
Back to the future: Is worse (still) better?

Moderator: Martine Devos, EDS
martine.devos@eds.com

Positions: Richard P. Gabriel, Sun Microsystems and Stanford University
rpg@ rpg@Steam.Stanford.EDU

Panelmembers: James O. Coplien, T.J.D'Hondt, Jutta Eckstein, Brian Foote, Richard Gabriel,
Kevlin Henney, Alan O'Callaghan

Abstract: Functional programming, AI, patterns, OO, structured programming - they were
promising, and yet they seem to have failed to deliver. Did we lose interest too soon? Is the
best too good for our industry? Is there "a" best for our industry or is our endless search for
the silver bullet driving us? Do we want the "best" to (again) be a popular goal? How?

Back to the Future: Worse (Still) is Better! *

Spring-Watching Pavilion
A gentle spring evening arrives
airily, unclouded by worldly dust.
Three times the bell tolls echoes like a wave.
We see heaven upside down in sad puddles.
Love's vast sea cannot be emptied.
And springs of grace flow easily everywhere.
Where is nirvana?
Nirvana is here, nine times out of ten.

 -from the Vietnamese of Ho Xuan Huong

Technology, art, popular media including network TV,
and just about every aspect of our lives and probably life
itself follows a disappointing pattern: Worse is better,
the good drives out the excellent, and the most popular
is least good.

You can look at it like this: To appeal to the majority of
people, an artifact must appeal to something that those

* Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage
and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior
specific permission and/or a fee. OOPSLA 2000
Companion Minneapolis, Minnesota c Copyright ACM
2000 1-58113-307-3/00/10...$5.00

people have in common; as we increase the set of people
we consider, the less those people have in common, and
that which they do have in common becomes more base.
For example, network TV is flooded with adolescent
humor, sex, and violence because these are the most
basic drives people have, while an interest in
Vietnamese poetry - which is a very refined poetry - is
quite rare. We call this the intersection effect.

The phenomenon of worse is better occurs even within a
relatively esoteric sub-field like object- oriented
programming and programming languages. C++ is still
the language of choice though its kissing cousin, Java, is
gaining popularity. CLOS (an advanced OO language
with meta-objects and tremendous power), Smalltalk
(perhaps the purest form of OO), Eiffel (well-thought-
out and elegant), and Self (simplicity embodied) all sit
on the sidelines while all the starters are C, C++, and
Java.

We see the same thing in other languages. Common
Lisp, which includes, CLOS, runs roughly the speed of
Java or better, its runtime is smaller than Java by a lot, it
has a programmatically portable executable format for
code, and yet it is not only not popular, but it is not even
taken seriously as a programming language. Lisp isn't
even on the junior varsity. Never mind that Yahoo
stores are written in Common Lisp and that NASA's
Deep Space 1 space probe was written in Common Lisp.

This second example is illustrative of a devastating
point: It is not simply that worse programming
languages prevail through a reduction of quality via the

19

intersection effect, but the perpetuation of worse
programming languages, once they become popular, is
argued for and acted on stridently. We have seen the
same thing happen to Prolog, Smalltalk, Self, ML, and
Haskell.

More disappointing is witnessing this same effect at
work in the patterns community. Christopher
Alexander's ideas of patterns has as its smallest part the
pattern form - the concept of patterns really has to do
with pattern languages and QWAN (the Quality Without
a Name). It is not about construction tricks. It is about
building artifacts not only suitable for human habitation,
but artifacts that increase their human inhabitants'
feeling of life and wholeness. Alexander is all about
beauty and quality, not about how to stick things
together cleverly.

How could worse-is-better come to be? Are there good
reasons - like it is better to release something initially
that is not so good but on the right track and then let a
community of inhabitants repair it using piecemeal
growth? Or maybe it's that lower cost and otherwise
less effective technologies eventually push out
overpriced and over-engineered competitors? Or is it
that quality is like Vietnamese poetry and thus rarely
appreciated?

Back to the Future: Worse (Still) is Better!

Many people find the worse-is-better philosophy rather
funny, more of a parody than anything else. It is a
fascinating philosophy because it sounds silly while at
the same time it works. The problem with The Right
Thing - the anti-worse-is-better philosophy that most
people tout as best - is that it can work only if luck is on
your side, and then rarely even when it is.

Alexander explained it best when he talked about how
living, whole, QWANful designs are ones that are
developed over time by their inhabitants while paying
attention to the smallest details. He talks about details
down to 1/8" as being the scale you need to pay attention
to in something the size of a house. In houses, to work
at that level you need appropriate tools - tools that work
at that scale comfortably. Modular parts don't work
because they have details set in ways you cannot
modify.

Let's look at languages: Many high-level programming
languages hide detail by providing big abstractions.
This means that you are working with modular parts and
not with small pieces constructed by hand. For the right
level of close detail you need a low-level language like
C, assembler, or C++. With these languages you can
control data layout and design very precise and exact

algorithms. With Lisp and Smalltalk, for example, you
are working with their big abstractions in a ham-fisted
way - just fine for prototyping and understanding larger
issues, but not good for minute algorithm and data
structure design. For these we need craftsmen, not
storyboard designers.

The only problem that the so-called high-level languages
solve is being able to put large things together quickly -
this produces mock ups. The real problem is thinking
that you can build whole, alive software fast.
Alexander never says great buildings are built quickly;
in fact if anything he says the opposite. You need to
build, inhabit, feel, then build some more - over time.

Habitable software means nice interfaces and all that,
but it also means a reasonable size for the software and
good performance. Size and performance mean a lot to
usability, and for those qualities you need low-level
languages. It does not hurt that programming in such
languages is difficult, because there is merit in going
slowly.

Come on. Alexander says, pay attention to the details
and do things slowly according to feelings, not
according to abstract aesthetics.

Martine Devos, EDS EMEA
martine.devos@eds.com

James O. Coplien, Lucent Technologies
cope@bell-labs.com

Theo D'Hondt, Free University of Brussels
tjdhondt@vub.ac.be

Jutta Eckstein, Objects in Action
jeckstein@acm.org

Brian Foote, The Refactory, Inc.
foote@laputan.org,

Richard Gabriel, Sun Microsystems and
Stanford University
rpg@Steam.Stanford.EDU

Kevlin Henney, Curbralan Limited
kevlin@curbralan.com

Alan O'Callaghan, De Montfort University
Alan_OCallaghan@compuserve.com

20

