
Meta: A Universal Meta-Language for Augmenting and
Unifying Language Families, featuring Meta(Oopl) for

Object-Oriented Programming Languages

Wade Holst
Department of Computer Science

University of Western Ontario
London ON Canada

wade@csd.uwo.ca

ABSTRACT
Meta: a collection of meta-languages that augment/unify
language-families, an advanced programming environment,
a language interoperability framework, an infrastructure for
reflection over source documents, and a generalization of
XML. XML provides an extensible mechanism for defining
syntax, while Meta provides an extensible mechanism for
defining syntax and semantics.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Documentation

Keywords
language design, meta-languages, meta-programming, lan-
guage interoperability, object-oriented

1. AN INTRODUCTION TO META
This extended abstract presents an overview of Meta and

the most important Meta-language defined by Meta, de-
noted Meta(Oopl). Meta is an extensible meta-language
whose overall purpose is the augmentation and unification
of arbitrary families of languages. Meta(Oopl) is a Meta-
language whose overall purpose is the augmentation and uni-
fication of object-oriented programming languages.

There are two orthogonal ways in which Meta can be
characterized. First, Meta is an environment for augment-
ing and unifying arbitrary existing languages. Second, Meta

extends the concepts present in XML, leading to the poten-
tial to collapse arbitrary languages into a common extensible
syntax (in a manner analogous to how XML has collapsed
markup languages into a single common extensible syntax).

Under the first characterization, Meta is an environment
for augmenting and unifying pre-existing languages. More
specifically, Meta is a set of Meta-languages, and each
Meta-language is a family of augmented and unified ver-
sions of one or more base languages. A base language is sim-
ply an existing language that Meta provides support for,
and can be a general purpose programming language like

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Java, a type-setting language like TeX, or any other struc-
tured set of syntactic elements with associated semantics.
Meta organizes related base languages into language fam-

ilies, then introduces a Meta-language for each family of
languages. For example, Meta(Oopl) is a Meta-language
for object-oriented programming languages like C++, Java
and Perl, while Meta(Doc) is a Meta-language for typeset-
ting languages like LaTex, HTML, etc.

Under the second characterization, Meta is a general-
ization of XML. Meta aims to do for arbitrary languages
what XML has done for markup languages. XML is an
eXtensible Markup Language; a universal syntax that can
be used to define an infinite number of markup languages
(each new language defined by an XML schema). Meta is
also an extensible language, and introduces a universal syn-
tax that can be used to define an infinite number of Meta-
languages (a Meta-language is a language that uses Meta

syntax). However, there are crucially important differences
between Meta and XML. First, XML deals only with syn-
tax (there is no intrinsic semantics associated with elements
in an XML document), while Meta allows the language im-
plementor to define syntax, semantics for that syntax, and
an implementation of that semantics. Second, Meta uses
a significantly more concise (but equally powerful) syntax
compared to XML. As well, special syntax configuration fa-
cilities provided by Meta allow the content-to-noise ratio of
Meta programs to be increased even further. Each Meta-
language (for example, Meta(Oopl)), is defined in a manner
similar to an XML schema. Each document written using
the syntax of a particular Meta-language is parsed relative
to the schema for that Meta-language. In the same way that
XML allows new schemas to be defined (which use XML syn-
tax), Meta allows new Meta-languages to be defined (using
Meta syntax). Unlike XML schemas, Meta-languages can
participate in inheritance-like relationships. For example, a
user can define a new Meta-language that ”inherits” from
Meta(Oopl) but provides additional syntax and semantics.

Each Meta-language increase the expressive power of all
its base languages, by guaranteeing support for various man-

dates (features) regardless of whether the base languages
provide direct support. Although individual Meta-languages
introduce Meta-language-specific mandates, every Meta-
language is guaranteed to provide a core set of mandates:

1) Language Interoperability : Each Meta-language pro-
vides various kinds interoperability among the base lan-

120

guages it augments, including the incremental migration of
a document written in one base language into another base
language, the ability to write a document containing multi-
ple base language implementations at the same time, and the
ability to write a document using a base-language-neutral
syntax that can be converted into any base language.

2) Reflection: Each Meta-language provides support to
allow programs to ask questions about (via introspection)
and modify (via intercession) the syntax, semantics, and
implementation of documents and the languages those doc-
uments are written in, at various phases at and between
compile-time and run-time. Every Meta-language defines a
meta-object-protocol (MOP) to provide this reflection.

3) Readability and Writability : Each Meta-language pro-
vides users with significant control over the syntax of Meta

documents (via implicit syntax to capture common cases).
However, since implicit syntax can also decrease readabil-
ity, Meta provides canonicalization facilities to automati-
cally make implicit syntax explicit. Meta(Oopl) source code
is 30-50% smaller than corresponding base-language source
code. Meta allows one to say more with less.

2. META(OOPL)
Although Meta provides a framework for defining ar-

bitrary new Meta-languages, the augmentation and unifi-
cation of object-oriented programming languages, refereed
to as Meta(Oopl), is both a primary reason for the exis-
tence of Meta, and the means by which the generalized
Meta compiler and all other technologies related to Meta

are implemented. Meta(Oopl) defines a family of related
programming languages that augment and unify existing
object-oriented programming base languages. For example,
Meta(Oopl)<C++> and Meta(Oopl)<Java> (commonly
abbreviated as Meta<C++> and Meta<Java>) extend
the base languages C++ and Java, respectively.

The benefits provided by Meta and the various Meta-
languages are showcased by summarizing the mandates that
Meta(Oopl) is guaranteed to provide to its base languages,
regardless of whether the base languages have direct sup-
port. The list of mandates includes: standardized syntax for
classes/methods/fields, numerous forms of language inter-
operability (some provided by the universal syntax and lan-
guage lattice common to all Meta languages, some specific
to Meta(Oopl)), advanced reflection via a Meta-Object
Protocol, an extended Meta Type System, the Meta Li-
brary (a collection of classes defined in all base languages
and having exactly the same interface and semantics in all
such languages), support for aspects, components, garbage
collection, object serialization, augmented class-based enu-
merated types, multi-method dispatch, various inheritance
extensions, instance/static/class-level methods and fields,
various syntactic extensions, operator overloading, default
arguments, automated unit testing harness, pre/post condi-
tions, automated document generation, 2D and 3D visual-
ization of programs, source code configuration and canoni-
calization, dependency management, version control, reverse
translation, and bug-reporting facilities.

3. THE META LANGUAGE LATTICE
For each Meta-language defined by Meta, there is an

associated language lattice, consisting of a hierarchically re-
lated collection of languages that provide progressively more
expressive power and progressively less reliance on base-
language syntax. At the bottom of this language lattice are

Meta(M)*

Meta<L1*|L2*>

Meta<L1*> Meta<L1|L2> Meta<L2*>

Meta<L1> Meta<L2>

L1 L2

Figure 1: The Meta(M) Language Lattice

the base languages (in Meta(Oopl), languages like C++,
Java and Perl). Above these languages are the languages
Meta<C++>, Meta<Java>, etc. The syntax of these
languages is a combination of special Meta(Oopl) syntax
for ”high-level” syntactic constructs (i.e. classes, methods,
fields, aspects, components, etc.), and base-language syntax
for ”low-level” constructs. What is considered high-level and
low-level syntax is established by each Meta-language; for
Meta(Oopl), statement-level syntax is considered low-level,
and everything else is high-level.

Above Meta<C++>, Meta<Java>, etc., there are two
directions by which the language lattice can be general-
ized. Along one branch, languages are introduced that re-
duce the reliance on base-language syntax, by providing
Meta syntax even for ”low-level” syntax. Along the other
branch, languages are introduced that directly support lan-
guage interoperability by allowing implementations in mul-
tiple base-languages within the same source document. For
Meta(Oopl), the languages Meta<C++*>, Meta<Java*>,
etc. are examples of the former generalization, while lan-
guages denoted Meta<C++|Java>, Meta<C++|Java|Perl>,
etc. are examples of the latter generalization. Above these
languages are languages that allow both mixed syntax and
mixed languages, like Meta<C++*|Java*|Perl*>. At the
root of the language lattice is the special closure language,
Meta(Oopl)*, which has no base-language syntax. Docu-
ments written in Meta(Oopl)* can be compiled into any
base-language supported by Meta(Oopl).

4. CONCLUSIONS
To summarize, Meta is an extensible language for defin-

ing a potentially infinite number of Meta-languages. Meta

defines and implements a core set of Meta-languages needed
to implement itself, including Meta(Oopl), a family of aug-
mented and unified object-oriented programming languages.
Each Meta-language (both those defined by Meta, and new
ones defined by users) is responsible for augmenting and
unifying a family of one or more base languages, provid-
ing facilities for increasing the readability and writability
of documents written in those languages, providing support
for interoperability/interaction between documents written
in different base languages, providing an infrastructure for
reflection on the syntax and semantics of documents and
languages, and possibly doing much more at the Meta-
language level, as is the case of Meta(Oopl), which guar-
antees the existence of many powerful and highly advan-
tageous features regardless of whether its base languages
provide support for those features.

5. REFERENCE
[1] Wade Holst. [URL] Univ. of Western Ontario, 2005.

http://meta.csd.uwo.ca/Meta.

121

