
Using Model-Driven Engineering to Complement
Software Product Line Engineering in Developing Software Defined

Radio Components and Applications

Abstract
This paper details the application of Software Product Lines
(SPL)16 and Model-Driven Engineering (MDE)15 to the software
defined radio domain. More specifically it is an experience report
emphasizing the synergy17 resulting from combining MDE and
SPL technologies. The software defined radio domain has very
unique characteristics as its systems typically are a confluence of
a number of typically challenging aspects of software
development. To name a few, these systems are usually described
by modifiers such as, embedded, real-time, distributed, object-
oriented, portable, heterogeneous, multithreaded, high
performance, dynamic, resource-constrained, safety-critical,
secure, networked, component based and fault-tolerant. Each one
of these modifiers by themselves carries with it a set of unique
challenges, but building systems characterized by all of these
modifiers all at the same time makes for a daunting task in
software development. In addition to all of these, it is quite
common in these embedded systems for components to have
multiple implementations that must run on disparate processing
elements. With all of this taken into account, it stands to reason
that these systems could and should benefit greatly from advances
in software technology such as product line engineering, domain-
specific modeling and model-driven engineering. It is our
experience that one big benefit to the software development
industry is the combination of the Software Product Lines and
Model Driven Engineering technologies.

Categories and Subject Descriptors D.2.2 Design Tools and
TechniquesLanguage Contructs and Features

General Terms Design, Economics, Reliability,
Experimentation, Human Factors, Standardization, Languages,
Theory, Verification.

Keywords Model, Development, Domain, Language,
Generation

General Background
For the past twenty years, there has been a continuous evolution
in electronic communications equipment. The evolution can be
described as one of moving the radio functionality from being

located in the hardware platform running with proprietary
processors and circuitry to being located in firmware running on
programmable logic and then to being located in software running
on general purpose processors. The driving force behind this
evolution has been the need to leverage the inherent greater
malleability and configurability of software versus that of
hardware. As radio functionality continues to move into software,
or looking at it another way, as that software moves “closer to the
antenna”, it becomes more commercially viable to maintain,
configure, test and reuse communications algorithms and
functionality as well as the hardware on which it runs. This
evolution is very similar to that of the computer itself with today's
PCs running applications, the bulk of which exist as software
running on general purpose hardware.
The communications industry has coined a term for this type of
communications equipment: the Software Defined Radio[14].
The conventional radio development paradigm during the 1980s
and 1990s involved make one-off systems that had to be
redesigned, and recoded as new hardware platforms evolved. To
solve this and to make the vision of a software defined radio
concept a reality, the United States government formed the
Modular Software-programmable Radio Consortium (MSRC)
consisting of the four top military radio manufacturers at the time.
This consortium was tasked with doing a full Commonality
Variability Analysis (CVA) across the entire family of existing
radios. Following this they were contracted to devise production
assets that could deployed across the industry that would turn the
existing one-off development paradigm into a more Software
Product Line Architecture/Engineering (PLA/PLE) approach. As
the radio and communications domain moves into a software
centric solution, it is only natural that it leverages advances in the
software domain as part of its implementation. These advances
include object orientation, patterns, frameworks, component
based design, middleware, in addition to imperative and
declarative languages. More recently, the rise in abstraction level
of the radio platform in the form of operating systems and
middleware in combination with advances in modeling tools has
opened the door to allow the evolution of communications
software to enter the realm of a combination of product line
engineering and model-driven engineering. This is fortuitous as
the complexity of these communications systems has increased so
dramatically that the viability of these new systems now hinges
on the increased productivity, correctness and robustness this
synergy affords.

Bruce Trask
PrismTech

Park 80 West
Saddle Brook, NJ 07663

1-201-708-2911
bt@prismtech.com

Dominick Paniscotti
PrismTech

Park 80 West
Saddle Brook, NJ 07663

1-201-708-2911
dp@prismtech.com

Angel Roman
PrismTech

Park 80 West
Saddle Brook, NJ 07663

1-201-708-2911
ar@prismtech.com

Vikram Bhanot
PrismTech

Park 80 West
Saddle Brook, NJ 07663

1-201-708-2911
vb@prismtech.com

Copyright is held by the author/owner(s).
OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

846

Detailed background
In 1999, the MSRC issued the results of their CVA. The result
was the Software Communications Architecture (SCA)[1]. It
was the key production asset released broadly to both the
manufactures of the entire family of military radios as well as the
public domain.

This SCA defines five primary aspects of next-generation
communications equipment software

• a standard component object model

• a standard deployment and configuration component
framework

• a standard declarative programming format for describing
software components and how they are connected together

• a standard portability layer upon which component run

• a standard messaging format/middleware for inter-
component communication

As a result, the SCA significantly furthers standardization of the
software radio domain and thus brings many benefits to the
domain such as interoperability, portability, reuse, and a level of
architecture consistency. As is the case with many new platform
technologies, the SCA specification does a good job of solving
many hard problems, but leaves some unsolved while
simultaneously introducing new problems. Some of the problems
that remain or are introduced include:

• labor intensive implementations of the SCA object model in
3GL languages

• lack of architectural consistency at various levels of
implementations

• the learning curve of the specification and lack of effective
training materials

• the technology gaps between software developers and radio
domain experts

• ensuring correctness of implemented systems

• the dynamic nature of the SCA, which opens the door to a
host of runtime errors that would best be “left shifted” out of
runtime into either into modeling or compile time.

• a complex set of XML descriptor files which are difficult to
get correct by hand as there are many rules that govern them
above and beyond being well formed

• no formal meta-model or UML profile exists for the SCA

• while the SCA definitely raises the level of abstraction with
regard to radio component development, it does not inherently
provide an automatic and configurable means to get back to
the lower, executable levels of abstraction or to its declarative
languages.

We feel that essence of the problem can be boiled down to: an
advancement of platform technology without a commensurate
increase in language technology. The languages most used in
radios today for the entire system are C and C++. These two
languages were invented over twenty years ago. In that
intervening time, there have been many advances in platform
technology that have outpaced the ability of these third

generations languages to suffice as the only real tool in the hands
of the software developer tasked with implementing these new
complex systems. The middle two columns in the following
figure illustrates the evolution of various areas of abstraction
including language and platform technologies. Platform
technologies have evolved from CPUs and operating systems to
complex middleware and frameworks. Programming Languages
have evolved from writing ones and zeros to higher order “3rd
Generation Languages” such as C++ and Java. Note the gap
between higher order languages and the platforms.

DT

myFunc1()
myFunc2()
myFunc3()

(from C+ + Rever se E...)

<<Interface>>
Port

connectPort()
disc onnec tPort()

(fr om CF)

<<Interface>>

DT Port
(f rom C+ + Rever se Engineered)

<<Interfac e>>

POA_DT Port

POA_DT Port()
POA_DT Port()
<<virtual> > ~PO A_DTPort()
_this()
<<static>> myFunc1_skel()
<<static>> myFunc2_skel()
<<static>> myFunc3_skel()
<<static>> connectPort_skel()
<<static>> disconnectPort_skel()

(from C+ + Rever se Engineered)

PO A_DT

PO A_DT()
PO A_DT()
<<virtual>> ~POA_DT ()
<<virtual>> _is_a()
_this()
<<abstract>> myFunc1()
<<static>> myFunc1_skel()
<<abstract>> myFunc2()
<<static>> myFunc2_skel()
<<abstract>> myFunc3()
<<static>> myFunc3_skel()

(fro m C+ + Rev erse En gin eere d)

Pro per tySe t

configure()
query ()

(fr om CF)

<<In terf ac e>> PortSuppl ier

getPort()

(from CF)

<<Interface>>

LifeCyc le

ini tial iz e()
releaseObject()

(from CF)

<<Interface>>

T estableObject

runTest()

(f rom CF)

<< Interface>>

DT UsesPort

m_ProvidesRefs : std::map<std::string, DT_v ar>
m_Name : std::string
m_HowMany ConnectionsA l lowed : unsigned long
m_HowMany ConnectionsMade : unsigned long

DT UsesPort()
connectPort()
disconnectPort()
name()
numO fConnectionsMade()
myFunc1()
myFunc2()
myFunc3()

(f rom C+ + Reverse Engineered)

Encoder

DT Prov idesPort

m_pResource : ResourceNameIt*

DT ProvidesPort()
my Func 1()
my Func 2()
my Func 3()

(from C+ + Rever se Engineered)

Frequenc yProp...SerialName

Resource

identi fier : stri ng

start()
stop()

(from ...

<< In terface>>

Pro per ties
(fr om.. .

<<CORBAT ypedef>>

Higher Order Languages
Assembly
Opcodes

Custom Hardware

Less Flexible More Productive

More Flexible Less Productive

Flexibility

Productivity

Frameworks

Middleware

Libraries

Operating
Systems

Programming Platform

 Figure 0

Enter Domain-Specific Modeling Languages and Techniques

In order to tackle and tame the complexity of these systems, the
new specification and the platform technologies resulting from the
product line analysis, new language technology was required to
allow the developers tools to catch up to the platform technology.
As such it was necessary to provide:

• effective support under the SCA that allows users to program
directly in the terms of the language of the domain and
specification, ideally in graphical and declarative form to the
greatest extent possible

• means to ensure that the programming is correct

• means to automatically generate executable 3GL
programming language implementations from these models

• means to automatically generate additional software artifacts
that are synchronized with the model

Those familiar with Domain-Specific Modeling will recognize the
above bullets as part of the sacred triad [2] of Domain-Specific
Modeling: Language, Editor, and Generator. Couched in terms
of Domain Specificity and at a finer granularity, these three
elements map to:

• a Domain-Specific Language (DSL)

• a Domain-Specific Graphical Language and Domain
Specific Views (DSGL, DSViews)

• a Domain-Specific Constraint Language (DSCL)

• a family of Domain-Specific Code Generators (DSG).

847

Our experience is that these four bullets above constitute the
necessary quanta increase in language technology to keep pace
with the increases in platform technology.

Table 4 lists the activities used in tackling the complexity in
domain and then leveraging Domain Specific Modeling
techniques to it.

General Approach Radio Domain
Isolate the abstractions and how

they work together, including
commonalities and variabilities

The SCA

Create a formalized grammar for
these – DSL

Create a formalize SCA
meta-model

Create a graphical representation
of the grammar – GDSL

Create a SCA specific
graphical tool

Provide domain-specific
constraints – GDSCL,DSCL

Program into the tool
the constraints

Attach generators for necessary
transformations

C++, C, Ada and VHDL
generators

Table 1

One type of tool that can be used to develop the above software
artifacts are what some refer to as Language Workbenches[2]; i.e.
tools that allow a developer to define a domain-specific language
and its graphical counter part, the editor, as well as a domain-
specific generators that can iterate over the domain-specific
model to produce executable artifacts. Some language
workbenches available today include the Eclipse Modeling
Framework and the Eclipse Graphical Editor Framework
(EMF/GEF)[3], the Generic Modeling Environment (GME)[4],
and Microsoft’s Visual Studio Team System Domain Specific
Language Tools (VSTS DSL)[5].

To allow users to run on multiple host platforms most easily and
to integrate with addition eclipse tools and frameworks, we chose
to use the EMF/GEF solution.

Defining the Domain-Specific Language
The goal here is to provide a domain-specific higher level of
abstraction with which both software and lay developers can
program. Key to this is not only raising the level of abstraction
but also providing domain-specific abstractions. Developers of
SCA applications typically program in 3GL languages such as C,
C++ and Ada. One of the goals of domain specific modeling is
simplified modeling and programming in the problem space vs.
complex modeling and programming in the solution space.
Figure 1 below juxtaposes two possible ways to represent the
same concept in the SCA Software Defined Radio Domain. The
left side diagram shows a typical UML diagram for a trivial SCA
Component with two ports and two properties. The C++ source
code is even more complicated. The right side diagram shows the
same entity in terms of a higher abstract concept, a component

with two ports and two properties, that is much more readable and
less complex

Figure 1

Of course there are tradeoffs the come with raising the level of
abstraction. These tradeoffs are indicated in the outermost
columns of figure 0. Higher level languages provides less control
and ability to express concepts in detail. The control provided by
lower levels of abstraction is frequently gratuitous. Additionally,
the use of higher level languages does not advise against
continuing to use the lower level, more detailed languages where
appropriate. For example, sometimes, it is necessary to debug in
the lower languages and since there is a high fidelity relationship
between the higher abstractions and the lower level languages,
this is possible.

The raising of the level of abstraction is made possible through
the creation of a formalized metamodel expressed in terms of the
particular language workbench. In this case this involves creating
a metamodel that the Eclipse Modeling Framework can
understand. Fig 2 shows a greatly simplified metamodel for the
SCA. Naturally, the full meta-model for the entire SCA is much
more involved but for the purposes of demonstration and saving
space we have presented a simplified version of it.

Figure 2

As stated before, the SCA provides a general architecture and
UML diagrams as well as text-based behavioral descriptions and
requirements and annotated XML DTD documents. While these
are very detailed they are not formalized sufficiently to serve as a
useful meta-model by themselves. The meta-model created and
described here involved building upon the structure of the SCA
and culling from the rest of the specification requirements,
constraints and behaviors that together make up a complete and
comprehensive meta-model characterizing the entire
specification. As is usual, the group of developers building the
meta-model are experienced SCA and software defined radio
developers as well as experienced modelers.

DT

myFunc1()
myFunc2()
myFunc3()

(f rom C++ Reverse E. ..)

<<Interface>>
Port

connectPort()
disconnectPort()

(from CF)

<<Interface>>

DTPort
(from C++ Reverse Engineered)

<<Interface>>

POA_DTPort

POA_DTPort()
POA_DTPort()
<<virtual>> ~POA_DTPort()
_this()
<<static>> myFunc1_skel()
<<static>> myFunc2_skel()
<<static>> myFunc3_skel()
<<static>> connectPort_skel()
<<static>> disconn ectPort_skel()

(f rom C++ Reverse Engineered)

POA_DT

POA_DT()
POA_DT()
<<virtual>> ~POA_DT()
<<virtual>> _is_a()
_this()
<<abstract>> myFunc1()
<<static>> myFunc1_skel()
<<abstract>> myFunc2()
<<static>> myFunc2_skel()
<<abstract>> myFunc3()
<<static>> myFunc3_skel()

(from C++ Reverse En gin eered)

Pro pertySe t

configure()
query()

(from CF)

<<In terf ace>> PortSupplier

getPort()

(f rom CF)

<<Interface>>

Li feCyc le

initial ize()
releaseObject()

(from CF)

<<Interface>>

TestableObject

runTest()

(from CF)

<<Interface>>

DTUsesPort

m_ProvidesRefs : std::map<std::string, DT_var>
m_Name : std::string
m_HowManyConnectionsAllowed : unsigned long
m_HowManyConnectionsMade : unsigned long

DTUsesPort()
connectPort()
disconnectPort()
name()
numOfConnectionsMade()
myFunc1()
myFunc2()
myFunc3()

(from C++ Reverse Engineered)

Encoder

DTProvidesPort

m_pResource : ResourceNameIt*

DTProvidesPort()
myFunc1()
myFunc2()
myFunc3()

(from C++ Reverse Engineered)

FrequencyProp...SerialName

Resource

identifi er : stri ng

start()
stop()

(from. ..

<< In terface>>

Pro perties
(from...

<<CORBATypedef>>

848

It is from this meta-model that one provides the end user with the
ability to program more directly in the domain. Additionally,
end users are able to program more in the declarative than in the
imperative; i.e. saying what they want to have, not specifying
how it is to be done. Listing 1 shows a simple example of the
persistent form of the Domain Specific Language in accordance
with the metamodel.
<?xml version="1.0" encoding="ASCII"?>

<com.prismtech.spectra.sdr.sca2_2.models:Assembly

 xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.prismtech.spectra.sdr.sca2_2.models="http://co
m.prismtech.spectra.sdr.sca2_2.models">

 <componentsName="BitFlipper"organization="PrismTech"
id="DCE:8f647411-91a1-4295-bbc6-6d3eff4982f7">

 <portsxsi:type="com.prismtech.spectra.sdr.sca2_2.models:
UsesPort" instanceName="TX" name="Data"/>

<ports
xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort"
instanceName="RX" name="Data"/>

 </components>

</com.prismtech.spectra.sdr.sca2_2.models:Assembly>

Listing 1

While providing a higher level of abstraction this text based
language can still be labor intensive, error prone and hard to read.
This leads directly into the next step of Domain-Specific
Modeling.

Defining the Domain-Specific Graphical Language
What is needed next is a way to express the Domain Specific
Language graphically or visually. This involves working within
your Language Workbench of choice to adorn the Domain-
Specific Language with graphical and visual artifacts that allow
the user to program quickly and correctly and in a way that
communicates correctly the essence of the architecture and
design.

Figure 3

Figure 3 shows the PrismTech Spectra SDR Power Tool modeling
tool. This modeling tool allows end users to quickly and
accurately build software defined radio components and connect
them together. The DSGL is built and based on the underlying
meta-model described earlier and can be persisted in textual form
for processing by other programs. It is through this DSGL that
end users program with very intuitive icons, images, tools,
artifacts and property sheets. Just as UML provides different
views to describe various aspects of object-oriented systems so to
does this tool provide Domain Specific Views that allow users to
design, express and communicate domain specific aspects of their
designs. Additionally, the Domain-Specific Modeling tool
provides the end user with ability to program in the declarative
versus the imperative.

The Domain-Specific Constraint Language
Almost as important as what you see in the graphical tool
illustrated in Figure 3 is what you don’t see. The very fact that
the DSGL is based on the meta-model means that it restricts
programming to within the bounds of the meta-model. In other
words, the tool is metamodel-centric as opposed to GUI-centric.
In this case, the GUI itself forces the user to abide by the
structural and creational aspects of the meta-model. This goes
extremely far in allowing the developer to program quickly and
correctly in terms of their domain. Additional constraints can be
added via various programming facilities of the language
workbench being used. Concrete SCA-unique examples of these
types of constraints include not being able to connect ports that
support different interfaces or not exceeding connection
thresholds of output ports. These are errors that are typically
allowed to creep into the runtime system which lead to expensive
integration and support problems. By “left shifting” these
potential defects into the modeling/compilation phase, we can
simultaneously harness the dynamic nature of the SCA runtime
component deployment, configuration and connection paradigm
and do so in a correct and robust fashion. Errors can be reported
in various different forms including dynamic dialog box feedback
for instantaneous notification and fix, or via an error log in which
the user can double click on the error and the tool will the take the
user to the offending model element. The DSCL enforces
structural compositional, directional, etc. constraints, pre-
conditions, post-conditions and invariants.

Domain-Specific Generators
Ultimately, the tool must be able to transform the domain specific
language into an executable or imperative format, or to a form
that can be transform easily by other compilers into an executable
form. This is achieved through the connection of Domain
Specific Generators to the Domain Specific Editors. Embedded
systems are frequently targeted at disparate processing elements
(e.g. general-purpose processors, digital signal processors, field
programmable gate arrays (FPGA)) and as such the tool needs to
be able plug in multiple domain specific code generators that can
iterate over the model and produce multiple types of executable
code.

 <components Name="BitFlipper"
organization="PrismTech"
id="DCE:8f647411-91a1-4295-bbc6-
6d3eff4982f7">

<ports
xsi:type="com.prismtech.spectra.sdr.sc
a2_2.models:UsesPort"

 instanceName="TX" name="Data"/>

<ports
xsi:type="com.prismtech.spectra.sdr.sc
a2_2.models:ProvidesPort"
instanceName="RX" name="Data"/>

</components>

</com.prismtech.spectra.sdr.sca2_2.mod
els:Assembly>

849

Figure 5

Figure 4 shows examples of the software artifacts coming from
the domain-specific generators. Having the key information
captured in the model, changes in the model are instantly
reflected in the generated code. The generated code follows
specific design patterns to allow the users business logic to be
decoupled from the generated framework completion code.
Various types of languages can be generated on the “back end” of
the tool, such as VHDL or C++. Additionally, artifacts such as
test cases can similarly be generated.

The SCA architecture is most effectively implemented using a
number of industry standard Design Patterns. Most notably are
the Extension Object Pattern[6], Extension Interface Pattern[7]
and the Component Configurator Pattern[7]. These patterns are
typically repeated over and over again in an SCA implementation
with minor paramaterization to account for the context in which
they are used. The pre-validated implementations of these
patterns can be generated directly from the domain specific
generators. Many of these patterns capture infrastructure
scaffolding, behavior required by the SCA specification as well as
middleware concerns that can be difficult for radio developers to
understand and get correct. Additional artifacts are generated
from the model including, the XML descriptors, Unit Test Cases,
documentation etc. The constraints of the tool straddle the editor
and the generators. By using the generated code, the users can
rely on prevalidated logic and patterns written by experts in the
domain and thus they are “constrained”, if you will, to being
correct in their implementation. Having the code generated
automatically and no longer being saddled with this task, users
can concentrate on writing, debugging and integrating the
business logic for their components.

Benefits of Domain-Specific Modeling as applied to Software
Defined Radios
A number of notable benefits become extremely apparent as a
result of providing a domain modeling tool and all its constituent
parts to the software defined radio domain.

• increased productivity – users can program at a much higher
level of abstraction and use generators to automatically get to
lower levels that can thereafter be transformed and executed.
The increased level of abstraction is coupled with the fact that
the DSL is much more declarative in nature and so the users
become less concerned with how actions are done and more
concerned with that they are done. Users of the tool report a
minimum of 500% increases in productivity and compare the

magnitude of gains to be analogous to using a compiler to
generate assembly code from higher order languages.

• increased correctness – the generators provides prevalidated
logic and other artifacts

• synchronization of software artifacts. Since the artifacts are
generated directly from the model, the maintenance burden of
maintaining them all is greatly reduced

• involvement of domain expert engineers and increased
communication amongst company teams. Since the model is
expressed in problem domain terms and not solution domain
terms, the communication of the model encompasses more
disciplines beyond software engineering to include hardware
and systems engineering and management teams.

• lower cost of entry. As much of the infrastructure detail is
captured in the metamodel, editor and generators, the learning
curve of developing software defined radios for a particular
domain is greatly reduced.

• architectural consistency at the implementation level. While
the SCA mandates architectural form at the interface level it
does not at the implementation level. This opens the door to
many different architectural implementations. While this is
necessary in some uses cases, in many it is not and results in
unnecessary complexity and maintenance burdens. The
degree to which the applications have architectural
consistency in their implementations determines the ease of
maintenance by a central maintenance body.

• “left shifting” of defects from runtime to modeling time. This
provides orders of magnitude of cost savings across the
development cycle.

Lessons Learned
1. Dealing with Change

“Change” along with “complexity” comprise the two main
foes of software design, architecture and tools. Our experience
has been that change, as with most software projects, is a potential
pitfall to be wary of when making MDE systems.

Model Driven Engineering as described above goes along way
to handling many of the commonalities and variabilities in the
software defined radio domain. The subsequent “closing” of the
design to the effects of movement in particular degrees of
freedom and change must be strategic. No design/approach can
close a software product to all degrees of freedom or
variablities[9]. We have found particular techniques to be
effective in handling changes in meta-models and domain-specific
generators. Some of these include leveraging many of the
techniques of the Agile Software Development world that enable
one to “embrace change”[10] more easily than with older
software methodologies.

At the heart of these techniques are Test Driven
Development[11], Refactoring[12], Refactoring to Patterns[13].
In addition to keeping the design of the tool as simple as possible,
tests form suites that are useful in quickly isolating the exact areas
where meta-model changes affect designs and thus provide
targeted areas for refactoring. Refactoring towards new patterns
that become applicable as new requirements enter the picture
provides developers with very codified means of moving existing

C++

850

designs to new designs that more effectively handle new
commonalities and variablities introduced by various changes in
requirements.

In addition to agile software techniques, generative techniques
can also be leveraged within model driven development tools
themselves.

The most notable element of the model driven engineering
that is affected by changes in the meta-model is the domain-
specific editor that allows one to manipulate the domain-specific
language via domain-specific graphical artifacts. Providing an
additional generator framework in between the meta-model and
editor that automatically generates a great deal of the editor is
very effective in mitigating changes in the meta-model on model
driven engineering tools.

Meta model changes in the meta-model cause unwanted
effects to the DSL and DSGL code. When code generation comes
to mind one usually thinks about the end product: the C++, Java,
VHDL, documentation, and/or xml files that are generated. One
reason why DSLs are favored is due to the decoupling of the
model from the generated files. If the user wants to create a
change in his model he/she effortlessly modifies the model and
lets the generators/translators regenerate the output.

Ideally, developers should take advantage of generators and
translators when creating the DSGL as well. The goal would be to
extract and generate as much of the DSGL as possible given the
meta model. Several tools exists which allow the user to design
the meta model and generate a DSGL editor. These tools are
effective, however, they are usually lacking when it comes to
domain specific visualizations. Some of them allow the user to
specify bitmaps and connections anchors for any given model
element. However, since these tools are generic it sometimes take
great efforts to modify an editor that is generated (visual aspects)
rather than designing one correctly from scratch making the
correct visual abstractions for the look and feel desired.

When using a generic programming language one usually creates
constructs that map directly to the problem domain. DSLs
eliminate the need to specify unnecessary generic
syntax/constructs in order to create a domain specific solution.
Applying the same paradigm to the creation of a DSL editor can
work as well. Instead of using a generic domain specific graphical
editor generator (similar to using c++), tool developers can create
a Domain Specific Domain Specific Language Editor Generator
(DSDSL for a specific DSL). Once the look and feel is
determined one can factor out the visual programming aspects and
create generators that would interpret relationships between
objects in the meta model and map them to a specific visual
representations. Next time a change occurs in the meta-model the
user can effortlessly modify the metamodel and let the
generators/translators regenerate the editor.

2. Creating Domain Specific Graphics

One aspect of domain specific tools that we found to be labor
intensive, difficult to get correct and user friendly is the creation
and implementation of domain specific graphics, views, editors
and layouts. General purpose GUI widgets, frameworks and tools
abound but they are usually insufficient to express domain
specific concepts clearly and accurately. Additionally, the
graphical user interface frameworks available in the industry are
quite complex and have steep learning curves. This is a potential

area of difficulty for those developing domain specific tools. The
Graphical Editor Framework from Eclipse, for example, is quite
large and takes a significant amount of time to become familiar
with. To alleviate this problem, the industry is currently working
on MDE tools to make the creation of domain specific graphics,
views, editors and layouts much easier.[21]

3. Validating the Generated Code

The sheer volume of code that is generated from the MDE
tool described above warrants a precise and scalable means with
which to validate that the code emanating from the generators is
correct. Applying once again the principles of Agile Software
Development, we found that making heavy use of test cases to
validate the continued correctness of the generated code was
essential. Also important is the automation of the execution of
these tests and the reporting of the results.

4. The Vendor Lock-in problem

While users of domain specific tools definitely need and want
the increase productivity and correctness that tools such as these
afford, they are simultaneously concerned with being locked in to
the specific vendor’s tools and models. This is a potential serious
pitfall that domain specific tool vendors must address from the
start. We addressed the issue directly by choosing the Eclipse
platform as the application framework upon which the tool is
built.[3] This Eclipse platform is not only a Java IDE but is
actually more so a malleable and extensible application
framework for which to develop domain specific tools. One key
characteristic of Eclipse is that it has a large degree of platform
independence and thus frees our customers up from having to run
on particular host platforms and are thus free to use Windows,
Linux, Mac, Solaris etc. Eclipse does this while transparently
providing a native look and feel for each particular host operating
system.

The next step to address the potential vendor lock in problem
is to use a standard model serialization syntax. The Eclipse
Modeling Framework provides capabilities to serialize its models
in XML Metadata Interchange (XMI) version 2.1 format. This
goes a long way in allowing our users to access and transform
their models as well as providing the capability to import/export
them into other tools (such as popular Unified Model Language,
UML, tools) as they see fit.

With regards to the metamodel itself, it is key the companies
in the domain assist standards bodies such as the Object
Management Group (http://sbc.omg.org) that are leading efforts to
standardize these meta models so as to make them open to the
industry.

5. Tool interchange

Exchanging information between tools continues to be an
issue for tool users. About the best one can do now is to provide
standard serialization formats, such as XMI, to enable systematic
interchange of data between tools. There are not now, however,
any standard interchange protocols that exists between tools.
Again, companies within the domain need to become active
participants in groups such as the Model Integrated Computing
PSIG at the OMG to assist in standardizing such protocols
(http://mic.omg.org/).

851

6. Cross Tool Integration
Developers of complex software defined radio systems and

more generally of complex distributed real-time embedded
systems use myriad tools to get their job done. They need and
want as much seamless an integration and look and feel across
these tools as possible. Fortunately for our team, Eclipse was the
correct choice to deal with this problem as well. Most Realtime
Operating System (RTOS) vendors, for example, are migrating
their C++ development environments to Eclipse. A similar
evolution is occurring with UML tool vendors.

7. The Economics of Going Domain Specific
Weiss, Lai and Coplien [18][19] discuss the economics of

software product line development in great detail. While there
has been a “perfect storm” of recent critical innovations in the
software industry that go a long way towards increasing the
efficiency and viability of making domain specific tools for
software product lines [20], developing such tools in still non
trivial and quite complex. Whether it is economically feasible of
course depends on the scope and size of the family of systems to
which one is targeting the tool. For our domain of Software
Defined Radios, the scope and family is very well defined and the
commonalities and variabilities have been to a large degree
isolated. This fact has made it economically viable to target such
a domain with MDE and Product Line Engineering technologies.

Applicability of Model Driven Engineering to Software
Product Lines

At the heart of Product Line Engineering is the isolation of the
scope, commonalities and variabilities of a particular domain[19].
At the heart of Model Driven Engineering is the capturing of
these commonalities and variablities in formal models so as to
provide effective domain specific tooling. We feel this is the exact
point of synergy between MDE and Product Line Engineering.
These tools then become the perfect medium with which
developers can express, manipulate, analyze, simulate and
generate the commonalities and variabilities of a product line. In
fact our experience has shown that these MDE tools are
frequently the overarching central and aligning production asset
provided to the product engineering group from the product line
engineering group.

In MDE tools, almost as important as what you see in the tool
and what you can do with the tool is what you can’t see and what
you can’t do with the tool. Users are constrained to use the
commonalities of the domain and are enabled to program the
variabilities of their domain. The same holds true with the
generated code. Users are constrained to use prevalidated and
pretested design patterns (commonalities) but are allowed to add
user defined business logic (variabilities) at set points in the
generated code. Of course these constraints and freedoms are by
design and are done to leverage the inherent tradeoff between
generality and power/effectiveness that software tools provide.

In our domain, exact analysis was done to determine the exact
degrees of variability against which the tool can and should
evolve gracefully. The results of this analysis were designed and

programmed into the tool’s meta-model, editors and generators.
Figure 5 below illustrates some of these dimensions.

Target Operating
System

Host Operating System

Programming
Language

ORB

Target
Hardware

Core Framework

 Figure 5

Summary and Conclusion
The history of software has seen the continued process of raising
the level of programming abstraction while simultaneously
providing an automatic and configurable means to traverse to
lower levels of more executable forms of programs.
Additionally, this evolution has included the continued
introduction of ways and means to express domain concepts and
design intent effectively so that the end user can program more
directly in the problem space and not in the solution space.15
Using Model Driven Engineering and Domain-Specific Modeling
via existing Language Workbenches in combination with
Software Product Line Engineering is another effective step in
this direction and one towards a viable commoditization of the
software industry. Application of these techniques to the
Software Radio Domain has yielded orders of magnitude of
increase in productivity, correctness and robustness of these
systems and can serve as the foundation for a graceful evolution
of its products. The tools referenced above has fielded and is
being used by many software defined radio developers.

References
[1] JTRS Website

http://jtrs.army.mil/sections/technicalinformation/fset_techni
cal_sca.html

[2] Martin Fowler Language Workbenches: The Killer-App for
Domain Specific Languages
http://www.martinfowler.com/articles/languageWorkbench.h
tml

[3] Eclipse Website http://www.eclipse.org
[4] GME Homepage

http://www.isis.vanderbilt.edu/Projects/gme/
[5] Visual Studio Team System

http://msmvps.com/vstsblog/archive/2005/07/02/56408.aspx
[6] Extension Object, Erich Gamma , Pattern Languages of

Program Design 3, Addison Wesley 1998
[7] Pattern Oriented Software Architecture, Doug Schmidt et. al.

Wiley and Sons, 2000

852

[9] Agile Software Development, Patterns, Principles and
Practices, Robert Martin, Prentice Hall, 2002

[10] Extreme Programming Explained, Kent Beck with Cynthia
Andres, Addison Wesley 2005

[11] Test Driven Development: By Example, Kent Beck, Addison
Wesley, 2003

[12] Refactoring,: Improving the Design of Existing Code, Martin
Fowler et. al. Addison Wesley 1999

[13] Refactoring to Patterns, Joshua Kerievsky, Addison Wesley
2005

[14] Joe Mitola homepage http://web.it.kth.se/~jmitola
[15] Model Driven Engineering IEEE Computer Feb 2006

Douglas C Schmidt,
http://www.dre.vanderbilt.edu/~schmidt/GEI.pdf

[16] Software Engineering Institute Web site
http://www.sei.cmu.edu/productlines

[17] Doug Schmidt personal email communication

853

