VM-Level Memory Monitoring for
Resolving Performance Problems

Philipp Lengauer

Christian Doppler Laboratory for Monitoring and Evolution of Very-Large-Scale Software Systems,
Johannes Kepler University Linz

philipp.lengauer@jku.at

Abstract

Memory anomalies, such as memory leaks, floating garbage, and
excessive garbage collection pauses, impact application perfor-
mance considerably. Sadly, these anomalies often remain inexpli-
cable as detecting and locating them is a tedious task for which
only little automated tool support exists. We propose to design a
Java virtual machine extension that exposes parts of its internal
memory state and allows memory monitoring tools to access this
state at runtime. Furthermore our goal is to automate the tuning of
the Java virtual machine to counteract memory anomalies. Together
with domain experts from our industrial partner, Compuware Aus-
tria, we plan to validate our approach on real-world applications.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurements; D.2.8 [Software Engineering]: Metrics—

Performance measures
General Terms Measurements, Performance

Keywords
lection

Memory monitoring, memory anomalies, garbage col-

1. Introduction and Motivation

The way how applications allocate objects and manage object ref-
erences greatly impacts their performance. While this is obviously
true for applications that use unmanaged memory, it is also true
for applications that use garbage-collected memory. We research
memory anomalies, such as leaking memory, floating garbage, and
spikes in garbage collection times, which cause performance prob-
lems that are hard to locate and even harder to resolve.

In unmanaged applications, a memory leak occurs if the pro-
grammer clears all references to an object without freeing it explic-
itly. Although in managed memory the garbage collector automati-
cally detects unreferenced objects and reclaims the occupied mem-
ory, a memory leak can still occur; namely if an application falsely
continues to reference objects that it actually does not use anymore,
the garbage collector cannot free them. As memory leaks can accu-
mulate during execution, the garbage collector compromises per-
formance by wasting more and more time scanning unused mem-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLASH 13, October 26-31, 2013, Indianapolis, IN, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.

http://dx.doi.org/10.1145/2508075.2508076

29

ory. An additional (and even worse) problem is that eventually the
application will run out of memory and crash.

Floating garbage are objects that are no longer referenced,
but have not yet been collected. This happens if a dead object
lives in a heap space A, and another dead object, which keeps
a reference to it, lives in a heap space B, and both heap spaces
are collected independently. During a collection of heap space A,
the dead object cannot be freed. Only after the dead object in
heap space B has been collected, the floating garbage in A can
be collected as well. The time spent to unnecessarily scan floating
garbage degrades performance. Floating garbage makes out-of-
memory scenarios more frequent, thus more garbage collection
cycles are necessary, degrading performance even more.

During garbage collection an application must be suspended,
thus excessive garbage collection times make an application unre-
sponsive. Possible reasons for such spikes are full heaps, garbage
collection algorithms that are unsuited for the given heap content,
or badly configured garbage collectors for the application’s alloca-
tion behavior. However, choosing a suitable garbage collector and
configuring it properly is by no means trivial, particularly without
exhaustively trying them all.

This paper presents our research goals in locating and resolving
memory anomalies in applications with garbage-collected memory.
We propose a Java virtual machine extension, enabling external
tools to detect and locate memory anomalies. Furthermore we in-
tend to build a knowledge base for recommending an application-
tailored garbage collector configuration.

We conduct our research in cooperation with Compuware Aus-
tria GmbH. Compuware develops leading-edge performance mon-
itoring tools for multi-tier Java and .NET applications. In applica-
tions of their customers, sporadically occurring high GC times and
permanently increasing memory consumption are problems that
currently cannot be resolved with Compuwares’ tools.

2. State of the Art

Memory leaks are a well-researched area: Xu et al. [1] propose to
annotate coarse-grained transactions in the source code that define
the life time of associated objects. Their tool monitors the program
execution and detects objects that exceed the life time defined by
the transaction; such objects are considered to be memory leaks.
The sound partition of a program into transactions, although crit-
ical for good results, is left to the programmer. Aftandilian et al.
[2] propose programmer-written assertions to declare when objects
are supposedly dead. At run time their modified garbage collector
checks the assertions and reports violations. This approach requires
programmers to specify object lifetimes, which partly takes away
the convenience of using automatic memory management in the
first place. Xu et al. [3] propose a profiler that instruments calls



to Java’s collection classes in order to track unused data objects.
During garbage collection their tool calculates leakage confidence
values based on the time at which an object was last retrieved from
the collection. This approach is limited to objects stored in stan-
dard library collections and likely will produce false positives, as
it solely relies on the last time of retrieval, which is typically in-
fluenced by user input. Printezis et al. [4] describe an architectural
framework that helps tracking memory leaks by visualizing large
heaps as well as changes of the heap. The framework can easily be
adapted to any technology and memory manager.

In contrast to memory leaks, there is only little research about
floating garbage and spikes in GC times, however, there is some
research that covers allocation behavior and GC performance in
general. For example, Singer et al. [5] worked on how to chose the
proper heap size for an application. This is relevant for our research,
because choosing an improper heap size can cause spikes in GC
times. Dieckmann and Hoélzle [9] analyzed the allocation behavior
and object properties of the SPECjvm98 benchmarks and proposed
optimizations based on their observations. Blackburn et al. [11]
describe the garbage collection costs as a function of the heap size
and identify key algorithmic features influencing performance.

Singer et al. [8] determine application-specific garbage collec-
tors for a particular program without exhaustively profiling the pro-
gram. They use machine learning techniques to build a prediction
model and recommend a garbage collector based on a single profil-
ing run of the program. However, they only recommend the garbage
collector itself, but no configuration (e.g., heap size) for it.

Other research, partly relevant for our work, is about memory
anomalies in a more general way: Chis et al. [6] define eleven pat-
terns of inefficient memory use in Java programs, e.g., boxed primi-
tive types in collections, sparsely populated collections, nested col-
lections instead of flat collections. Their analysis framework mon-
itors the execution of a Java program and counts how often the
patterns occur. Pauw and Sevitsky [7] provide a tool that visualizes
large heaps with relatively small graphs, making it easy to locate
the root reference of a memory leak.

Some proprietary Java virtual machines (i.e., JRockit [10] and
IBM JVM) are shipped with tools to retrieve and visualize statistics,
e.g., garbage collection pause times, allocated bytes for each thread
and memory usage of individual spaces. They are able to visualize
object statistics, such as number of bytes and number of objects
for each type, and suggest heap sizes tailored to the exact needs
of a given application. However, most of the object statistics are
gathered by suspending the virtual machine and snapshotting the
heap, which considerably decreases performance.

3. Problem and Research Questions

We derived the following research questions (see Figure 1) based
on the problems described in Section 1:

(1) Which monitoring capabilities are needed in Java virtual ma-
chines to support locating and resolving performance degradations
in garbage-collected memory? Current Java virtual machines ex-
pose a native interface for debuggers and profilers: the Java Virtual
Machine Tool Interface (JVMTI). This interface partly exposes the
internal state of the executed Java application and of the virtual
machine itself, e.g., the state of all objects, all threads and their ac-
cording call stacks, and loaded classes. However, JVMTI does not
expose other information that is required to detect memory anoma-
lies, such as the actual layout of all objects on the heap, statistical
data about garbage collection (e.g., number and age of objects col-
lected, number of objects promoted, and total number of objects
survived), nor reasons for garbage collector decisions (e.g., why
objects have been not collected although they are dead or why a
garbage collection was necessary). Our goal is to specify a richer
tool interface that exposes the memory and the garbage collector.

30

(2) How can we methodically detect and locate memory anoma-
lies that degrade performance in garbage-collected memory? As
our industrial partner reports, detecting memory anomalies is a te-
dious task which involves labor-intensive manual analysis, with
only little automated tool support available. Our goal is to de-
fine run-time metrics (measurable with the richer tool interface),
such as live objects aggregated by allocation site, that indicate
performance-degrading memory anomalies and help locating their
cause (e.g., the allocation site, the root object, or the source line).
Furthermore, we want to provide tool automation for detecting and
locating memory anomalies.

(3) How can we reduce the performance impact of garbage
collection by recommending garbage collection settings tailored
to a given application? Current Java virtual machines support a
variety of garbage collector algorithms, which can be individually
configured. Some configuration options are common to all garbage
collectors, but others are individual for specific ones. Finding a
well-suited configuration (i.e., choosing a garbage collector and
selecting a configuration from all parameter combinations) for a
given application is difficult. Singer et al. [8] propose a method for
selecting a garbage collector based on a single profiling run of an
application. Our goal is to additionally recommend a configuration
for the garbage collector that is well-suited for a given application,
because we expect further performance improvements from that.

JVM
Application

RQ 3

—{ Tool Interface

RQ 1
Monitoring @
Tool
RQ 2

Figure 1. Key Elements and Research Questions (RQ)

4. Approach

Our approach is to define and measure run-time metrics that reflect
the memory and garbage collector behavior and to compare the
measurements of programs with and without memory anomalies.
Based on these measurements, we plan to detect memory anoma-
lies, locate their cause, and recommend steps to resolve them. In
detail we plan the following steps:

1) Identify run-time metrics that describe the memory usage of
an application. We plan to monitor object allocation and garbage
collection, and thereby measure metrics that allow classifying ap-
plications by their memory usage behavior, e.g., number of objects
allocated and freed, object lifetime and size, number of references
traversed, and number of objects survived or promoted.

2) Specify and implement a Java virtual machine extension that
exposes the data necessary to calculate the run-time metrics. We
plan to extend the Java virtual machine tool interface by creating a
custom virtual machine, based on the OpenJDK 8. Our extensions
focus on exposing statistical heap and garbage collector data.

3) Find correlations between measurements and memory anoma-
lies. We plan to find statistical correlations between the measure-
ments and the existence of memory anomalies.

We plan the following additional steps for resarch question 3:

4) Measure garbage collector performance and run-time metrics
for real-world applications with different garbage collector config-
urations. The Hotspot Java Virtual Machine (JVM) provides four
different collectors with a multitude of configuration options. We



plan to define and measure reasonable combinations, e.g., the scav-
enging collector with varying tenuring thresholds, survivor ratios,
and space resizing policies.

5) Build a knowledge base by mapping the measured perfor-
mance together with run-time metrics to the according garbage col-
lector configuration. We plan to use machine learning techniques
(e.g., k-nearest neighbors, binary decisions trees, or support vec-
tor machines) to build a knowledge base from real-world applica-
tions and make it publicly available. We plan to include applica-
tions from our industrial partner and other third-parties as well, and
widely used benchmarks.

6) Recommend a garbage collector configuration for a given
application by measuring its run-time metrics and retrieving the
best configuration of similar applications from the knowledge base.

5. Research Methodology and Evaluation

We use an iterative approach: (1) we analyze the problem together
with domain experts from our industrial partner; (2) develop a
prototype, and (3) evaluate the prototype with benchmarks and real-
world case studies from our industrial partner.

We plan to evaluate research questions 1 and 2 from Section 3
in an laboratory experiment where developers apply our method in
order to detect and locate prior-known memory anomalies in real-
world applications. Moreover, we will measure run-time metrics in
applications with and without memory anomalies. In applications
with known memory anomalies, we will locate and fix the anomaly
manually, so that we can compare two versions of the same appli-
cation, one with the anomaly and one without it.

For research question 3, we plan to use two application sets, a
training set and an evaluation set. We will train our recommender
system on the training set and evaluate the recommendation by
means of the evaluation set. In order to rate the recommendation,
we will compare the run time of the recommended configuration
with a reasonable amount of alternate configurations as well as a
configuration from a domain expert.

6. Ongoing Research

In the last few months, we have been working on a transactional
memory leak detector. Transactions are key for our industrial part-
ner, as our partner’s monitoring software aggregates most data on
transactions, e.g., on a customer checkout in a web shop applica-
tion. A transaction comprises a set of activities (possibly in paral-
lel) in reaction to a user input. The start and end of a transaction
is automatically detected when methods (specified by the operator)
are entered, e.g., a method representing the customer checkout, or
a web request is received. We observed that in such applications
some transactions leak memory whereas others do not. Our proto-
typical transactional memory leak detector can spot such transac-
tions, which our industrial partners monitoring software could not.
In order to develop the detector, we defined a set of run-time met-
rics (e.g., allocated and freed objects per class and per transaction)
extended the tool interface of the OpenJDK 8 virtual machine (VM)
so that it provides our run- time metrics, and implemented an agent
that retrieves and processes the metrics.

Our modified VM collects these metrics as follows: it adjusts
the necessary counters whenever an object is allocated or freed by
the garbage collector. When an object is allocated, the VM checks
if a transaction is currently active and adjusts the allocation counter
for the respective transaction and class. It stores the transaction in
the object header, which we extended to carry the additional infor-
mation. As soon as the garbage collector frees the object, the VM
uses the information stored in the object header to identify the al-
locating transaction and to adjust the corresponding free counter.
When a transaction completes, our agent detects potential memory

31

leaks by checking the allocation and free counters for each class in
order to determine how many objects have survived. For transac-
tions with survivors, the agent locates the surviving objects on the
heap and retrieves their allocation site so that the user can decide
which survivors comprise an actual memory leak. As our solution
involves the garbage collector, the user must wait for the next col-
lection cycle in order to get accurate results for a transaction.

As we progress with our research of correlations between met-
rics and memory anomalies, we plan to include the other metrics
that our VM already provides in the detector.

7. Conclusion

This paper presented our planned and ongoing research on detect-
ing and locating memory anomalies such as memory leaks, floating
garbage, and garbage collection spikes, which we consider open re-
search issues. We propose a virtual machine extension that provides
run-time metrics reflecting the memory usage and the heap content
of applications. We intend to measure these metrics in applications
with known memory anomalies and to find correlations between the
measurements and memory anomalies. Furthermore, we propose
building a knowledge base for recommending application-tailored
garbage collector configurations.

Acknowledgments

This work has been supported by the Christian Doppler Forschungs-
gesellschaft, Austria, and Compuware Austria GmbH.

References

[1] G. Xu, M. D. Bond, F. Qin, and A. Rountev, LeakChaser: Helping
Programmers Narrow Down Causes of Memory Leaks, Proceedings
of the 32nd Conference on Programming Language Design and
Implementation, 270 - 282, 2011

E. E. Aftandilian and S. Z. Guyer, GC Assertions: Using the Garbage
Collector to Check Heap Properties, Proceedings of the 2009
Conference on Programming language Design and Implementation,
235 - 244, 2009

G. Xu and A. Rountev, Precise Memory Leak Detection for Java Soft-
ware Using Container Profiling, Proceedings of the 30th International
Conference on Software Engineering, 151 - 160, 2008

[2

—

[3

=

[4

[l

T. Printezis and R. Jones, GCspy: an Adaptable Heap Visualization
Framework, Proceedings of the 17th Conference on Object-oriented
Programming, Systems, Languages, and Applications, 343 - 358,
2002

J. Singer, R. E. Jones, G. Brown, and M. Lujn, The Economics
of Garbage Collection, Proceedings of the 2010 International
Symposium on Memory Management, 103 - 112, 2010

A. E. Chis, N. Mitchel, E. Schonberg, G. Sevitsky, P. O’Sullivan, T.
Parsons, and J. Murphy, Patterns of Memory Inefficiency, Proceedings
of the 25th European Conference on Object-oriented Programming,
383 -407,2011

[71 W. D. Pauw and G. Sevitsky, Visualizing Reference Patterns for
Solving Memory Leaks in Java, Proceedings of the European
Conference on Object-oriented Programming, 1999

[5

-

[6

=

[8] J. Singer, G. Brown, I. Watson, and J. Cavazos, Intelligent Selection
of Application-specific Garbage Collectors, Proceedings of the 6th
International Symposium on Memory Management, 91 - 102, 2007

[9] S. Dieckmann and Urs Holzle, A Study of Allocation Behavior of the
SPECjvm98 Java Benchmarks, Proceedings of European Conference
on Object-oriented Programming, 1999

[10] M. Hirt and M. Lagergren Oracle JRockit - The Definitive Guide,
ISBN 978-1-847198-06-8, 2010

[11] S. M. Blackburn, P. Cheng, and K. S. McKinley Myths and Realities:
the Performance Impact of Garbage Collection, Proceedings of the

Joint International Conference on Measurement and Modelling of
Computer Systems, 25 - 36, 2004





