
Program Transformations for
Re-Engineering C++ Components [OOPSLA/GPCE]

Robert L. Akers, Ph.D.
lakers@semdesigns.com

Ira D. Baxter, Ph.D.
idbaxter@semdesigns.com

Semantic Designs Inc.
12636 Research Blvd. #C214

Austin, Texas, USA 78759-2200
512-250-1018

Michael Mehlich, Ph.D.
mmehlich@semdesigns.com

ABSTRACT
Component-based software engineering enables applications to be
assembled from component parts that adhere to a component-style
specific interface specification and protocol. Components available
for one style are not available for another. Component styles evolve,
too, which can obsolete components using a legacy style. This
creates a demand for migrating components from one style to
another, which can require complex changes to the component
source code. For a large component library, doing this manually is
likely prohibitive. An alternative is to apply automated program
transformations to carry out the changes.
Using source-to-source transformations on real code requires a
scalable, robust program transformation technology. Such
technologies are difficult to justify for single applications. DMS 1 is
a commercial program transformation system which has been used
to transform many programming languages, including C++, C#,
Java and ObjectPascal. It is parameterized by language and desired
task, enabling its infrastructure costs to be amortized across many
different software analysis or change applications.
This demonstration shows a concrete example of DMS program
transformations being used to migrate legacy C++ components from
a Boeing distributed avionics software system, using a Boeing
proprietary component format, to a CORBA component style. The
conversion requires nontrivial understanding and manipulation of
the C++ source code. It will explain the component migration
problem to be solved, show some of the transformations, and
actually convert a component.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming –
Automating analysis of algorithms, Program Modification,
Program Synthesis, Program Transformations. D.2.2 [Software
Engineering]: Design Tools and Techniques – Computer-aided
software engineering (CASE). D.2.7 [Software Engineering]:
Distribution, Maintenance and Enhancement – Restructuring,
reverse engineering, and reengineering. D.2.13 [Software
Engineering]: Reusable Software – domain engineering. D.3.4
[Programming Languages]: Processors – Parsing, Translator
writing systems and compiler generators, Code Generation.

1 DMS is a registered trademark of Semantic Designs (SD).

Copyright is held by the Author/Owners.
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

General Terms
Algorithms, Management, Design, Economics, Languages

Keywords
Software transformation, software analysis, migration, component
architectures, legacy systems, C++, compilers, re-engineering,
abstract syntax trees, patterns, rewrite rules.

1. The DMS Software Re-Engineering Toolkit
The DMS Toolkit provides an infrastructure for software
transformation based on deep semantic understanding of programs.
Programs are internalized via DMS-generated parsers, available for
most languages. Analyses and modifications are performed on
abstract syntax tree (AST) representations of programs, and
transformed programs are printed with generated prettyprinters. The
Toolkit is capable of defining multiple, arbitrary specification and
implementation languages (domains) and can apply analyses and
transformations to source code written in any combination of
defined domains. Transformations may be either written as
procedural code or expressed as source-to-source rewrite rules in an
enriched syntax for the defined domains. Rewrite rules may be
optionally qualified by arbitrary semantic conditions. The DMS
Toolkit can be considered as extremely generalized compiler
technology, offering these facilities:

• A hypergraph foundation for capturing program representations
(e.g., ASTs, flow graphs, etc.).

• Complete procedural interfaces for processing ASTs, etc.

• Means for defining language syntax, and deriving parsers and
prettyprinters to/from DMS internal ASTs.

• Support for defining and updating arbitrary symbol tables
holding name/type/location information.

• An attribute evaluation system for encoding arbitrary analyses
over ASTs. One use is constructing symbol tables.

• An AST-to-AST rewriting engine that understands algebraic
properties (e.g., associativity and commutativity).

• The ability to specify and apply syntax-specific source-to-source
program transformations. Such transforms can operate within a
language or across language boundaries.

• A procedural framework for connecting these pieces and adding
arbitrary code.

C++ is one of many domains defined for DMS, and the system
contains preprocessors, parsers, prettyprinters and symbol table

25

building for both the ANSI and Visual C++ 6.0 dialects. Unlike a
compiler preprocessor, the DMS C++ preprocessor preserves both
the original form and expanded manifestation of the directives
within the AST so that programs can be manipulated, transformed,
and printed with their preprocessor directives preserved, even in the
presence of preprocessor conditionals.
DMS has been used for a variety of large scale commercial
activities, including cross-platform migrations, domain-specific code
generation, and construction of a variety of conventional software
engineering tools for dead and clone code elimination, test code
coverage, source browsing, and static metrics analysis. A more
complete discussion of DMS is presented in [1]. DMS-based tools
are described on the Semantic Designs web page [2].

2. The Boeing Migration Tool
Boeing's Bold Stroke C++ based embedded avionics component
software architecture is based on the best practices of the mid 1990's
[3]. Component technology has since matured, and the CORBA
component model has emerged as a standard. The U.S.
Government’s DARPA-PCES program and OMG are sponsoring
development of a CORBA-inspired standard real time (CCMRT)
embedded system component model [4], which offers
standardization, superior encapsulation and interfaces for ongoing
development of distributed, real time, embedded systems, as well as
a base for tools for design and analysis of such systems. Boeing
wishes to modernized its software to use PriSm, a proprietary
CCMRT variant. The task of converting components is technically
straightforward and now well understood, but a great deal of detail
must be managed with rigorous regularity and completeness. Since
Bold Stroke is implemented in C++, the complexity of the language
and its preprocessor requires careful attention to semantic detail.
With thousands of legacy components now fielded, the sheer size of
the migration task is an extraordinary barrier to success. With the
use of C++ libraries, approximately 150,000 lines of C++ source
contribute to a typical component, and a sound understanding of the
component's name space requires comprehension of all this code.
To deal with scale, semantic sensitivity, and regularity issues,
DARPA, Boeing, and Semantic Designs (SD) decided on an
automated approach using a DMS-based tool, dubbed “BMT” for
“Boeing Migration Tool”. DMS and its C++ front end was uniquely
qualified as a migration tool. Automating the migration assures
regularity of the transformation across all components.
The legacy component structure was essentially flat, with all the
methods contributing to a component collected in a very few classes.
One principal piece of the migration involves factoring a component
into facets, which would form distinct classes reflecting different
areas of concern. Some facets encapsulate various functional
aspects; others capture protocols for inter-component
communication.
Factoring a component into functional facets requires human
understanding. Essentially, the legacy interface methods must be
sorted into bins corresponding to the facets, and indicative names
given to the new facet classes. To provide a clean specification
facility for the Boeing engineers using the BMT, we developed a
simple facet specification language. For each component, an
engineer simply names the facets and uniquely identifies which

methods (via simple name, qualified name, or signature if necessary)
comprise its interface.
The BMT translates components one at a time. Input consists of the
source code, the facet specification for the component being
translated, and the facet specifications of all components with which
it communicates, plus a few bookkeeping directives. Conversion-
related input is succinct.
The facet language is defined as a DMS domain, enabling easy
parsing by DMS. A DMS-based attribute evaluator over the facet
domain traverses the facet specifications' ASTs and assembles a
database of facts for use during component transformation.
After processing facet specifications, the BMT parses and does full
name and type resolution on the C++ source code, including files
included by any of the components in play, building complete
symbol tables for all files involved in the component. An accurate
table enables accurate name lookup, which is the key point that
defeats scripting languages as C++ transformers. While a
considerable number of transformations are required to achieve the
component conversion, two particular transformations typify what
the BMT does to perform the component migration:

• New classes for facets and their interfaces are generated based on
the facet specifications. C++ code corresponding to the
designated methods are found, moved to each facet, and all
access paths are adjusted to account for movement of the method,
other called methods, and component data.

• Newly generated "receptacle" classes provide an image of the
outgoing interface of a component to the other components
whose methods it calls. Constructing the receptacles involves
searching all of a component's classes for outgoing calls and
generating code to serve each connection accordingly.

The transformations are coded as a combination of DMS source-to-
source transforms, attribute evaluation, and procedural code.
The demo will describe DMS in sufficient detail to understand how
the components are transformed, and show a legacy component
being converted.

3. ACKNOWLEDGMENTS
We give our thanks to our collaborator in this effort, the Boeing
Company, and to the DARPA PCES program for its funding.

4. REFERENCES.
[1] Baxter, I. D., Pidgeon, C., and Mehlich, M., DMS: Program

Transformations for Practical Scalable Software Evolution.
Proceedings of the 26th International Conference on Software
Engineering, 2004.

[2] Semantic Designs, Inc. web site, www.semanticdesigns.com.
[3] Sharp, D. C., Reducing Avionics Software Cost Through

Component Based Product Line Development, Proceedings of
the 1998 Software Technology.

[4] Gidding, V., Beckwith, B., Real-time CORBA Tutorial,
OMG’s Workshop on Distributed Object Computing For Real-
Time and Embedded Systems,
www.omg.org/news/meetings/workshops/rt_embedded2003.ht
ml, 2003.

26

