
CoSMIC: Addressing Crosscutting Deployment and
Configuration Concerns of Distributed Real-time and

Embedded Systems

Aniruddha Gokhale
Institute for Software
Integrated Systems
Vanderbilt University
Nashville, TN, USA

gokhale@dre.vanderbilt.edu

Krishnakumar
Balasubramanian
Institute for Software
Integrated Systems
Vanderbilt University
Nashville, TN, USA

kitty@dre.vanderbilt.edu

Tao Lu
Institute for Software
Integrated Systems
Vanderbilt University
Nashville, TN, USA

lu@dre.vanderbilt.edu

ABSTRACT
This paper describe a model-driven development (MDD) toolsuite
calledComponent Synthesis using Model-Integrated Computing(CoS-
MIC), which configures and deploys distributed real-time and em-
bedded (DRE) systems using quality of service (QoS)-enabled com-
ponent middleware. We show how CoSMIC addresses crosscutting
configuration and deployment concerns at multiple layers of mid-
dleware and applications in component-based DRE systems. We
also discuss how CoSMIC leverages model checking and analysis
tools to validate key properties for configured DRE systems.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—Model-
ing Methodologies; D.2.4 [Software Engineering]: Software Pro-
gram Verification—model checking

General Terms
Design, Experimentation, Standardization

Keywords
Crosscutting Concerns, Deployment & Configuration, Model-Driven
Development

1. INTRODUCTION
Despite advances in quality of service (QoS)-enabled component

middleware, such as the CORBA Component Model (CCM) [3]
and Real-time CORBA [4], key challenges must be addressed be-
fore this middleware can be used to build large-scale distributed
real-time and embedded (DRE) systems. For example, QoS provi-
sioning of DRE applications requires appropriate configuration and
deployment of system resources, such as (pre)allocating CPUs, re-
serving network bandwidth/connections, and monitoring/enforcing
the proper use of system resources at runtime to meet or exceed
application and system QoS requirements. These QoS provision-
ing activities typically crosscut multiple layers of middleware, OS,
networks and hardware.

Conventional middleware lack standard mechanisms, policies,
and tools to address these crosscutting concerns. It is therefore

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

unduly hard to configure, deploy, and validate large-scale DRE
systems. In particular, priorad hocapproaches to deploying mid-
dleware used proprietary mechanisms (such as Perl scripts to de-
ploy applications), lacked standard management interfaces (which
greatly reduces flexibility at deployment time), and forced tight
coupling between the system being configured and the configu-
rator. With the advent of component middleware, there are now
standard configuration and deployment mechanisms, such as the re-
cently adopted OMG Deployment and Configuration (D&C) Spec-
ification [5] for component-based DRE systems.

The following challenges remain, however, before component
middleware can be used effectively for DRE systems:
1. Lack of tools for effectively composing DRE systems from
components.QoS-enabled component middleware enables appli-
cation developers to develop individual components that can be
composed together intoassembliesthat form complete DRE sys-
tems. Although this approach supports the use of “plug and play”
components in DRE systems, system integrators then face the daunt-
ing task of composing the right set of compatible components that
will deliver the desired semantics and QoS to applications that ex-
ecute in large-scale systems.
2. Lack of tools for configuring component middleware. In
QoS-enabled component middleware frameworks, application com-
ponents and the underlying component middleware services can
have a large number of attributes and parameters that can be con-
figured at various stages of the development lifecycle, such as (1)
during component development, where default values for these at-
tributes could be specified, (2)during application integration, where
component defaults could be overridden with domain specific de-
faults, and (3)during application deployment, where domain spe-
cific defaults are overridden based on the actual capabilities of the
target system. It is hard, however, to manually ensure that all
these parameters are semantically consistent throughout a large-
scale DRE system.
3. Lack of tools for automated deployment of DRE systems
on heterogeneous target platforms.The component assemblies
described above must be deployed in the distributed target environ-
ment before applications can start to run. DRE system integrators
must therefore perform the complex task of mapping the individual
components/assemblies onto specific nodes of the target environ-
ment. This mapping process involves ensuring semantic compati-
bility between the requirements of the individual components, and
the capabilities of the nodes of the target environment.

The OMG D&C specification itself is quite complex, with seven

218



types of XML configuration files that are tedious and error-prone
to write manually. For example, information pertaining to a single
component can be spread across four different types of descriptors.
As the number of components in a large-scale system increases,
these XML files are complex to comprehend without tool support.
This complexity is exacerbated by the fact that the information
present in these files is inter-related, and hence an error in one de-
scriptor often results in errors in multiple crosscutting descriptors.

The remainder of this paper describes how the CoSMIC [1] tool-
suite resolves the deployment and configuration challenges of DRE
systems described above, focusing on the generative programming
and analysis capabilites of CoSMIC.

2. RESOLVING DRE SYSTEMS DEPLOY-
MENT AND CONFIGURATION CHAL-
LENGES USING COSMIC

Figure 1: The CoSMIC Toolsuite

Figure 1 illustrates the CoSMIC toolsuite and the remainder of
this section describes key tools and capabilities it provides.
Model-driven generative development.At the heart of CoSMIC
is thePlatform-Independent Component Modeling Language(PICML),
which is a domain-specific modeling language (DSML) that cap-
tures the recurring elements of DRE system design, configuration
and deployment. PICML provides generative tools to synthesize
the systemic QoS information associated with deployment and con-
figuration as a set of XML descriptors, while enforcing the prin-
ciple of “correct-by-construction,” thereby relieving DRE system
developers from design- and run-time mistakes arising due to mis-
configurations from manually transforming design artifacts to code
artifacts. PICML addresses several concerns including component
assembly and packaging, middleware configuration, configuring
publisher/subscriber services and component interface generation.

Our MDD-based approach in CoSMIC makes the following con-
tributions to the challenges of configuring and deploying DRE sys-
tems using QoS-enabled component middleware:

• It defines and implements a platform-independent modeling
language that provides developers with multiple views (e.g.,
conceptual and logical) of component-based DRE systems.
PICML can be targeted to generate systemic QoS data, corre-
sponding to multiple underlying middleware platforms, such
as CCM or J2EE.

• It defines and implements a generic data-binding approach
that shields DRE middleware developers from having to know

multiple XML-based APIs, such as SAX and DOM, and in-
stead allows them to concentrate on other key issues asso-
ciated with developing their systems, such as using the sys-
temic data to configuring their systems or to annotate these
data with QoS properties and pushing them along the pipeline
of systemic data processing.

• It implements a standardized mechanism for configuring and
deploying component-based applications, with extensions to
take advantage of features available in QoS-enabled CCM
implementations that provide features needed for DRE sys-
tems.

Validating DRE configurations and deployment.The DRE sys-
tem configurations and deployments synthesized by CoSMIC are
validated by integrating CoSMIC with external model checking
and analysis tools, such as Cadena [2]. Our tool integration ap-
proach is based on theWeb-based Open Tool Integration Frame-
work (WOTIF) developed as part of the MoBIES program (www.
isis.vanderbilt.edu/projects.asp ) at DARPA. OTIF’s
tool integration repository stores data in a semantic format under-
stood by one of the communicating tools. Custom semantic transla-
tors and tool adaptors can be plugged into the OTIF backplane and
used to (1) automatically convert data in a format understood by
one tool into of data for another tool and (2) communicate between
the tools.

3. CONCLUDING REMARKS
To date we have demonstrated the viability of CoSMIC and the

range of DRE systems that can be modeled using this toolsuite
by working with industrial partners to develop MDD systems in
a number of DRE domains, including avionics mission computing,
command and control systems, total ship computing environments,
and intelligent warehouses. The source code for CoSMIC including
the PICML modeling paradigms and code generators are available
at www.dre.vanderbilt.edu/cosmic .

4. ADDITIONAL AUTHORS
Additional authors: Jaiganesh Balasubramanian Arvind Krishna

Gan Deng Emre Turkay Jeffery Parsons Gabriele Trombetti Bal-
achandran Nataraqjan and Douglas C. Schmidt (All at Vanderbilt
University)

5. REFERENCES
[1] A. Gokhale, K. Balasubramanian, J. Balasubramanian,

A. Krishna, G. T. Edwards, G. Deng, E. Turkay, J. Parsons,
and D. C. Schmidt. Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed
Real-time and Embedded Applications.The Journal of
Science of Computer Programming: Special Issue on Model
Driven Architecture, 2004.

[2] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad.
Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems. In
Proceedings of the 25th International Conference on Software
Engineering, Portland, OR, May 2003.

[3] Object Management Group.CORBA Components, OMG
Document formal/2002-06-65 edition, June 2002.

[4] Object Management Group.Real-time CORBA Specification,
OMG Document formal/02-08-02 edition, Aug. 2002.

[5] Object Management Group.Deployment and Configuration
Adopted Submission, OMG Document ptc/03-07-08 edition,
July 2003.

219


