayMatrix should change its representation. Here, the
developer expressed that when the number of “zero sets”
vastly exceeds the number of “non-zero sets”, while the
number of overall “sets” is significantly large enough (see
line 10), the ArrayMatrix should become a SparseMatrix
(see line 11).

Listing 1 shows further how JitMatrix combines the
representations ArrayMatrix and SparseMatrix. To de-
fine a working program also transition functions are needed,
an thorough explanation of of those can be found in [1].

3. Imperative Implementation
The focus in [1] lays in the design of a language to facili-
tate a shift in focus from finding the “right” data structure
to finding the “right” sequence of data structures. As a re-
sult, the language is merely given a prototype implementa-
tion, just powerful enough to show the performance benefit
of changing representation in a handful examples. Currently
swap rules are implemented in a straightforward and unop-
timised manner. Because swap rules react on the “change of
state” of a data structure, the current implementation simply
“executes the body of the swap rule” after each invocation of
each operation, regardless of the actual occurrence of a state
change. While the current implementation allows virtually
any expression available in the base language (a Java sub-

set) to occur in the body of a swap rule, it is wise to keep its
computational complexity to a minimum. Moreover, all ex-
amples in [1], show swap rules which exhibit an declarative
nature. Therefore, we conjecture that a more mature imple-
mentation of the dynamic analysis as expressed by a swap
rule should take benefit of the intended declarative nature to
avoid the overhead of excessive checks at runtime.

4. Declarative Implementation
One problem with online dynamic analysis is the inher-
ent overhead introduced by instrumenting the code base. In
our next implementation of Just-in-Time Data Structures we
want to incorporate established techniques from the area of
“runtime monitoring” with low overhead. Our current direc-
tion of research is in the reduction in expressiveness in swap
rule bodies in order to allow for the construction of depen-
dency graphs. Moreover, replacing the current implementa-
tions with a incremental computation based on this graph,
should greatly reduce the overhead.

Moreover, a transition from imperative to declarative
changes the triggering mechanism of swap rule from a pull-
based to a push-based mechanism: the current implementa-
tion opportunistically checks the need for a swap after each
operation (pull-based), whereas the incremental approach
triggers the intended swap when a swap-condition is met
(push-based).

5. Related Work and Future Work
The idea of Just-in-Time Data Structures is largely inspired
by the work of Xu [3] and Shacham et al. [2]. While both
efforts focus on Java’s collection framework, Just-in-Time
Data Structures wants to generalise the approach by provid-
ing language support to the average software engineer. In
this way we want to facilitate a shift in focus from finding
the “right” data structure to finding the “right” sequence of
data structures. An more thorough overview, by means of a
taxonomy of related work, is given in [1]. As this extended
abstract suggest, our future and ongoing work wants to focus
on a more mature implementation of the Just-in-Time Data
Structure language by making swap rules truly declarative.
To this end we seek for experts in the field of “runtime mon-
itoring with low overhead” to help us with understanding
the costs and benefits of the aforementioned shift towards
declarative swap rules.

References
[1] M. De Wael, S. Marr, J. De Koster, J. B. Sartor, and

W. De Meuter. Just-in-time data structures. In Onward!, 2015.

[2] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive
selection of collections. In proceedings of PLDI, 2009.

[3] G. H. Xu. Coco: Sound and adaptive replacement of java
collections. In proceedings of ECOOP, 2013.

Mattias De Wael is supported by a research grant of IWT, Flanders.

34

