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Abstract 
This paper details the application of Software Product Lines 
(SPL)16 and Model-Driven Engineering (MDE)15 to the software 
defined radio domain.  More specifically it is an experience report 
emphasizing the synergy17 resulting from combining MDE and 
SPL technologies.  The software defined radio domain has very 
unique characteristics as its systems typically are a confluence of 
a number of typically challenging aspects of software 
development.  To name a few, these systems are usually described 
by modifiers such as, embedded, real-time, distributed, object-
oriented, portable, heterogeneous, multithreaded, high 
performance, dynamic, resource-constrained, safety-critical, 
secure, networked, component based and fault-tolerant.  Each one 
of these modifiers by themselves carries with it a set of unique 
challenges, but building systems characterized by all of these 
modifiers all at the same time makes for a daunting task in 
software development.  In addition to all of these, it is quite 
common in these embedded systems for components to have 
multiple implementations that must run on disparate processing 
elements.  With all of this taken into account, it stands to reason 
that these systems could and should benefit greatly from advances 
in software technology such as product line engineering, domain-
specific modeling and model-driven engineering.  It is our 
experience that one big benefit to the software development 
industry is the combination of  the Software Product Lines and 
Model Driven Engineering technologies. 

Categories and Subject Descriptors    D.2.2 Design Tools and 
TechniquesLanguage Contructs and Features  

General Terms    Design, Economics, Reliability, 
Experimentation, Human Factors, Standardization, Languages, 
Theory, Verification. 

Keywords    Model, Development, Domain, Language, 
Generation 

General Background 
For the past twenty years, there has been a continuous evolution 
in electronic communications equipment.  The evolution can be 
described as one of moving the radio functionality from being 

located in the hardware platform running with proprietary 
processors and circuitry to being  located  in  firmware running on  
programmable logic and then to being located in software running 
on general purpose processors.  The driving force behind this 
evolution has been the need to leverage the inherent greater 
malleability and configurability of software versus that of 
hardware.  As radio functionality continues to move into software, 
or looking at it another way, as that software moves “closer to the 
antenna”, it becomes more commercially viable to maintain, 
configure, test and reuse communications algorithms and 
functionality as well as the hardware on which it runs.  This 
evolution is very similar to that of the computer itself with today's 
PCs running applications, the bulk of which exist as software 
running on general purpose hardware. 
The communications industry has coined a term for this type of 
communications equipment: the Software Defined Radio[14].   
The conventional radio development paradigm during the 1980s 
and 1990s involved make one-off systems that had to be 
redesigned, and recoded as new hardware platforms evolved.  To 
solve this and to make the vision of a software defined radio 
concept a reality, the United States government formed the 
Modular Software-programmable Radio Consortium (MSRC) 
consisting of the four top military radio manufacturers at the time.  
This consortium was tasked with doing a full Commonality 
Variability Analysis (CVA) across the entire family of existing 
radios.  Following this they were contracted to devise production 
assets that could deployed across the industry that would turn the 
existing one-off development paradigm into a more Software 
Product Line Architecture/Engineering (PLA/PLE) approach. As 
the radio and communications domain moves into a software 
centric solution, it is only natural that it leverages advances in the 
software domain as part of its implementation.  These advances 
include object orientation, patterns, frameworks, component 
based design, middleware, in addition to imperative and 
declarative languages. More recently, the rise in abstraction level 
of the radio platform in the form of operating systems and 
middleware in combination with advances in modeling tools has 
opened the door to allow the evolution of communications 
software to enter the realm of a combination of product line 
engineering and model-driven engineering.  This is fortuitous as 
the complexity of these communications systems has increased so 
dramatically that the viability of these new systems now hinges 
on the increased productivity, correctness and robustness this 
synergy affords.   
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Detailed background 
In 1999, the MSRC issued the results of their CVA.  The result 
was the Software Communications Architecture (SCA)[1].   It 
was the key production asset released broadly to both the 
manufactures of the entire family of military radios as well as the 
public domain. 

This SCA defines five primary aspects of next-generation 
communications equipment software 

• a standard component object model 

• a standard deployment and configuration  component 
framework 

• a standard declarative programming format for describing 
software components and how they are connected together 

• a standard portability layer upon which component run 

• a standard messaging format/middleware for inter-
component communication 

As a result, the SCA significantly furthers standardization of the 
software radio domain and thus brings many benefits to the 
domain such as interoperability, portability, reuse, and a level of 
architecture consistency.  As is the case with many new platform 
technologies, the SCA specification does a good job of solving 
many hard problems, but leaves some unsolved while 
simultaneously introducing new problems. Some of the problems 
that remain or are introduced include: 

• labor intensive implementations of the SCA object model in 
3GL languages 

• lack of architectural consistency at various levels of 
implementations 

• the learning curve of the specification and lack of effective 
training materials 

• the technology gaps between software developers and radio 
domain experts 

• ensuring correctness of implemented systems 

• the dynamic nature of the SCA, which opens the door to a 
host of runtime errors that would best be “left shifted” out of 
runtime into either into modeling or compile time. 

• a complex set of XML descriptor files which are difficult to 
get correct by hand as there are many rules that govern them 
above and beyond being well formed 

• no formal meta-model or UML profile exists for the SCA 

• while the SCA definitely raises the level of abstraction with 
regard to radio component development, it does not inherently 
provide an automatic and configurable means to get back to 
the lower, executable levels of abstraction or to its declarative 
languages. 

We feel that essence of the problem can be boiled down to: an 
advancement of platform technology without a commensurate 
increase in language technology.   The languages most used in 
radios today for the entire system are C and C++.  These two 
languages were invented over twenty years ago.  In that 
intervening time, there have been many advances in platform 
technology that have outpaced the ability of these third 

generations languages to suffice as the only real tool in the hands 
of the software developer tasked with implementing these new 
complex systems.  The middle two columns in the following 
figure illustrates the evolution of various areas of abstraction 
including language and platform technologies. Platform 
technologies have evolved from CPUs and operating systems to 
complex middleware and frameworks.  Programming Languages 
have evolved from writing ones and zeros to higher order “3rd 
Generation Languages” such as C++ and Java.  Note the gap 
between higher order languages and the platforms. 
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Enter Domain-Specific Modeling Languages and Techniques  

 
In order to tackle and tame the complexity of these systems, the 
new specification and the platform technologies resulting from the 
product line analysis, new language technology was required to 
allow the developers tools to catch up to the platform technology.  
As such it was necessary to provide: 

 

• effective support under the SCA that allows users to program 
directly in the terms of the language of the domain and 
specification, ideally in graphical and declarative form to the 
greatest extent possible 

• means to ensure that the programming is correct 

• means to automatically generate executable 3GL 
programming language implementations from these models 

• means to automatically generate additional software artifacts 
that are synchronized with the model 

Those familiar with Domain-Specific Modeling will recognize the 
above bullets as part of the sacred triad [2] of Domain-Specific 
Modeling: Language, Editor, and Generator.  Couched in terms 
of Domain Specificity and at a finer granularity, these three 
elements map to: 

• a Domain-Specific Language (DSL) 

• a Domain-Specific Graphical Language and Domain 
Specific Views (DSGL, DSViews) 

• a Domain-Specific Constraint Language (DSCL) 

• a family of Domain-Specific Code Generators (DSG).   
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Our experience is that these four bullets above constitute the 
necessary quanta increase in language technology to keep pace 
with the increases in platform technology. 

Table 4 lists the activities used in tackling the complexity in 
domain and then leveraging Domain Specific Modeling 
techniques to it. 

General Approach Radio Domain
Isolate the abstractions and how 

they work together, including 
commonalities and variabilities 

The SCA 

Create a formalized grammar for 
these – DSL 

Create a formalize SCA 
meta-model 

 

Create a graphical representation 
of the grammar – GDSL 

Create a SCA specific 
graphical tool 

 

Provide domain-specific 
constraints – GDSCL,DSCL 

Program into the tool 
the constraints 

 

Attach generators for necessary 
transformations 

C++, C, Ada and VHDL 
generators 

 

Table 1 

One type of tool that can be used to develop the above software 
artifacts are what some refer to as Language Workbenches[2]; i.e. 
tools that allow a developer to define a domain-specific language 
and its graphical counter part, the editor, as well as a domain-
specific generators that can iterate over the domain-specific 
model to produce executable artifacts.  Some language 
workbenches available today include the Eclipse Modeling 
Framework and the Eclipse Graphical Editor Framework 
(EMF/GEF)[3], the Generic Modeling Environment (GME)[4], 
and Microsoft’s Visual Studio Team System Domain Specific 
Language Tools (VSTS DSL)[5]. 

To allow users to run on multiple host platforms most easily and 
to integrate with addition eclipse tools and frameworks, we chose 
to use the EMF/GEF solution. 

Defining the Domain-Specific Language 
The goal here is to provide a domain-specific higher level of 
abstraction with which both software and lay developers can 
program.  Key to this is not only raising the level of abstraction 
but also providing domain-specific abstractions.  Developers of 
SCA applications typically program in 3GL languages such as C, 
C++ and Ada.  One of the goals of domain specific modeling is 
simplified modeling and programming in the problem space vs. 
complex modeling and programming  in the solution space.   
Figure 1 below juxtaposes two possible ways to represent the 
same concept in the SCA Software Defined Radio Domain.  The 
left side diagram shows a typical UML diagram for a trivial SCA 
Component with two ports and two properties.  The C++ source 
code is even more complicated. The right side diagram shows the 
same entity in terms of a higher abstract concept, a component 

with two ports and two properties, that is much more readable and 
less complex 

 

                                                           
Figure 1 

Of course there are tradeoffs the come with raising the level of 
abstraction.  These tradeoffs are indicated in the outermost 
columns of figure 0.  Higher level languages provides less control 
and ability to express concepts in detail.  The control provided by 
lower levels of abstraction is frequently gratuitous.  Additionally, 
the use of higher level languages does not advise against 
continuing to use the lower level, more detailed languages where 
appropriate.  For example, sometimes, it is necessary to debug in 
the lower languages and since there is a high fidelity relationship 
between the higher abstractions and the lower level languages, 
this is possible. 

The raising of the level of abstraction is made possible through 
the creation of a formalized metamodel expressed in terms of the 
particular language workbench.  In this case this involves creating 
a metamodel that the Eclipse Modeling Framework can 
understand.  Fig 2 shows a greatly simplified metamodel for the 
SCA.  Naturally, the full meta-model for the entire SCA is much 
more involved but for the purposes of demonstration and saving 
space we have presented a simplified version of it. 

 
Figure 2 

As stated before, the SCA provides a general architecture and 
UML diagrams as well as text-based behavioral descriptions and 
requirements and annotated XML DTD documents. While these 
are very detailed they are not formalized sufficiently to serve as a 
useful meta-model by themselves.  The meta-model created and 
described here involved building upon the structure of the SCA 
and culling from the rest of the specification requirements, 
constraints and behaviors that together make up a complete and 
comprehensive meta-model characterizing the entire 
specification.  As is usual, the group of developers building the 
meta-model are experienced SCA and software defined radio 
developers as well as experienced modelers.  
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It is from this meta-model that one provides the end user with the 
ability to program more directly in the domain.   Additionally, 
end users are able to program more in the declarative than in the 
imperative; i.e. saying what they want to have, not specifying 
how it is to be done.  Listing 1 shows a simple example of the 
persistent form of the Domain Specific Language in accordance 
with the metamodel. 
<?xml version="1.0" encoding="ASCII"?> 

<com.prismtech.spectra.sdr.sca2_2.models:Assembly  

 xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"  

 xmlns:com.prismtech.spectra.sdr.sca2_2.models="http://co
m.prismtech.spectra.sdr.sca2_2.models"> 

  <componentsName="BitFlipper"organization="PrismTech" 
id="DCE:8f647411-91a1-4295-bbc6-6d3eff4982f7"> 

    
 <portsxsi:type="com.prismtech.spectra.sdr.sca2_2.models:
UsesPort" instanceName="TX" name="Data"/> 

<ports 
xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort"                 
instanceName="RX" name="Data"/> 

  </components> 

</com.prismtech.spectra.sdr.sca2_2.models:Assembly> 

Listing 1 

While providing a higher level of abstraction this text  based 
language can still be labor intensive, error prone and hard to read.  
This leads directly into the next step of Domain-Specific 
Modeling. 

Defining the Domain-Specific Graphical Language 
What is needed next is a way to express the Domain Specific 
Language graphically or visually.  This involves working within 
your Language Workbench of choice to adorn the Domain-
Specific Language with graphical and visual artifacts that allow 
the user to program quickly and correctly and in a way that 
communicates correctly the essence of the architecture and 
design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Figure 3 shows the PrismTech Spectra SDR Power Tool modeling 
tool. This modeling tool allows end users to quickly and 
accurately build software defined radio components and connect 
them together.  The DSGL is built and based on the underlying 
meta-model described earlier and can be persisted in textual form 
for processing by other programs.  It is through this DSGL that 
end users program with very intuitive icons, images, tools, 
artifacts and property sheets.  Just as UML provides different 
views to describe various aspects of object-oriented systems so to 
does this tool provide Domain Specific Views that allow users to 
design, express and communicate domain specific aspects of their 
designs.  Additionally, the Domain-Specific Modeling tool 
provides the end user with ability to program in the declarative 
versus the imperative. 

The Domain-Specific Constraint Language 
Almost as important as what you see in the graphical tool 
illustrated in Figure 3 is what you don’t see.   The very fact that 
the DSGL is based on the meta-model means that it restricts 
programming to within the bounds of the meta-model.  In other 
words, the tool is metamodel-centric as opposed to GUI-centric.  
In this case, the GUI itself forces the user to abide by the 
structural and creational aspects of the meta-model.  This goes 
extremely far in allowing the developer to program quickly and 
correctly in terms of their domain.  Additional constraints can be 
added via various programming facilities of the language 
workbench being used.  Concrete SCA-unique examples of these 
types of constraints include not being able to connect ports that 
support different interfaces or not exceeding connection 
thresholds of output ports.  These are errors that are typically 
allowed to creep into the runtime system which lead to expensive 
integration and support problems.  By “left shifting” these 
potential defects into the modeling/compilation phase, we can 
simultaneously harness the dynamic nature of the SCA runtime 
component deployment, configuration and connection paradigm 
and do so in a correct and robust fashion. Errors can be reported 
in various different forms including dynamic dialog box feedback 
for instantaneous notification and fix, or via an error log in which 
the user can double click on the error and the tool will the take the 
user to the offending model element.  The DSCL enforces 
structural compositional, directional, etc. constraints, pre-
conditions, post-conditions and invariants.   

Domain-Specific Generators 
Ultimately, the tool must be able to transform the domain specific 
language into an executable or imperative format, or to a form 
that can be transform easily by other compilers into an executable 
form.  This is achieved through the connection of Domain 
Specific Generators to the Domain Specific Editors.   Embedded 
systems are frequently targeted at disparate processing elements 
(e.g. general-purpose processors, digital signal processors, field 
programmable gate arrays (FPGA)) and as such the tool needs to 
be able plug in multiple domain specific code generators that can 
iterate over the model and produce multiple types of executable 
code. 
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Figure 5 

 

Figure 4 shows examples of the software artifacts coming from 
the domain-specific generators.   Having the key information 
captured in the model, changes in the model are instantly 
reflected in the generated code.  The generated code follows 
specific design patterns to allow the users business logic to be 
decoupled from the generated framework completion code.  
Various types of languages can be generated on the “back end” of 
the tool, such as VHDL or C++.  Additionally, artifacts such as 
test cases can similarly be generated.   

The SCA architecture is most effectively implemented using a 
number of industry standard Design Patterns. Most notably are 
the Extension Object Pattern[6], Extension Interface Pattern[7] 
and the Component Configurator Pattern[7].  These patterns are 
typically repeated over and over again in an SCA implementation 
with minor paramaterization to account for the context in which 
they are used.  The pre-validated implementations of these 
patterns can be generated directly from the domain specific 
generators.  Many of these patterns capture infrastructure 
scaffolding, behavior required by the SCA specification as well as 
middleware concerns that can be difficult for radio developers to 
understand and get correct.  Additional artifacts are generated 
from the model including, the XML descriptors, Unit Test Cases, 
documentation etc.   The constraints of the tool straddle the editor 
and the generators.  By using the generated code, the users can 
rely on prevalidated logic and patterns written by experts in the 
domain and thus they are “constrained”, if you will, to being 
correct in their implementation.   Having the code generated 
automatically and no longer being saddled with this task, users 
can concentrate on writing, debugging and integrating the 
business logic for their components. 

Benefits of Domain-Specific Modeling as applied to Software 
Defined Radios 
A number of notable benefits become extremely apparent as a 
result of providing a domain modeling tool and all its constituent 
parts to the software defined radio domain. 

• increased productivity – users can program at a much higher 
level of abstraction and use generators to automatically get to 
lower levels that can thereafter be transformed and executed.  
The increased level of abstraction is coupled with the fact that 
the DSL is much more declarative in nature and so the users 
become less concerned with how actions are done and more 
concerned with that they are done.  Users of the tool report a 
minimum of 500% increases in productivity and compare the 

magnitude of gains to be analogous to using a compiler to 
generate assembly code from higher order languages. 

• increased correctness – the generators provides prevalidated 
logic and other artifacts 

• synchronization of software artifacts.  Since the artifacts are 
generated directly from the model, the maintenance burden of 
maintaining them all is greatly reduced 

• involvement of domain expert engineers and increased 
communication amongst company teams.  Since the model is 
expressed in problem domain terms and not solution domain 
terms, the communication of the model encompasses more 
disciplines beyond software engineering to include hardware 
and systems engineering and management teams. 

• lower cost of entry.  As much of the infrastructure detail is 
captured in the metamodel, editor and generators, the learning 
curve of developing software defined radios for a particular 
domain is greatly reduced.  

• architectural consistency at the implementation level.  While 
the SCA mandates architectural form at the interface level it 
does not at the implementation level.  This opens the door to 
many different architectural implementations.  While this is 
necessary in some uses cases, in many it is not and results in 
unnecessary complexity and maintenance burdens.  The 
degree to which the applications have architectural 
consistency in their implementations determines the ease of 
maintenance by a central maintenance body. 

• “left shifting” of defects from runtime to modeling time.  This 
provides orders of magnitude of cost savings across the 
development cycle. 

Lessons Learned 
1. Dealing with Change 

“Change” along with “complexity” comprise the two main 
foes of software design, architecture and tools.  Our experience 
has been that change, as with most software projects, is a potential 
pitfall to be wary of when making MDE systems. 

Model Driven Engineering as described above goes along way 
to handling many of the commonalities and variabilities in the 
software defined radio domain. The subsequent “closing” of the 
design to the effects of movement in particular degrees of 
freedom and change must be strategic.  No design/approach can 
close a software product to all degrees of freedom or 
variablities[9].  We have found particular techniques to be 
effective in handling changes in meta-models and domain-specific 
generators.  Some of these include leveraging many of the 
techniques of the Agile Software Development world that enable 
one to “embrace change”[10] more easily than with older 
software methodologies.  

At the heart of these techniques are Test Driven 
Development[11], Refactoring[12], Refactoring to Patterns[13].  
In addition to keeping the design of the tool as simple as possible, 
tests form suites that are useful in quickly isolating the exact areas 
where meta-model changes affect designs and thus provide 
targeted areas for refactoring.  Refactoring towards new patterns 
that become applicable as new requirements enter the picture 
provides developers with very codified means of moving existing 

C++ 
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designs to new designs that more effectively handle new 
commonalities and variablities introduced by various changes in 
requirements. 

In addition to agile software techniques, generative techniques 
can also be leveraged within model driven development tools 
themselves. 

The most notable element of the model driven engineering 
that is affected by changes in the meta-model is the domain-
specific editor that allows one to manipulate the domain-specific 
language via domain-specific graphical artifacts.  Providing an 
additional generator framework in between the meta-model and 
editor that automatically generates a great deal of the editor is 
very effective in mitigating changes in the meta-model on model 
driven engineering tools. 

Meta model changes in the meta-model cause unwanted 
effects to the DSL and DSGL code. When code generation comes 
to mind one usually thinks about the end product: the C++, Java, 
VHDL, documentation, and/or xml files that are generated. One 
reason why DSLs are favored is due to the decoupling of the 
model from the generated files. If the user wants to create a 
change in his model he/she effortlessly modifies the model and 
lets the generators/translators regenerate the output.  
 
Ideally, developers should take advantage of generators and 
translators when creating the DSGL as well. The goal would be to 
extract and generate as much of the DSGL as possible given the 
meta model. Several tools exists which allow the user to design 
the meta model and generate a DSGL editor. These tools are 
effective, however, they are usually lacking when it comes to 
domain specific visualizations. Some of them allow the user to 
specify bitmaps and connections anchors for any given model 
element. However, since these tools are generic it sometimes take 
great efforts to modify an editor that is generated (visual aspects) 
rather than designing one correctly from scratch making the 
correct visual abstractions for the look and feel desired. 
 
When using a generic programming language one usually creates 
constructs that map directly to the problem domain. DSLs 
eliminate the need to specify unnecessary generic 
syntax/constructs in order to create a domain specific solution. 
Applying the same paradigm to the creation of a DSL editor can 
work as well. Instead of using a generic domain specific graphical 
editor generator (similar to using c++),  tool developers can create 
a Domain Specific Domain Specific Language Editor Generator 
(DSDSL for a specific DSL). Once the look and feel is 
determined one can factor out the visual programming aspects and 
create generators that would interpret relationships between 
objects in the meta model and map them to a specific visual 
representations.  Next time a change occurs in the meta-model the 
user can effortlessly modify the metamodel and let the 
generators/translators regenerate the editor. 

2. Creating Domain Specific Graphics 

One aspect of domain specific tools that we found to be labor 
intensive, difficult to get correct and user friendly is the creation 
and implementation of domain specific graphics, views, editors 
and layouts.  General purpose GUI widgets, frameworks and tools 
abound but they are usually insufficient to express domain 
specific concepts clearly and accurately.  Additionally, the 
graphical user interface frameworks available in the industry are 
quite complex and have steep learning curves.  This is a potential 

area of difficulty for those developing domain specific tools.  The 
Graphical Editor Framework from Eclipse, for example, is quite 
large and takes a significant amount of time to become familiar 
with.  To alleviate this problem, the industry is currently working 
on MDE tools to make the creation of domain specific graphics, 
views, editors and layouts much easier.[21] 

3. Validating the Generated Code 

The sheer volume of code that is generated from the MDE 
tool described above warrants a precise and scalable means with 
which to validate that the code emanating from the generators is 
correct.  Applying once again the principles of Agile Software 
Development, we found that making heavy use of test cases to 
validate the continued correctness of the generated code was 
essential.  Also important is the automation of the execution of 
these tests and the reporting of the results.   

4. The Vendor Lock-in problem 

While users of domain specific tools definitely need and want 
the increase productivity and correctness that tools such as these 
afford, they are simultaneously concerned with being locked in to 
the specific vendor’s tools and models.  This is a potential serious 
pitfall that domain specific tool vendors must address from the 
start.  We addressed the issue directly by choosing the Eclipse 
platform as the application framework upon which the tool is 
built.[3]  This Eclipse platform is not only a Java IDE but is 
actually more so a malleable and extensible application 
framework for which to develop domain specific tools.   One key 
characteristic of Eclipse is that it has a large degree of platform 
independence and thus frees our customers up from having to run 
on particular host platforms and are thus free to use Windows, 
Linux, Mac, Solaris etc.  Eclipse does this while transparently 
providing  a native look and feel for each particular host operating 
system. 

The next step to address the potential vendor lock in problem 
is to use a standard model serialization syntax.  The Eclipse 
Modeling Framework provides capabilities to serialize its models 
in XML Metadata Interchange (XMI) version 2.1 format.  This 
goes a long way in allowing our users to access and transform 
their models as well as providing the capability to import/export 
them into other tools (such as popular Unified Model Language, 
UML, tools) as they see fit. 

With regards to the metamodel itself, it is key the companies 
in the domain assist standards bodies such as the Object 
Management Group (http://sbc.omg.org) that are leading efforts to 
standardize these meta models so as to make them open to the 
industry. 

5. Tool interchange 

Exchanging information between tools continues to be an 
issue for tool users.  About the best one can do now is to provide 
standard serialization formats, such as XMI, to enable systematic 
interchange of data between tools.  There are not now, however, 
any standard interchange protocols that exists between tools.  
Again, companies within the domain need to become active 
participants in groups such as the Model Integrated Computing 
PSIG at the OMG to assist in standardizing such protocols 
(http://mic.omg.org/). 
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6. Cross Tool Integration 
Developers of complex software defined radio systems and 

more generally of complex distributed real-time embedded 
systems use myriad tools to get their job done.  They need and 
want as much seamless an integration and look and feel across 
these tools as possible.  Fortunately for our team, Eclipse was the 
correct choice to deal with this problem as well.  Most Realtime 
Operating System (RTOS) vendors, for example, are migrating 
their C++ development environments to Eclipse. A similar 
evolution is occurring with UML tool vendors. 

7. The Economics of Going Domain Specific 
Weiss, Lai and Coplien [18][19] discuss the economics of 

software product line development in great detail.  While there 
has been a “perfect storm” of recent critical innovations in the 
software industry that go a long way towards increasing the 
efficiency and viability of making domain specific tools for 
software product lines [20], developing such tools in still non 
trivial and quite complex.  Whether it is economically feasible of 
course depends on the scope and size of the family of systems to 
which one is targeting the tool.  For our domain of Software 
Defined Radios, the scope and family is very well defined and the 
commonalities and variabilities have been to a large degree 
isolated.  This fact has made it economically viable to target such 
a domain with MDE and Product Line Engineering technologies.   

Applicability of Model Driven Engineering to Software 
Product Lines 

At the heart of Product Line Engineering is the isolation of the 
scope, commonalities and variabilities of a particular domain[19].  
At the heart of Model Driven Engineering is the capturing of 
these commonalities and variablities in formal models so as to 
provide effective domain specific tooling. We feel this is the exact 
point of synergy between MDE and Product Line Engineering. 
These tools then become the perfect medium with which 
developers can express, manipulate, analyze, simulate and 
generate the commonalities and variabilities of a product line.  In 
fact our experience has shown that these MDE tools are 
frequently the overarching central and aligning production asset 
provided to the product engineering group from the product line 
engineering group. 

In MDE tools, almost as important as what you see in the tool 
and what you can do with the tool is what you can’t see and what 
you can’t do with the tool.  Users are constrained to use the 
commonalities of the domain and are enabled to program the 
variabilities of their domain.  The same holds true with the 
generated code.  Users are constrained to use prevalidated and 
pretested design patterns (commonalities) but are allowed to add 
user defined business logic (variabilities) at set points in the 
generated code.  Of course these constraints and freedoms are by 
design and are done to leverage the inherent tradeoff between 
generality and power/effectiveness that software tools provide.   

In our domain, exact analysis was done to determine the exact 
degrees of variability against which the tool can and should 
evolve gracefully.  The results of this analysis were designed and  

programmed into the tool’s meta-model, editors and generators. 
Figure 5 below illustrates some of these dimensions.  
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Summary and Conclusion 
The history of software has seen the continued process of raising 
the level of programming abstraction while simultaneously 
providing an automatic and configurable means to traverse to 
lower levels of more executable forms of programs.   
Additionally, this evolution has included the continued 
introduction of ways and means to express domain concepts and 
design intent effectively so that the end user can program more 
directly in the problem space and not  in the solution space.15    
Using Model Driven Engineering and Domain-Specific Modeling 
via existing Language Workbenches in combination with 
Software Product Line Engineering is another effective step in 
this direction and one towards a viable commoditization of the 
software industry.  Application of these techniques to the 
Software Radio Domain has yielded orders of magnitude of 
increase in productivity, correctness and robustness of these 
systems and can serve as the foundation for a graceful evolution 
of its products.  The tools referenced above has fielded and is 
being used by many software defined radio developers. 
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