
Diagnosing Degenerate Forms in Software

Brian S. Dillon
Naval Surface Warfare Center, Dahlgren Division (NSWCDD)

Virginia Polytechnic Institute and State University
briand81@vt.edu

Abstract

The degeneration of source code due to maintenance is a
long known but little understood phenomenon. Currently,
researchers face significant logistical challenges when
conducting empirical studies and experiments, studying
large-scale projects, and characterizing the development
and growth of degenerative forms. These logistical chal-
lenges can be partially alleviated by developing automated
metrics designed to identify degenerate forms. Further-
more, such metrics are essential for targeted refactoring and
repairing degenerative forms. This dissertation research
investigates a set of metrics targeted at specific degenerate
forms common in software. The successful implementation
and characterization of such metrics will enable further
research in many forms of software maintenance.

Categories and Subject Descriptors D.2.9 [Software
Engineering]: Management – software quality assurance.

General Terms Measurement, Management, Design,
Experimentation.

Keywords software evolution; degeneration; software
metrics; diagnostics; refactoring

1. Introduction

Software evolution is a problem long known to computer
science and has been addressed by various names, e.g.,
aging, rot, entropy, erosion. Essentially, software that un-
dergoes maintenance must change over time, and the cumu-
lative effects of those changes create adverse conditions for
future maintenance. These adverse conditions eventually
make maintenance infeasible. This problem is found in
most large-scale, long-lived software projects but is still
little understood.

In order to enable further research in this area, improved
metrics are required. This dissertation research investigates
several metrics that have been designed to identify specific
degenerate software forms commonly found in software
demonstrating the effects of software evolution. The goal
of this research is to characterize the accuracy and effec-
tiveness of these metrics in locating and diagnosing degen-
erate forms as an aide to future work.

2. Problem Statement

The costs associated with software degeneration are high.
Even with the many man-hours invested to develop a cur-
rent software baseline, at some point the cost of maintain-
ing degraded software is more than the cost of new devel-
opment. Three examples from industry were described in
[9] where software was abandoned for this reason. These
cases indicated the need to abandon new software shortly
after it was released and even while it was still under de-
velopment. Each case was described as requiring a “mas-
sive effort,” and they concluded “…[r]edeveloping soft-
ware … is a very expensive and lengthy procedure….” and
in the end “was only partly successful.” The cost of rede-
velopment on multiple software products, over many years
and by many different developers, is a monumental ex-
penditure that can and must be eliminated.

Up to this point, research into this phenomenon has been
dominated by Lehman’s eight laws of software evolution
[7]. Lehman continued to revise his own laws over the
years as his understanding of the phenomenon changed.
Researchers in this field tend to agree that software evolu-
tion is a naturally occurring, degenerative phenomenon,
which is at least partially the product of development prac-
tices, resource constraints, and time. Nevertheless, re-
searchers have not done a great deal to characterize the
development of these degenerate software forms, principal-
ly because of the logistical concerns in carrying out even a
limited study of software “in the wild.” While there are a
large number of strategies for improving software devel-
opment, there is little empirical evidence to determine how
these strategies affect the rate of degeneration.

The lack of empirical studies, according to multiple re-
searchers, is the result of logistical difficulties in producing
statistically significant quantities of sample data. Without
such samples, it is impossible to draw meaningful conclu-
sions as to a positive or negative effect derived from specif-
ic development strategies. Kemerer and Slaughter [6] noted
that research of this type requires at least two different data
points from two different times. “This,” they note, “creates
practical difficulties in terms of sustaining support for the
[research] project over this period or finding an organiza-
tion that collects and retains … data or the software arti-
facts themselves.” Researchers are further hampered by
their inability to accurately measure the quality of the soft-
ware without resorting to expert classification. Metrics do
exist that point to various characteristics of code, but none
give an objective and quantifiable measure of the degenera-
tion that has taken place.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author(s). Copyright is held
by the author/owner(s).
OOPSLA’14, October 20–24, 2014, Portland, Oregon, USA.
ACM 978-1-4503-2585-1/14/10.
http://dx.doi.org/10.1145/2660252.2660255

9

3. Motivation for Dissertation Research

The author’s personal motivation to investigate this prob-
lem came from his work as a professional developer. That
work involved the refactoring of multiple degenerated
legacy software products in preparation for new develop-
ment. This led to first-hand experience with degenerate
software forms and knowledge of the current limits of re-
factoring. Refactoring has had mixed results across the
industry as a whole for reasons identified by [2]. They
indicate that i) identifying code smells requires a priori
knowledge of the code, ii) code smells and refactoring
focus on a small subset of code without any planned effect
on the whole, and iii) the relative value of code smells is
not easily quantified. In short, the value of refactoring is
strongly associated with the experience and knowledge of
the developer and, even with an experienced developer,
manual detection and refactoring of degenerate forms is
limited by these same factors.

In order to enable further research in this area and im-
prove the quality of refactoring in general, there is a need
for new automated metrics. Researchers are unable to
greatly further our understanding of the degeneration phe-
nomenon in general because they are unable to conduct
meaningful studies and experiments on large-scale source
code. Developers are unable to efficiently locate, identify,
and resolve these degenerate forms because they are limited
by human experience and speed. Current software metrics,
biased toward easily quantifiable characteristics such as
method size and nesting loops, are incapable of improving
these conditions. While such metrics may or may not indi-
cate areas of concern, they are hardly diagnostic in the
strict sense. New metrics must be developed that are objec-
tive and yield quantitative results capable of diagnosing and
locating degenerate forms more efficiently.

4. Approach

The proposed research will develop just such a set of met-
rics that can be used to identify and locate specific degen-
erate forms. Preliminary surveys of degenerate forms were
conducted using four source codes developed by diverse
groups and in two different languages, C# and Java. During
the four refactoring case studies, a list of 24 common de-
generate forms was compiled. These degenerate forms
include violations of commonly accepted principles of
good software engineering, such as encapsulation and inter-
face segregation. Others are related to common areas of
concern such as unreachable code, unused variables, incor-
rectly modified class members, and poorly named varia-
bles. All of these were identified in production code and
were unidentified by the compiler or other tools.

The author designed new metrics to detect these degen-
erate forms without a priori knowledge and in a quantifia-
ble and objective way that approximates the classification
of an expert human developer. Typically, two or three met-
rics work cooperatively to identify the degenerate forms. A
subset of metrics that cooperatively exposed a large group
of degenerate forms was selected for further development
and experimentation. The results from the selected metrics
are mainly quantifiable rather than merely indicative. With
these metrics, it should be possible to track and target de-
generate forms where they occur in wild code during refac-
toring and degeneration research.

The first metric is a novel approach to state. Several de-
generate forms are associated with inconsistent state, overly
complex state, and co-dependent state variables, but identi-
fying state variables generally requires a human intelli-
gence. The author has created a method that uses the statis-
tical properties of code to determine which variables are
likely state variables and which have no effect on the con-

trol structure of the program. The resulting conservative
classification of state variables can be used to determine if
one of these degenerate forms exists.

The second metric expands upon the definition of “use”
in order to capture more completely the usage that can be
attributed to the members of a class. Wagner et al [10]
indicated that current tools such as PMD are highly accu-
rate in identifying unused variables. Yet, in a simple exper-
iment—shown in Figure 1—this expanded definition of
“use” created by the author was used to detect 80 percent
more unused variables than PMD. This expanded definition
will identify variables and methods that have no semantic
value in the program and “can be ignored while still pro-
ducing optimal behavior.” [5]

The third metric relies on a modified form of the module
detection algorithm described by Blondel [1]. In the modi-
fied form, the algorithm is capable of identifying optimal
module membership based on member-to-member access
in the code. This allows the metric to identify probable
package membership without any a priori knowledge or
human interaction. The contrast between the suggested and
current package structure may be used to identify inconsist-
encies in the design. The fact that this algorithm can be
applied to class or package membership means it can also
identify candidate encapsulation concerns.

The remaining metrics apply principles of graph theory
to examine the source code and determine if other incon-
sistencies exist. Is some public variable, for example, ac-
cessed by other classes or should it be reclassified as pri-
vate? Are two classes demonstrating feature envy by their
strong affiliation? Are there any portions of the source code
that are reachable but have no side effects? By using the
three metrics above to inform this graphical analysis, it
should be possible to identify several degenerate forms and
bring them to the developer’s attention for further analysis.

Figure 1: Program demonstrating expanded definition of use

10

4.1 Expected Results

The selected metrics focus on principles of object-
oriented software and were developed exclusively for de-
tecting degenerate forms in OO. As such, they are of lim-
ited value as metrics, but they will make it possible to meet
some basic proof of concept objectives that include:
 Evaluation in terms of false negative and positive rate,
 Validation in terms of diagnostic utility to developers,
 Development of simple automated repair functions,
 Demonstration of layers of degenerate forms, and
 Examination of abandoned software, long revision histo-

ries, and software currently under development.
In addition, the development of these metrics will allow

for more extensive future experiments and tool develop-
ment based on the principles learned. Refactoring may be
performed in a more cost-effective manner. Development
paradigms, tools, and programming practices can be exam-
ined for their efficiency in preventing the development of
degenerate forms. New metrics may also be developed to
identify degenerate forms that affect other programming
paradigms including procedural and multi-core. As new
metrics and degenerate forms are identified, the relation-
ship between them can also be studied.

5. Evaluation Methodology

The primary outcome from this research will be the set of
automated metrics and repair functions. These will be de-
veloped by testing on a large sample large-SLOC count,
open source military, commercial and academic programs
written in C# and Java. The sample will provide sufficient
source code for baseline development as well as evaluation
of the metrics. Once the metrics have been perfected, they
will be individually assessed for correctness by contrasting
the automated results with an expert classification by a
jury. The jury will be given a random selection of classes
from the source code sample and asked to determine specif-
ic characteristics related to the metrics and specific degen-
erate forms. The results from the jury will be used to quan-
tify type I and type II errors for each metric.

In addition, the metrics will be tested on “live” code that
is currently under development. The automated findings
will be assessed by the software development team based
on the degree of accuracy and the perceived value to the
developers. The identification of hitherto unknown but
correctly identified degenerate forms would rate high. In-
correctly identified or low-value items would rate low.
These automated findings may also identify areas of de-
graded quality of which the developers are already aware.
The results from this experiment will mirror [10] and [8] in
demonstrating the value of the automated tools and the
willingness of the developers to rely on those findings.

Secondarily, this research may afford future developers
the ability to characterize degeneration as it occurs. Based
on the work of [4], [3], and others, there are a number of
causative and contributing factors that appear to lead to
software degeneration. While a full study is infeasible, the
validation of any of these factors would be a step in the
right direction. Studies of these characteristics will assume
the metrics, individually evaluated as described above, are
correct and will rely on their findings to characterize the
degeneration found in a sample source code. Thereafter, the
selection of the source code for these contributing factors
will help to prove correlation.

6. Conclusions

The proposed dissertation research will develop metrics
capable of detecting degenerate forms in software. These
metrics will be a first sample set to prove the value of such
targeted metrics in diagnosing degenerate forms. With the
addition of more metrics, it will be possible to more fully
detect the extent and limits of degenerate forms. Improved
detection may be used as an enabling technology to add
visible, quantifiable, objective software quality metrics to
development. As a result, it will be possible to:
 Overcome the sample size and other logistical concerns

to enable more research on this topic,
 Conduct consistent quality assessment studies of any

large-scale software project with minimal human effort,
 Identify causative or contributory factors that lead to

greater risk of software degeneration, and
 Perform targeted refactoring of degenerate forms with

limited knowledge of the software.

Acknowledgments

The author gratefully acknowledges the U.S. Navy for its
support, the NSWCDD Software Developers’ Lecture Se-
ries and Community of Practice, and his dissertation com-
mittee for its assistance. The author also lovingly acknowl-
edges the patience of his wife and children.

References

[1] Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre,
E. (2008). Fast unfolding of communities in large networks.
J. of Statistical Mechanics: Theory and Experiment,
2008(10), P10008.

[2] Bourquin, Fabrice, and Rudolf K. Keller. “High impact
refactoring based on architecture violations.” Software
Maintenance and Reengineering, 2007 CSMR’07. 11th Euro-
pean Conference on. IEEE, 2007.

[3] Dvorak, J. (1994). Conceptual entropy and its effect on class
hierarchies. Computer, 27(6), 59–63.

[4] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., &
Mockus, A. (2001). Does code decay? assessing the evidence
from change management data. Software Engineering, IEEE
Transactions on, 27(1), 1-12.

[5] Jong, N. K., & Stone, P. (2004). Towards learning to ignore
irrelevant state variables. In The AAAI-2004 Workshop on
Learning and Planning in Markov Processes–Advances and
Challenges.

[6] Kemerer, C. F., & Slaughter, S. (1999). An empirical ap-
proach to studying software evolution. Software Engineering,
IEEE Transactions on, 25(4), 493–509.

[7] Lehman, M. M., Perry, D. E., & Ramil, J. F. (1998, Novem-
ber). Implications of evolution metrics on software mainte-
nance. In Software Maintenance, 1998. Proceedings, Inter.
Conf. on (pp. 208–217). IEEE.

[8] Murphy-Hill, E., Parnin, C., & Black, A. P. (2012). How we
refactor, and how we know it. Software Engineering, IEEE
Transactions on, 38(1), 5–18.

[9] Van Gurp, J., & Bosch, J. (2002). Design erosion: problems
and causes. J. of Systems and Software, 61(2), 105–119.

[10] Wagner, S., Jürjens, J., Koller, C., & Trischberger, P. (2005).
Comparing bug finding tools with reviews and tests. In Test-
ing of Communicating Systems (pp. 40–55). Springer Berlin
Heidelberg.

11

