

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLATEAU’14, October 21, 2014, Portland, Oregon, USA.
Copyright © 2014 ACM 978-1-4503-2277-5/14/10…$15.00.
http://dx.doi.org/10.1145/2688204.2688215

Supporting Social Interactions and Awareness in Educational

Programming Environments

Christopher D. Hundhausen

Human-centered Environments for Learning and Programming
(HELP) Lab

School of Elec. Eng. and Computer Science
Washington State University

hundhaus@wsu.edu

Adam S. Carter

Human-centered Environments for Learning and Programming
(HELP) Lab

School of Elec. Eng. and Computer Science
Washington State University

cartera@wsu.edu

Abstract
Empirical evaluations of programming environments have
traditionally focused on human performance measures such
as task efficiency, error rates, and learnability. In addition to
these effectiveness measures, we believe there is good reason
to consider the ability of programming environments to pro-
mote social interactions and awareness during programming
tasks. Indeed, especially in educational contexts, program-
ming success and persistence in the computing discipline
have been positively correlated with programmers’ sense of
community and ability to communicate with others. We in-
troduce social programming environments as a new breed of
educational programming environment designed to promote
social interaction and awareness, and we propose a way to
evaluate such environments relative to social learning theory.

Categories and Subject Descriptors D.2.6 [Programming
Environments] Interactive environments; K.3.1 [Comput-
ers and Education] Computer Uses in Education - collabo-
rative learning; K.3.2

General Terms Design, Experimentation, Human Factors,
Languages.

Keywords Social programming environments, learning
analytics, social learning theory.

1. Introduction
In the software engineering profession, the ability to monitor
and communicate with other team members in software de-

velopment projects is assumed to be essential to promoting
programming efficiency and success. To that end, software
engineering researchers have long been interested in devel-
oping tools to support awareness and communication in
software development activities. For example, Microsoft
Research has developed tools that enable programming team
members to explore where other team members are spending
their development time in a code base [3], and to peripheral-
ly monitor what other team members are up to [2]. In a simi-
lar vein, tools have been developed to support collaborative
programming at a distance (e.g., [4]), and off-the-shelf com-
munication tools are commonly used to support asynchro-
nous discussions about shared code bases.

In contrast, promoting collaboration and awareness of
others’ activities has been of little interest in computing edu-
cation, where it is often assumed that such collaboration and
awareness would constitute “cheating.” Especially in early
programming courses, learners are often required to com-
plete programming assignments individually, and are often
discouraged from talking to anyone except teaching person-
nel about programming issues they encounter.

In this position paper, we use social learning theory to ar-
gue that social interaction and awareness are essential to
promoting effective learning experiences in computing edu-
cation. We then introduce a social plug-in to an integrated
programming environment (IDE) that leverages trends in
social networking to support social awareness and interac-
tion. We conclude by outlining a strategy for evaluating so-
cial participation within the environment, and for exploring
relationships between such participation and key perfor-
mance, affective, and demographic variables.

2. Social Learning Theory
Bandura’s self-efficacy theory [1] posits that students devel-
op a positive sense of their own programming abilities (so-
called self-efficacy) by being able to observe the activities of

55

Figure 1. Screenshot of OSBIDE Social Plug-In

their peers, and by being able to evaluate themselves relative
to their peers. Not surprisingly, positive self-efficacy has
been strongly correlated with persistence in the computing
discipline [6]. Likewise, situated learning theory [5] posits
that participation in a community of practice, which involves
both observation of others and actual participation in com-
munity activities, is essential to learning. Both of these social
theories of learning suggest that learners may have difficul-
ties making progress if they are forced to program in isola-
tion from a broader community. Thus, while it is, of course,
important to be able to evaluate individual student work,
computing educators would do well also to provide students
with opportunities to observe and interact with a broader
learning community.

3. Social Programming Environment
How might we rethink the design of IDEs so that they pro-
vide greater opportunities for learners to observe each other,
ask and answer questions, and build a learning community?
Inspired by trends in social networking, we have been devel-
oping OSBIDE (Online Studio-Based IDE), a social plug-in
to an IDE that supports an activity stream (see Figure 1). As
a learning community’s activities—including compilations,
run-time exceptions, and debugging events—unfold, they are
injected into the activity stream; a back-end social recom-
mender relates them to other learners’ activities (e.g, “You
and 3 others have gotten this error”). In addition, using the
social plug-in, learners can
 search and filter the activity stream for events that might

help them with their issues.
 select programming artifacts—e.g., sections of code,

pieces of the call stack—to ask questions about; these
artifacts are then injected into the activity stream, mak-
ing it easy for learners to ask a question about them.

 pose and respond to questions by commenting on any
item in the activity stream, just as they can comment on
posts on social networking sites like Facebook.

4. Evaluation Approach
We have developed a back-end system that logs all pro-
gramming events that occur in the IDE: edits, build events,
execution events, passive social events (e.g., clicks within
the activity stream), and active social events (posts and re-
plies within the activity stream). In addition, in the compu-
ting courses in which we are deploying OSBIDE, we are
collecting demographic data, course grade data, and pre- and
post-survey data on student attitudes (e.g., self-efficacy,
sense of community). These data provide a foundation for
performing correlational analyses involving programming
behavior, social behavior, course performance, de-
mographics, and affective measures. They also provide a
foundation for building exploratory timeline visualizations of
learners’ programming and social activities.

In order to analyze patterns of student participation rela-
tive to social learning theory, we partition students into par-
ticipation levels based on the amount of active and passive
social events they log as they work on a given programming
assignment. In later programming assignments, social learn-
ing theory posits that students’ level of participation should
increase. In ongoing analyses, we are refining operational
definitions of differing levels of participation, and building
probabilistic models of how students transition from level to
level over time. The ultimate goal is not only to better under-
stand the ways learners appropriate an activity stream in or-
der to participate more fully in computing courses, but also
to gain insight into how best to design social programming
environments to promote learning.

Acknowledgments
This research is supported by the National Science Founda-
tion under grant no. IIS-1321045.

References
[1] Bandura, A. 1997. Self-efficacy: the exercise of control. Worth

Publishers.
[2] Biehl, J.T. et al. 2007. FASTDash: a visual dashboard for

fostering awareness in software teams. Proc. SIGCHI Confer-
ence. ACM. 1313–1322.

[3] DeLine, R. et al. 2005. Easing Program Comprehension by
Sharing Navigation Data. Proc.VL/HCC. IEEE. 241–248.

[4] Goldman, M. and Miller, R.C. 2011. Real-time collaborative
coding in a web IDE. Proc. UIST. ACM. 155–164.

[5] Lave, J. and Wenger, E. 1991. Situated learning: Legitimate
peripheral participation. Cambridge Univ. Press.

[6] Rosson, M.B. et al. 2011. Orientation of Undergraduates To-
ward Careers in the Computer and Information Sciences:
Gender, Self-Efficacy and Social Support. ACM Trans. Com-
put. Educ. 11, 3 (2011), 1–23.

56

