

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SPLASH’10 October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0240-1/10/10…$10.00.

Textual Modeling Tools:
Overview and Comparison of Language Workbenches

Bernhard Merkle
SICK AG

Research & Development
 Software Engineering

Erwin-Sick-Str.1
79183 Waldkirch, Germany
bernhard.merkle@gmail.com

Abstract
Domain Specific Languages (DSL) attract more and more
users as they are specialized and optimized for a certain
problem area. Currently the number of new emerging Pro-
gramming Languages is significant [1] but GPL (General
Purpose Languages) do often not fit the specific need of the
end-user. DSL are one way to solve this problem. DSLs can
be divided into different independent dimensions: e.g. inter-
nal vs. external or textual vs. graphical or tabular. In this
paper we focus on textual syntaxes as they have several ad-
vantages like easy information exchange via e.g. mail, inte-
gration into existing tools like diff, merge and version control
and most important the fast editing style supported by the
“usual” IDE support like code completion, error markers,
intentions and quick fixes. While Fowler described the initial
vision of Language Workbenches [2], several mature Textual
Language Workbenches have emerged in recent years. In
this paper we will compare them with a consistent example
and look at pros and cons.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: extensible languages, domain-specific lan-
guages

General Terms Design, Languages, Textual modeling,
Eclipse.

Keywords language workbenches, domain-specific lan-
guages, textual modeling, , Xtext, TEF, TCS, EMFText, MPS.

1. Introduction
Model driven development enables programming/modeling
on a higher level, and generate low level stuff via a code

generator. Essentially the idea is not really new and similar to
the former transition from assembler to high-level program-
ming languages (where code generators were compilers).
Meanwhile developers want to express problems for a certain
domain more appropriate, hence general programming lan-
guages (GPL) are not enough which led to the adoption of
domain specific languages (DSL). Textual Languages are
beneficial for many reasons. They enable productivity be-
cause of their easy and fast editing style, usage of code com-
pletion, error markers and other facilities people are used to
meanwhile. Textual editors for GPL like eclipse, netbeans,
IntelliJ are powerful and set new standards for textual edit-
ing. However for a wide adoption of DSL in day to day de-
velopments, IDEs for DSL should be easy to create (for
language designers) and easy to use (for end-users). Martin
Fowler described the idea of Language Workbenches [2],
however that term focused on Projectional editing [3]. In this
paper we compare the current state of Textual Language
Workbenches, mainly based on the eclipse platform.

The subsequent chapters are structured as follows: Chap-

ter 2 talks about various forms and representations of Do-
main Specific Languages and presents a specific DSL
example. Chapter 3 describes a DSL classification model
which is applied later and Chapter 4 shortly discusses textual
and Projectional editing approaches. Several Textual Lan-
guage Workbenches are presented and discussed in Chapter
5, following the example and criteria outlined before (in 2+3)
and finally Chapter 6 summarizes and concludes.

2. DSL Overview and DSL Example
DSLs can be divided into different independent dimensions
e.g. internal vs. external or textual vs. graphical or tabular.

2.1 DSL Overview

Internal DSL are language extensions built with the language
itself and directly embedded into the host language. During
recent years, several languages like Ruby, Clojure or the

139

classical Lisp got much attention for supporting internal
DSLs. On the other hand it requires a good amount of disci-
pline and unfortunately often convenient features like IDE
support (code completion, syntax highlighting, cross-
referencing, etc) are typically not supported by internal
DSLs. Also fluent interfaces [4] support some kind of inter-
nal DSL/API, they even can be generated from a higher level
abstraction, like an Ecore model as [5] shows.
Another possibility is embedding a DSL into a general pur-
pose programming language (GPL). A classical example is
embedded SQL (or LINQ from C# language) for database
access from a host language. A major drawback of this ap-
proach is the proprietary GPL extension and usually a vendor
lock-in, also editing and debugging support is usually not
very good (e.g. often some kind of preprocessor or pre-
compiler is required).

External DSLs on the other hand are another approach to
support the user with a powerful language, adopted specifi-
cally for a certain domain (e.g. state machines). Language
designers and end users get support for external DSL with
textual [6] and graphical [7] concrete syntax. Most of the
tools mentioned in this paper, create or deliver the “usual”
infrastructure like parser, model-creation and code-emitters
(generator) as well as IDE convenience features for free. The
main drawback with external DSL is that they start again
from scratch and initially lack constructs like flow-control,
type systems and other language features usually expected by
end-users or users with a GPL background. Figure [1] shows
some textual DSL example.
 //SQL

 SELECT firstname, lastName from

employee where age = 42;

// Regular Expressions

([+-]?[0-9]*) | ([A-Z][a-z]+)

// fluent interface in java

Figure 1. examples of textual DSL
While we focus on textual DSL here, often graphical DSL
are also used (interestingly most modeling/DSL initially
started graphical). As an example for a non-technical or non-
IT DSL see Figure [2] where a graphical DSL for music
(basso continuo) is used. It saves writing 80% of the notes
and several music notes get derived from the sequence of
events or numbers below the bass note. Actually this shows
that this particular DSL is a combination of graphical (notes)
and textual (numbers, symbols) domain syntax.

Figure 2. graphical DSL

2.2 DSL Example
We will present several Textual Language Workbenches [6]
in Chapter 5 with a uniform example. It should be a textual
language with rules and additional constraints. Chess games
often use a textual DSL to exchange and document their
moves (e.g. wikis, e-mail, irc etc.). To keep the sample short,
we use the shortest tournament game, at the Open Champi-
onship of Omaha: Mayfield vs. Trinks. Figure [3] shows the
five moves in tabular notation, and subsequently as plain text
in two forms (algebraic and spoken move). This is the con-
crete syntax we want to use for our DSL.

// algebraic move

Pe2-e4

// spoken move

pawn at e2 moves to e4

Figure 3. DSL notation of chess game

Analyzing the complete game, written in algebraic and spo-
ken moves statements we can derive the underlying meta-
model.

P e2 – e4

p g7 – g5

Knight at b2 moves to c3

pawn at f7 moves to f5

Q d1 – h5

1-0

Figure 4. Concrete Syntax (CS) of chess game

140

The meta model is represented in an abstract syntax (AS)
in Figure[5] and consists of a Game, Moves and Pieces.

Figure 5. Abstract Syntax (AS) of chess game

3. DSL Language classification
To better compare the textual language workbenches we will
first introduce a DSL language classification schema. This
schema follows a DSL feature model defined by Langlois [8]
and serves for a “as a neutral as possible” comparison. Figure
[6] shows that the feature model covers various aspects from
a DSL e.g. language, transformation, tooling and process. In
this sense we are following the approach of [9] but we com-
pare a different set of textual language workbenches and use
a more extensive example.

Figure 6. DSL classification model

We focus on the first three criteria as process is optional. An
alternative DSL classification model is described in [10]

3.1 Language

The language considers criteria about the abstract syntax
(AS) and concrete syntax (CS). Figure [7] show the main
parts.
We evaluate which representation is used for the AS (graph
or tree), which syntax is used the for definition of the AS
(grammar or meta-model), issues about composability and
how the AS to CS mapping happens. As we are looking at
textual language workbenches only, the representation style
of the CS will be text.

Figure 7. DSL classification model: Language

3.2 Transformation

This section is further divided into aspects about:
• Specification of the Transformation
• Target Asset and
• Operation Transformation

Generally the transformation realizes the correspondence
from problem to the solution domain. Because of size restric-
tion we only show Target Asset in Figure [8] as an example.
In Target Asset questions like: which representations of the
target asset are possible (text, graphic, binary), and what sup-
port of asset update is available (regenerate or incremental)
are answered.
In Operation Transformation we look at different transforma-
tion techniques, mode for trafo execution (compile vs. inter-
preted) and also the environment for the trafo (internal or
external). Also scheduling, location and automation level are
interesting points.

 Figure 8. DSL classification model: Transformation

3.3 Tool

This category covers the overall tool support, e.g. what assis-
tance is supported, (static or adaptive), is there process guid-
ance (step or workflow) and what kind of checking is
supported (consistency or completeness).
While the mentioned criteria serve as a good comparison
catalog other aspects should not be forgotten like documenta-
tion, updates, activity of development, support via news-
groups/mail etc. We omitted the Process category as this is
often project specific.

141

4. Textual Language Workbenches
In this chapter we discuss two kinds of Language Work-
benches: pure text based (based on the usual scanner/parser
approach) and Projectional based with a textual projection.

4.1 Textual Language Workbenches (TLWB)

A number of different TLWB are available, especially on the
Eclipse [11] modeling project. Xtext currently is most well-
known. It generates an EMF model, a full featured editor and
parser from an enhanced EBNF notation. Other examples are
TEF (Textual Editing Framework), EMFText and TCS (Tex-
tual Concrete Syntax). Most of them use EMF as underlying
abstract syntax technology and some kind of scanner/parser
technology like ANTLR[12] or RunCC[13]. Especially TCS
is interesting as it has a generic editor and interprets the
model at runtime, hence avoids as much code generation as
possible and enables short turn around cycles during the lan-
guage development.

4.2 Projectional Language Workbenches (PLWB)

Jetbrains offers an open source solution with MPS (Meta
Programming Systems) [14]. Three steps typically define a
new language, 1. the “concept” defines the Abstract Syntax
(AS), 2. an editor supports the Concrete Syntax (CS) via a
cell based editing style and 3. the generator emits new arti-
facts (e.g. a GPL code like java). The Intentional Language
Workbench [15] is a similar solution which is also used for
real world projects, especially in the insurance and banking
domain, however it is not really widespread and has a higher
learning curve for language creators.
Spoofax/IMP [16] is not really a Projectional editor but uses
scanner less parsing and also enables arbitrary language
composition. In summary the number of PLWB is still rela-
tive small but we expect them to increase soon.

5. Workbench Comparison
For creating languages (by a designer) and applying them (by
an end user) we need some ingredients. Martin Folwer de-
scribed this [2] and created the term Language Workbench
(LWB).

Essential requirements for LWB are e.g.:
• ability to freely define languages
• which are fully integrated with each other,
• primary source of information should be the abstract syn-

tax,
• DSL is defined by schema, editor and generator
• it can also persist incomplete or contradictory information

Fowler also talks about
• manipulation of the DSL via a Projectional editor

This is a kind of prerequisite for some of the other require-
ments. While LWB were still in a “visionary stage” in 2005,
meanwhile there are plenty of solutions around. Admittedly
the variation amongst them is still large but one basic crite-
rion is if it is a text/parser based or a Projectional language
workbench. We will discuss pros and cons in the following
subchapters.

5.1 Xtext

Xtext [17] is developed actively by a group of developers in
itemis' Kiel office and offered as open source. Itemis also
offers professional training, consulting and support.
The first version of Xtext was initially developed as part of
the openArchitectureWare [18] framework, however after a
rewrite of Xtext, it is now a major part of the Eclipse TMF
(Textual Modeling Framework) project. Since version 0.7
Xtext is self hosting. The current version 1.0 delivered with
Helios is used in lots of projects, also in Eclipse projects it-
self in B3 [19].
The Xtext supported workflow in shown in Figure[9]. The
user starts to describe the AS and CS in the .xtext file. The
CS is specified as context-free grammar including the ter-
minal symbols and production rules while the AS is mixed
into the same .xtext file and later generated into a corre-
sponding Ecore model. Xtext does not support left-recursive
meta-models. Also a corresponding .mwe (Modeling Work-
flow Engine) file describes necessary build steps like load-
ing the model, run checkers or code generator,
transform/layout of generated code. Figure [10] shows the
Xtext grammar with our Chess DSL.

Figure 9. Xtext workflow

142

Figure 10. Xtext: Concrete Syntax and Abstract Syntax

From the .xtext file, Xtext generates a ASG (.ecore file), an
ANTLR based scanner and parser for DSL-to-model trans-
formation, model-to-text generator with Xpand (.xpt) sup-
port and a full fledged editor the DSL based on eclipse. The
generated editor supports nearly all features you are used
from a textual editor and could compete with the eclipse
JDT java editor (without the refactoring support). The editor
supports syntax highlighting, code completion, navigation
and reference, folding,

Figure 11. Xtext: Chess DSL Editor

bracket matching, styled label providers, incremental code-
gen, and much more. Xtext also supports qualified name
support and referencing existing java elements from your
DSL. Figure [11] shows the resulting Xtext Chess DSL edi-
tor.

5.2 TEF (Textual Editing Framework)

TEF (Textual Editing Framework) [20] was initially devel-
oped by Markus Scheidgen during is PhD at the University

of Berlin. For the concrete syntax (CS), TEF provides a syn-
tax definition language called TSL (textual syntax lan-
guage). TSL describes the textual notation for an existing
Ecore meta-model (AS) is in the .etslt file. Via the usual
Eclipse EMF facilities (the gen-model) the necessary EMF
support is generated. For DSL-to-model transformation,
TEF creates a RunCC parser which is interpreted at runtime
(RunCC avoids code generation).
Figure[12] show the TEF workflow and relevant artifacts.

Figure 12. TEF workflow
Figure[13] show the etslt description (CS) for the Chess ex-
ample. Note that we reference the AS in a Ecore model.

Figure 13. TEF Concrete Syntax
TEF generates three different editors via eclipse extension
points:
• a textual editor

143

This editor parses textual models and allows editing them in
a comfortable way. Features of the generated editor are out-
lined below. Figure[14]

Figure 14. TEF: textual editor with Chess DSL

• a model based editor
The model based editor acts like an enhanced generic Ecore
editor. Initially it is a tree based editor but other representa-
tions are also possible. Figure[15]. There is no text parsing
involved here as the editing “style” does not allow it.
• a embedded editor
This is a textual editor embedded into the model based tree
editor. On each model element the user can open a textual
editor with a hotkey (Alt-T). Figure[15]. TEF hence com-
bines different editing styles (treebased/textbased). Depend-
ing on the situation, the best editor is offered for the user
(we call this “convergent” editor).

Figure 15. TEF: model editor and embedded text editor

The generated editor supports syntax highlighting, code
completion, navigation and reference, folding, error annota-
tion and several other features. Model validation is possible
via the Eclipse Modeling projects.

5.3 TCS (Textual Concrete Syntax)

TCS (Textual Concrete Syntax) [21] was developed by
Frederic Jouault at EMN (Ecole des Mintes in Nantes) and
the ATLAN-Mod team. It is also part of the eclipse TMF

project and used in other eclipse projects, e.g. ATL2 [22].
TCS is also self hosting.
Figure[16] show the TEF workflow and relevant artifacts.

Figure 16. TCS workflow

The abstract syntax is (also) specified in a textual language
for meta-modeling, called KM3 [23]. When saved, TCS
then generates a corresponding Ecore file on the fly.

Figure 17. TCS: Abstract syntax

The concrete syntax is specified in a .tcs file. Again, when
saved a corresponding ANTLR parser is generated on the
fly. TCS hence avoids lots of (unnecessary) code generation
often found in other tools.

144

Figure 18. TCS: Concrete syntax

TCS avoids as much code generation as possible and hence
allows very fast and short turn around cycles. There is no
need to start an additional embedded eclipse instance with
the plugin, instead everything is updated “on save” and then
reinterpreted.

To edit and create DSL conforming to the one the user

specified, TCS offers the Textual Generic Editor (TGE).
TGE supports syntax-highlighting, text hovers, hyperlinks,
and an outline view for every language that has its textual
syntax specified in TCS. If necessary, TGE can be further
customized to specific needs/layout. Model validation is
possible via the Eclipse Modeling projects or preferably via
the ALT language directly.

Figure 19. TCS: Generic Editor (TGE) with Chess DSL

TCS supports a language Zoo with over 50 languages on
their website. TCS is also reused by Furcas, another TMF
tool.

5.4 EMFText

EMFText [24] was initially developed as part of the resuse-
ware composition framework [25] at University Dresden. It
was later extracted into an own, independent tool. Similar to
TCS also EMFText allows specifying a concrete syntax for
an existing EMF model (abstract syntax). Figure[20] shows
the main workflow. Note that some of the workflow/ANT
properties can be specified in the .cs (concrete syntax) file
already (e.g. reload properties).

Figure 20. EMFText: workflow

To enable EMFText to use models at runtime, a EMF model
plug-in must be generated (following the well-known gen-
model).

The concrete syntax specification (.cs file) consists of 3
blocks:

• A configuration block, which contains the name,
the base model and the root Meta class (start sym-
bol).
Optionally other syntaxes and metamodels can be
imported and generation options can be specified.

• A (optional) TOKEN section.
tokens for the lexical analyser can be specified.

• A RULES section, which defines the syntax for
each concrete Meta class.

EMFText has some special support for the syntax definition:

• Automatic generation of default syntaxes
• Modular specification

(Support for abstract syntaxes and syntax imports)
• Default reference resolving mechanisms
• and comprehensive syntax analysis to warn about

potential syntax problems

The concrete syntax for the Chess Example is shown in Fig-
ure [21].

145

Figure 21. EMFText: Concrete Syntax

Via the build process a default editor is generated by EM-
FText. Developers can overwrite or customize special be-
havior. Out of the box the editor supports several IDE
features like outline view, customizable syntax highlighting
(also via the .cs file), code completion, bracket handling,
text hovers and the usual hyperlink and reference support.
Figure [22] shows the EMFText Chess.

Figure 22. EMFText: Editor with Chess DSL

EMFText supports also a language Zoo with about 50 lan-
guages, with real world languages like Java5 or .e.g. a textual
Ecore syntax.

5.5 Other text based approaches

On the eclipse platform there are several other interesting
text based approaches which should be mentioned like
IMP[26], Spoofax/IMP [27] (a project at the university
Delft) or ETMOP and CAL [28] (Andrew Eisenbergs PhD.)

5.6 MPS (Meta Programming Systems)

Jetbrains offers an open source solution with MPS (Meta
Programming Systems) [14]. Unlike the previous introduced
parser based approaches of Xtext, TEF, TCS and EMFText,
MPS is a Projectional editor. This approach also follows the
“language oriented programming” idiom described in [29].
MPS offers a projection from the Abstract Syntax Tree
(AST) to Text, however under the hood the user edits (indi-
rectly the AST). Editing the tree as opposed to “real text”
needs some accustomization. Without specific adaptations,
every program element has to be selected from a drop-down
list and “instantiated”. However, MPS provides editor cus-
tomizations to enable editing that resembles modern IDEs
that use automatically expanding code templates. So the user
does not really feel that he is editing an AST. Using the Pro-
jectional approach avoids a lot of problems like scan-
ning/parsing, refactoring support etc.

 Three steps typically define a new language, 1. The “con-
cept” or “structure” defines the Abstract Syntax (AS), 2. An
editor supports the Concrete Syntax (CS) via a cell based
editing style and 3. The generator emits new artifacts (e.g. a
GPL code like java).
Within MPS there is direct support to use the generated
Editor or Generator. CTRL-F9 generated/compiles e.g. the
DSL Editor and reloads in on the fly. There is no need to
start an additional instance (like the eclipse plugins). MPS
also supports important features like Constraint checking,
support for real type system, etc. The Workflow is depicted
in Figure [23]. MPS is self hosting and used for several real
world products (e.g. the youtrack MPS bug tracker[30])
and was developed and used for about 7 years internally
within Jetbrains. The MPS product is now open sourced.

Figure 23. MPS: Workflow
Defining a new language start with the abstract syntax
which is called a “concept”, located under the “structure”
node. As shown in Figure [24], MPS uses also a textual syn-
tax to describe the AS. (n.b. This editor is also described
with MPS (self hosting)).

146

Figure 24. MPS: Abstract Syntax

Next, the concrete syntax has to be defined in an “editor”.
As MPS uses the Projectional approach there is no
parser/scanner. Editing is only based on “cell-editing”,
hence the programmer describes the cell layout (horizon-
tal/vertical list/collection etc) and the mapping to the ab-
stract syntax. The concrete syntax is shown in Figure [25].
Note that other, alternative projections (e.g. to table, graphs,
spreadsheets etc) would be possible.

Figure 25. MPS: Concrete Syntax

Finally we can generate a DSL Editor with CTRL-F9 for
our Chess language in MPS (Figure [26]) and create the
hess game.

Figure 26. MPS: DSL Chess editor

6. Conslusion / Summary
In this paper we presented several different language work-
benches for textual DSL. Using a feature model for DSL one
can compare them on a “neutral” and unbiased platform.
However this is not to declare a winner or the “best” textual
language workbench.
The number of parser based textual language workbenches is
significant in the meantime and eclipse seem to be the com-
mon host. However in terms features and approaches we
were able to identify several differences (e.g. pure generation
based approach of Xtext vs. a generic, interpreted approach
of TCS).
While Projectional editors are currently still the exception
(MPS and Intentional), we assume that they gain a huge in-
crease of use. The combination of modular languages, differ-
ent DSLs combined is much easier with Projectional editor
and classical parser based approaches will reach their limits.
Currently there is not yet a real projectional editor for eclipse
but we are sure that this is already on the roadmap.

Acknowledgments
Special thanks go to the developers from Xtext, TEF, TCS,

EMFText and MPS. They were very helpful with my
questions and bug reports for their tools. Thank you again!

References
[1] Announcing The Emerging Languages Camp at OSCON
http://radar.oreilly.com/2010/05/announcing-the-emerging-
langua.html

[2] Fowler, M.: Language Workbenches - The Killer-App for
Domain Specific Languages?

http://martinfowler.com/articles/languageWorkbench.html

[3] Fowler, M.: Projectional Editing

http://martinfowler.com/bliki/ProjectionalEditing.html

[4] Fowler, M.: Fluent Interfaces

http://www.martinfowler.com/bliki/FluentInterface.html

[5] Garcia, Automating the embedding of Domain Specific Lan-
guages in Eclipse JDT

http://www.eclipse.org/articles/Article-
AutomatingDSLEmbeddings/index.html

[6] Textual Modeling Tools for ecliplse

Xtext http://ww.eclipse.org/Xtext/

 TCS: www.eclipse.org/gmt/tcs/

 TEF:http://www2.informatik.hu-berlin.de/sam/meta-
tools/tef/tool.html

 EMFText: http://emftext.org

[7] Meta Edit http://www.metacase.com

[8] B. Langlois, C.E. Jitia, E Jouenne: DSL Classification. In 7th
OOPLA Workshop on Domain-Specific Modeling, 2007

147

[9] M. Pfeiffer, J. Pichler A Comparison of Tool Support for Tex-
tual Domain-Specific Languages, In 8th OOPSLA Workshop
on Domain Specific Modeling, 2008

[10] T. Goldschmidt, S.Becker, A. Uhl: Classification of Concrete
Textual Syntax Mapping Approaches, In ECMDA-FA 2008

[11] www.eclipse.org/modeling

[12] www.antlr.org/papers

[13] runcc.sourceforge.net

[14] www.jetbrains.com/mps

[15] Intentional Software, Intentional Domain Workbench,
http://intentsoft.com/technology/IS_OOPSLA_2006_paper.pdf

[16] L.. Kats, E. Visser. The Spoofax Language Workbench. Rules
for Declarative Specification of Languages and IDEs. In OOP-
SLA 2010

[17] Xtext http://ww.eclipse.org/Xtext/

[18] openArchitectureWare http://www.openarchitectureware.org/

[19] eclipse B3: http://www.eclipse.org/modeling/emft/b3/

[20] TEF: http://www2.informatik.hu-berlin.de/sam/meta-
tools/tef/tool.html

[21] TCS: www.eclipse.org/gmt/tcs/

[22] ATL: www.eclipse.org/m2m/atl

[23] KM3: F. Jouault, J. Bezivin: KM3: a DSL for Metamodel
Specification, Formal Methods for Open Object-Based distr.
Systems 2006

[24] EMFText: http://www.emftext.org

[25] Reuseware: http://www.reuseware.org/

[26] Eclipse/IMP (Safari project) http://eclipse-imp.sourceforge.net

[27] Spoofax/IMP http://strategoxt.org/Spoofax

[28] CAL, http://www.cs.ubc.ca/~ade/research.html

[29] S. Dmitriev: Language Oriented Programming: The Next Pro-
gramming Paradigm

[30] Jetbrains youtrack bugtracker

http://youtrack.jetbrains.net/dashboard

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

