
S O A R : S m a l l t a l k W i t h o u t B y t e c o d e s

A. Dain Samples*
David Ungar**
Paul Hilfinger*

* Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California P47~0

** Computer Systems Laboratory
Electrical Engineering Department

Stanford University
Stanford, California 94305

It is so difficult to find the beginning. Or, better, it supposed. This survey of our implementation should pro-
is difficult to begin at the beginning. And not try to
go further back.
- Ludwig Wittgenstein, On Certainty, §471.

A b s t r a c t

We have implemented Smalltalk-80 on an instruction-
level simulator for a RISC microcomputer called SOAR.
Measurements suggest that even a conventional computer
can provide high performance for Smalltalk-80 by aban-
doning the 'Smalltalk Virtual Machine' in favor of com-
piling Smalltalk directly to SOAR machine code, linearis-
ing the activation records on the machine stack, eliminat-
ing the object table, and replacing reference counting
with a new technique called Generation Scavenging. In
order to implement these techniques, we had to find new
ways of hashing objects, accessing often-used objects,
invoking blocks, referencing activation records, managing
activation record stacks, and converting the virtual
machine images.

1 . Introduction

This paper focuses on software techniques to support
Smalltalk I on conventional architectures. It reports on
our experiences implementing Smalltalk on a reduced
instruction set computer (RISC [13,8]) called SOAR (for
Smalltalk On A RISC). Although SOAR has some
hardware support for running Smalltalk, our experience
has led us to the conclusion that efficient execution of
Smalltalk requires less hardware support than we initially

I Smalltnlk-80 is a trademark of the Xerox Corporation.
Whenever we are referring to the o~eiaJ Smalltalk-80 Isaguqe
and implementation [6J, we wW use the abbreviation ST-80.
Whenever we refer to the lanouaOe and its variants generically,
apart from say implementation, we will simply sty "SmalJtslk."

Permission m copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commuted advantage.
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to repubfish, requires a fee and/
or specific pormi~on.

vide a roadmap for those wanting to implement Smalltalk
on conventional architectures. In the discussion that fol-
lows, we assume the reader is somewhat familiar with
both ST-80 [6], and with RISCs.

The designers of ST-80 adopted the purist position
that everything in the system would be an "object."
This was not limited to the usual basic data types, but
extended even to the state of the machine: activation
records, instructions, and program counters all conformed
to a specified format. For example, since the design did
not countenance pointers into the middle of subroutines,
the return address for every subroutine call and even the
program counter had to be an integer offset, not an abso-
lute addres& Even the most frequently aceeued of all
data - instructions - were constrained by this design. The
language was defined in terms of an interpreter for a vir-
tual machine with a set of instructions called
"bytecodes". This made ST-80 portable since interpreters
for this virtual machine can be straightforward. ST-80
was developed on research machines (the latest of which
is the Dorado [3,9]) that had writable control stores and
could do the interpretation in firmware. So with the
Dorado's 70ns micro-cycle time, they were able both to
define a portable virtual machine for Smalltalk, and still
achieve very acceptable performance interpreting
bytecodes (although in some circles this is not called
interpretation, but execution of native machine code.)

There are several reasons why Smalitalk programs
have proven especially difficult to execute quickly.

• The language has been defined in terms of a
bytecode interpreter. Interpreters are slow.

• The pure object-orientation of the language implies
a huge number of procedure call. ("me~ages"),
which are often time-consuming in conventional
implementations.

• The definition of Smalltalk execution and the style
of its customary use require the rapid creation and
automatie reclamation of many objects. This puts a
heavy demand on the memory management mechan-
ism.

0 1986 ACIVl 0-89791-204-7/86/0900..0107 75¢

Se~mber 1~6 OOPSLA '86 Proceedings 107

Most of the early implementations of Smalltalk on
"traditional" yon Neumann architectures have been
evaluated as slow to abysmal, as evidenced by Krasner's
collection of Smalltalk implementation studies [7]. Efforts
to speed up interpreters' execution have included Suzuki
and Terada's predeclaration of object types [16] and
Deutseh and Schiffman's caching of Smalltalk procedures
in native machine code while otherwise preserving the
bytecode orientation of the definition [4]. The SOAR
project differs from Suzuki and Terada's effort in that we
do not require pre-declaration of types for efficient execu-
tion. We differ from Deutsch and Sehiffman in that we
do not try to maintain the illusion of a virtual machine
executing byteeodes. The semantics of SOAR Smalltalk
differs from ST-80 in several ways:

• Our compiled methods contain integers (which are
also SOAR machine instructions); ST-80's contain
byteeodes.

u Our method contezts(ST-80's activation records)
have fixed size, reside on the machine stack, and are
moved into heap space only when necessary.
ST-80's are allocated from the heap like all other
objects.

u Our block contezts are different from their activation
records; ST-80 blurs the distinction between a block
and its activation record.

These differences have no effect on almmt all Smalltalk
programs, since most programs do not deal directly with
this level of the system. Furthermore, these differences
involve parts of the system at so low a level that they are
invisible in almost all other programming languages. Few
other portable languages provide explicit access to pro-
cedure stack frames and guarantee the results of manipu-

Smalltalk-80 image converter
image (rot)

(Xerox) (dmu)

lating them. Therefore, we believe that the differences we
introduce are entirely reasonable, particularly since they
allow us to achieve acceptable performance executing
Smalltalk.

Our approach does create some performance prob-
lems with the primitive operation become, which we do
support. Fortunately, this operation is rather rare, and
we are tackling the performance problem with a straight-
forward re-implementation of the system routines to
avoid using become. Eventually, we may simply cease to
support it.

The SOAR project started with the basic RISC
assumption that memory would be plentifd! and should
be traded in exchange for speed. There were two ques-
tions. First, how can Smalltalk be executed quickly on
more traditional architectures? Second, what changes to
the traditional architectural model would produce a fast
execution vehicle? The SOAR project concentrated on
both questions with approximately equal emphasis, and
our solution took the form of a judicious split of func-
tionality between innovative hardware and software sup-
port. This paper will primarily discuss the project's
answers to the first question. We have discussed the
second question in other papers [19,20,15], and Pendleton
has described the implementation of the SOAR processor
itself [14]. Currently, we are still executing on a simula-
tor running on Sun workstations. We have completely
booted the system; it paints the windows and we have
run the standard macro-benchmarks. We are waiting for
completely functional chips to plug into the board to run
on Sun workstations. The migration path from the
Xerox image to SOAR is outlined in Fig. 1. It is worth
noting that we needed to use an existing Smailtalk sys-
tem to modify the image. BS (Berkeley Smalltalk), a

Berkeley SmaIltalk SOAR compiler
(b,) (a~b~)

(dmu) (ads, pnh)

El
J

SOAR runtime system SOAR membJer SOAR simulator simulation results
(sy,) (, .) (O..daio,)

(ads, dine, pnh) (ads, dmu, pnh) (ads, dmu)

0 , 1 3
F/gure 1: Step# involved in a 8OAR simulation. First, rot removes the ob-
ject table from the Xerox ST-80 image. We then use BS (Berkeley Smalltalk)
to make any modifications necessary in the image (e.g. to eliminate some be-
comes). BS is s 08000 version of ST-80 which maintains the bytecode virtual
machine as its lowest level: it was not a system noted for speed. Newb2s pro-
duces a Smalltalk image for SOAR by converting the BS objects to SOAR
format and running Hilfinger's Slapdash compiler, which translates the
bytecoded programs to SOAR instructions. We have also coded the
Smalltalk primitive operations and storage management software in SOAR
assembly lansusge. After this is assembled, it is fed to our SOAR simulator
along with the Smalltalk image. The initials below each system indicate its
author: ads is Daiu Samples, pnh is Paul Hilfinger, and dmu is David Un~u'.

108 OOPSLA ~ Proceedings Sel~nter ~ge6

bytecode interpreter on Sun workstations that interprets
bytecodes, provided that system.

The complete SOAR system is projected to run ten
times faster than BS, about five times faster than the sys-
tem that Deutsch and Schiffman describe, or about the
speed of the implementation on the Dorado.

We will describe our software solutions in a bottom-
up (inside-out) order. Thus, we start with general object
management, including addressing and reclamation, and
proceed to compiled subroutines, activation records (con-
texts), and processes. Table 2 summarizes this paper by
listing problems we have considered and a brief outline of
our solutions. The byteeode-*SOAR compiler is outside
the scope of this paper; see Bush's description for more
details [2].

2. Direct Addressing - Elimln&tlng the Object Table

ST-80 addresses objects by an integer index into an
object table, not through a direct word or byte address.
Few real machines have the ability to perform such
segment-oriented addressing on 100,000 segments averag-
ing 14 words in length. Those that can - such as the
iAPX-432 - pay a large price in speed or cost or both. In
Smalltalk, the cost of indirection is justified by the need
for cheap memory compaction: when objects are moved,
only the object table need be updated. However, we did
not want to penalize every object access just to ease com-
paction, so we eliminated the object table by designing &
reclamation algorithm that also compacts. BS and SOAR
are the only Smalltalk systems without object tables (Figs
3 and 4).

The indirection through such a table is an indirect
cost of other storage management strategies that is some-
times overlooked, it can be a bottleneck: we have deter-
mined that a typical ST-80 system accesses the object
table 1.2 times per bytecode [17]. Assuming SOAR per-
forms as fast as the Dorado (300K bytecode/sec), SOAR
would access the object table 360,000 times per second.
The absolute minimum table access would be a single
load instruction, which takes two cycles. Assuming 400 ns
per cycle, such an indirection would take 800 ns and, at
360,000 table accesses per second, that would be 0.29
seconds of indirection time for each second of processing
time. Discussions with Deutsch suggest that further
optimization possibly could halve this overhead. In other
words, an object table would slow SOAR by 15% to
29%.

We have also estimated the impact of indirection on
code size. An Object Table would require an extra
instruction to load or store a literal variable, and one
indirection in the method prologue (for the receiver). We
assume that many indirections will be optimized away as
in Deutsch and Schiffman's system, that the Object Table
can reference as many objects as a direct-pointer system
can, and that all indirect addresses in ST-80 and direct
addresses in SOAR occupy 32-bit words. Table 5 presents
our analysis under these assumptions. The extra code for
an object table would add 2% to the size of the system.

Table 2: Summary of problems and solutions

s objec t addrsJmlng: Use direct pointers, obviating
the Object Table.

• • l o w ' b e c o m e ' pr imi t ive sans Objec t T a b l e :
Rewrite system classes to use explicit indirection.

• consis tent hashing sans O b j e c t T a b l e : Extend
object headers with a hash value fixed upon object
creation.

• accessing wel l -known objects: Use a registry of
needed objects.

• s to rage rec lamat ion: Use Generation Scavenging:
stop and copy young survivors.

• m e m o r y f r agmen ta t ion : Compact young objects
during scavenging. Reorganize old objects ol~ine.
Page old objects.

• efficient cre&tion/delet ion for ae t lva t lon
records: Use a stack of activation records for nor-
real cases.

• po in te rs to se t lva t lon records: Detect non-lifo
activation records by checking stores and return
values. Maintain a table of pointers to activation
records in the stack. On return from a non-lifo con-
text, copy it to the heap, update pointers by search-
ing the table, and remove its entries from the table.
Put object headers in the gaps between activation
records so that an activation record on the stack
looks like an object.

• block contex t objects: Separate block objects
from their activation records. A block object is a
real object; an activation record is just an activation
record. Create block objects upon blockCopy (if
necessary); create activation records upon evaluating
the block.

• freeing ac t iva t ion record s tack: The ~mmpend
primitive checks for calls from terminate, whereupon
it rescues non-lifo contexts and reclaims the stack.

• fas t me thod lookup: Use an in-line cache-pa tch
method lookups to direct calls. A method's prologue
checks that it is appropriate for the receiver's type.
When methods are redefined, their code is modified
to force invalidation of cached in-line calls to them.

• conver t ing con tex t objects in Image: Throw
them away--use the genesis method.

• poin ters in to scavenged methods : Methods must
be old; they are only garbage collected ollline.

September 1986 OOPSLA '86 Proceedings 109

Indirect

Object 1

table index [
table index ~
table index
table index

Object Table

add,. , ;
add,* .

e~t' addrm
e ~ t address --
e ~ t " address

Object 2

table index
table index
table index
table index

Figure 8." Indirect addresslno. In traditional ST-80 systems, each pointer is
really s table index. The table entry contains the tacget's reference count
and memory address. This indirection required previous ST-80 systems to
dedicate base registers to frequently accessed objects. The overhead to up-
date these registers slowed each procedure call and return.

Direct

Object 1 Object 2

-I I J
l address

address address
address address
address [address J

Figure 4: Direct addressing. A SOAR pointer contains the virtual address
of the tzrget object. This is the fastest way to follow pointers.

[Table S: S ta t i c cos t o f objec t Indh'eet lon.
method prologues 4654
literal variable loads 3532
liters] variable stores 254

I

i total image size 1,500 kB
relative cost of additional code 2.25~

Becomes. Although we eliminated the object table to
improve performance, there is one ST-80 primitive opera-
tion that runs much slower without it. The become
primitive exchanges the identities of two objects, so that
all pointers to the first object are redirected to the
second, and vice versa.

A ST-80 system with an object table can perform a
become quickly by exchanging object table entries (Figure
6). A system without an object table {such as SOAR)
must search objects and exchange pointers. Although we
have devised strategies to limit the search, a worst case
become still involves a search throughout virtual memory.
The resulting long pause is generally unacceptable. We
avoided this problem by rewriting the software for ST-80
data structures to avoid becomes. To establish the feasi-
bility of this approach, we added new Collection classes
that mimic old ones without resorting to becomes (Figure
7), and then modified the macro-benchmarks to take
advantage of our become-less classes. Wallace discusses
the details [21]. Table 8 presents an analysis of this
change on system performance. Our efforts to eliminate
becomes from programs that did use them were hand-
somely repaid with an 18% to 28% performance

improvement.

Although we have eliminated becomes invoked by
the system classes, the SOAR programmer must either
shy away from this primitive, or be prepared to pay a
stiff performance penalty. However, we believe that the
become primitive is so intrinsically expensive - requiring
either a scan of virtual memory or a level of indirection
that slows down many frequent operations - that alterna-
tives should be sought. Eventually, all instances of
becomes will be removed from the SOAR system, and the
primitive no longer supported. The SWAMP project has
reached the same conclusion [11].

F requen t ly -used objects . Although we have elim-
inated the object table, there remain a few objects, such
as nil, true, false, Point, String etc that the runtime sup-
port routines must locate quickly. This is almost the
same set of objects with permanently assigned object
table indices in ST-80. Our solution to this problem is to
create the registry, a static system data structure con-
talning a table of pointers to often-nsed objects. It also
contains other necessary system data. The registry and
the "registered" objects (there are about 18 in our sys-
tem) are locked down by assigning them to fixed locations
in memory.

Hashing. Perhaps the subtlest problem with eliminating
the object table arises from the semantics required of all
Smalltalk objects to allow the fast implementation of the
ubiquitous Smalltalk Dictionaries. For performance,
Smalltalk requires that each object be capable of quickly
returning a hash value that remains invariant over the

110 OOPSLA '86 Proceedings September 1986

originaJ
set

\1/
crests copy of self self become: copy

\I/ \ , /

F/gure 8: Growinl with become. The sequence above illustrates how a set
employs become to grow in a ST-80 eystem. Initially, the set is {2, 3, 5} and
we attempt to add 7 to it. The set createl a larger copy of itself and uses be-
come: to replace the original set with the larger version.

original
set

:reate new array part

\ , /
ES

~witch internal point*

\1/
I

Fioure 7: Growing without become.

The sequence above illustrates how our modified sets Mow without resorting
to become. The contents are stored in a separate array. To Mow, the set al-
locates a larger array, initializes it, and redirects an internal pointer to the
new array. We have replaced cmtly implicit indirection with explicit indirec-
tion.

T a b l e 8: P e r f o r m a n c e i m p s z t o f e l l m i n a t l a g becomes .

benchmark

printDeflnition
compiler
decompiler
printHierarchy

becomes duration
w/becomes

(cycles)

0 75,475
7 1,383,201

38 4,045,841
3 165,007

duration
w/o becomes

(cycles)

75,317
1,127,658
3,006,074

110,574

cycles
saved

0%
18%

28%

September 1986 OOPSLA '86 Proceedings 111

ohject's lifetime. Since we assume that time is critical
and space is plentiful, we chose to add a field to the
header of each object, containing an integer assigned by
the iustantiation primitive (new and new:). The hash
primitive simply returns this field.

3. Generation Scavenging

Early in the SOAR project, we realized that
automatic storage allocation and reclamation could easily
become a bottleneck. Our measurements as well as those
of Deutsch and Schiffman, indicated that overhead for
allocation and freeing in ST-80 systems ranged from 10-
20%. Furthermore, we knew that some reclamation algo-
rithms introduced annoying pauses; some required the
programmer to explicitly free circular structures of
objects; and most had been implemented in microcode.
Since we wanted to attain good performance without
microcode, we designed, implemented, and measured
Generation Scavenging, a new garbage collection tech-
nique that limits pause times to a fraction of a second,
meshes well with virtual memory, reclaims circular struc-
tures, and uses only 3% of the CPU time on SOAR [18].
This is less than a third of the time of deferred reference
counting, the next best algorithm. The technique
requires no hardware support--in particular, it requires
no microcode. (Experience with SOAR has also made us
realize that some of the other algorithms that are usually
microcoded need not be.)

Briefly and simply, memory is divided into two
regions: one containing 'old' objects, the other containing
'new' objects. All objects are allocated out of new space,
and when this space is depleted, the live new objects are
traversed and copied (see Fig. O). The starting points of
the traversai are the object pointers in the activation
stack, together with all pointers from old to new objects.
To find the latter, the system performs a cross-
generation check of stores into objects, and updates a

objects createdbere

scavenge obieets to bere ~ o J
survivors of previous scavenge

promote to here

table for each store of a new into an old object. Since
most Smalitalk objects die young, there are relatively few
objects that survive; on the average, only 3% to 5% of
new objects survive and have to be moved. The algo-
rithm actually used is more sophisticated than that just
described (for example, there are more than two regions),
but nevertheless executes with less overhead than mark-
and-sweep or reference counting algorithms (3% vs 9-
20%).

Not only is the cost of the scavenging operation per
se quite small, but the distributed overhead entailed by
the cross-generation checks is also small. These checks
require few instructions and no extra data references.
One could perform them in software by checking the
source and target pointers against the new/old dividing
line. The SOAR store instruction does the checks in
hardware using tag bits in the address field. It turns out
that doing the check in software is so simple and infre-
quent (a 1% performance penalty) that it was a mistake
to have put the check into the hardware. Furthermore,
storing a young pointer into an old object is so rare (only
4% of all stores) that recording it adds only 0.05% over-
head. Using a small number of generations permits a
cheap software check, and contrasts with, for example,
ZetaLisp's strategy, which requires extra hardware in the
page map to keep track of many small generations and to
check stores [12].

4. Activation record mane4ement

Everything in ST-80 is an object, including activa-
tion records, if ST-80 were implemented straightfor-
wardly from its description (as were most of the early
bytecode interpreters) then each procedure call (message
send) would require the allocation and initialization of an
activation record from the heap. Each return would
leave a dead activation record for garbage collection to
reclaim. Given the high percentage of procedure calls in

o00o-~

o

O 0

O

new objects

physics] memory

old objects

pqed virtual memory

Figure g: Bird'e eve uiew of Generation Scauenging. After an object has
survived enough scavenges, it is promoted to the old object men. New ob-
jects are locked down in physical memory; old objects reside in virtual
memory and may be paged out.

112 OOPSLA '86 Proceedings September 1986

Smalltalk programs activation record allocation and flee-
ing can be a very large proportion of the running time.
Falcone's measurements indicate that 83% of all objects
allocated in ST-80 are activation records, and 28% of all
bytecodes executed result in calls of one sort or another
[5]. So.some sort of blending of Smalltalk's model of
activation records (context objects} with an efficient stack
implementation is indicated for smooth execution [22].
This mixture seems particularly inviting considering that,
according to Deutsch and Schiffman, 85% of all Smalltalk
activation records behave like t radi t ional 'ac t ivat ion
records during their lifetime. Most of them are created
by a call, never used as data objects, and released as soon
as the executing procedure (method) exits.

This problem has been attacked in other Smalltalk
systems on conventional machines. Suzuki and Terada's
system keeps a small memory area for the machine stack.
When the stack becomes full, activation records are
swapped out to heap space in first-in-first-out order
(much like managing register windows on a RISC chip}.
If any context in the stack needs to be retained then all
contexts in the stack are moved to heap space. Deutsch
and Schiifman's system creates a context object either in
heap space, or on the machine stack, depending on how
and when the object is created. If a pointer is generated
to a context on the machine stack, then it is marked spe-
cially to be popped into heap space instead of oblivion.
We understand that the Tektronix system caches the
current context in a convenient format, and eliminates
the allocation and initialization for leaf activation
records.

Our approach differs in two ways: we have a more
selective algorithm for detecting those activation records

that need to be moved to the heap, and we don't try very
hard to mask the differences between ST-80 contexts and
our activation records. Objects in heap space can point
to contexts still on the stack. Figure I0 illustrates how
registers are stored in the stack with 'gaps' between the
activation records: the gaps contain the context object
headers. The main difference between our implementa-
tion and ST-80 is that we support only one size of activa-
tion record: the SOAR stack frame is sixteen words.
Once this change is promulgated throughout the system,
it doesn't make any difference to objects manipulating
activation records whether the AR's are on the stack or
in heap space.

But now we have the problem of knowing when an
activation record on the top of the machine stack must
be discarded or moved into heap space. For example, a
subroutine can obtain a pointer to its own activation
record and place it in a global variable. After the sub-
routine returns, another routine can inspect the activa-
tion record via the global variable. In this case, it is
necessary to have moved the activation from the machine
stack into heap space. (See Fig. 11.) Extraordinary
measures are required t o preserve the correct objects.
Our strategy is like that for generation scavenging: we
monitor stores and returns. When a pointer to an activa~
tion record is either stored into an object or returned up
the call stack, the referenced activation record is marked
as non-lifo: that is, it may outlive its existence on the
LIFO machine stack. When a non-lifo activation record
is about to be destroyed (when a return instruction would
pop it off" the stack) it must be moved from the stack to
the heap.

Hish memory

ARI
header
AR2

header
AR3

header

header

header

header

otack pointer

Low memory

F/gore 10: SOAR Activation rccorda, showing the gape in memory in which
the object headers for the context objects are placed. The dialpram shows
three active contexts in the stack.

September 1966 OOPSLA '86 Proceedings 113

Machine
stack Heap space stack Heap space

P

Maeh i~

...... -.-.- ,....I 7

[]

" ~ -,.....,.

I p i
P store~ a pointer to ire When P returns, its activation

activation record must be moved to Heap space

because of this pointer.

Figure 11 Saving activation records

Dang l ing P o i n t e r s . Any time a new activation record
is allocated on the stack, all entries in that record must
be initialized to nil to avoid dangling references (see
Fig. 12). This is an unnecessary overhead if one is using
fixed-length records that may not be completely utilized
by all activations, as we are on SOAR. We avoid this
overhead by keeping a record of the highest point
reached on the stack with a highwater mark. The SOAR
register window handler keeps track of this mark. Gen-
eration scavenging scans the active portion of the stack,
and ntis all portions of the stack between the current
activation record and the highwater mark. While objects
may be scavenged needlessly, (again, see Fig. 12) they are
guaranteed to exist. By initializing only those portions of
the activation record that are used, and keeping track of
the highwater mark between generation scavenges, we
eliminate any possibility of dangling references, and obvi-
ate initializing entire activation records.

Debugge r . One problem with our modification of the
format and handling of activation records is that the
ST-80 debugger that comes with the image from Xerox
PARC can no longer be used. Debugging is only slightly
more complicated for SOAR code than with bytecodes.
It certainly is no worse than any other machine code
debugger, and, because it will be embedded in a
Smalltalk system, it will certainly be a 'symbolic'
debugger: the user should never see have to SOAR
machine code. While decompiling SOAR code to
Smalltalk may be difficult, having the source code
resident removes the difficulty. Because Smalltslk pro-
cedures are small, and compilation is fast, an error loca-
tion in a sequence of SOAR instructions can be quickly
mapped onto the appropriate location in the Smalltalk
routine by simply recompiling the routine where the
offense occurred. (The Turbo-Pascal system makes very
effective use of this technique [1].) We have a debugger
implemented for Smalltalk on SOAR, although it has not
yet been incorporated into our system and itself
debugged [10 I. There are still open questions in this area,
and work on the debugger remains in progress.

Blocks . Activation record management b'ecomes much
more complicated when SmaUtalk blocks are imple-
mented. ST-80 blocks implement control structures by
allowing one routine to control execution in another's
context. Frequently, a block is created, passed down the
call chain to a subroutine that repeatedly invokes the
block and then returns. For good performance, we do
not mark an activation record as non-lifo if the only
references to it are from blocks. Instead, the store and
return checks treat the block as a surrogate for its home
activation record. If a pointer to a block is stored, its
home gets marked as non-lifo. In other words, although
a block is an object that refers to a context, we do not
mark that context as non-lifo until the block itself
becomes non-lifo.

We differ from Deutsch and Schiffman in that,
apparently, they create activation records for Smalltalk
blocks automatically in heap space, while we treat them
as stack allocated activation records. Without going into
great detail, we would criticize the design of ST-80 on
this point. While Smalltalk separates the notion of a pro-
cedure and its associated activation record(s), the separa-
tion between blocks and their activation records is mud-
died. In our implementation, we separate these inap-
propriately confused notions, and keep activation records
for blocks on the machine stack along with activation
records for procedures. Blocks are now objects in their
own right. (Peter Deutsch put this bee in our bonnet.)

6. Process Management

In ST-80, processes are simply objects that point to
the current activation record, which in turn points to the
preceding activation. When the process object is no
longer referenced, it is reclaimed and all activation
records for that process are also reclaimed if not refer-
enced elsewhere. Because SOAR handles activation
records differently, it requires special measures to initial-
ize processes and activation records, and to reclaim the
memory they use when they are no longer active.

114 OOPSLA '86 Proceedings September 1986

MACHINE STACK

Ii 111 IV

HEAP SPACE

Figure 12: Machine stacks and scavenging of nonezistent objects. (!) Pro-
cedure A calls procedure B. Procedure B creates a pointer to object C in its
activation record and (!1) returns. At this point a garbage collection takes
place and (!11) reclaims the memory occupied by the now useless object C.
(IV) Procedure A now calls procedure D, which does not rcinitialize the regis-
ter containing that old pointer to C. If another garbage collection were to

occur at (IV), the activation record for D would contain a pointer to an ob-
ject that no longer exists, if no garbage collection were done between (!I)
and (IV), then C would be retained by a garbage collection at (IV). The
method described in the text using a hiOh*uatcr mark would have allied the
pointer to C during the garbage collection at (Ii).

On SOAR, each process is allocated a fixed size
chunk of memory for its activation stack. When there
are more activations in a process than can fit in this
memory, it allocates a new chunk and links the new
activation stack to the full one. Managing activation
stacks works well on SOAR because of mechanisms that
exist for RISC register windows. Whenever a call (or
message send) would deplete the number of register win-
dows available on the chip, the processor branches to a
window handler. The handler spills the oldest window on
the chip into the activation stack, and also checks for
stack overflow, if the activation stack is also about to
overflow, then the handler spills the register windows still
on chip into the current activation stack, allocates and
initializes a new activation stack, and begins execution in
the new activation stack. When a return instruction is
interrupted by a window underflow (when the appropri-
ate activation record is not on chip). The handler per-
forms the inverse operation.

Images. Changing instruction sets presents another
problem related to processes. SmaUtalk images are saved
states of execution. There is no such thing as a bootstrap
of Smalltaik because all images are frozen snapshots of
executing systems, including any active processes. Some-
time in the early 1980's one version of ST-80 was booted
and initialized, and all versions since have been snapshots
of that original boot. That is, Smalltalk systems are
saved, but n~)t born again.

Because we were throwing away bytecodes, lineariz-
ing activation records on a machine stack, and changing
the garbage collection method (among other things), we
determined that converting a running image was much
more work than simply booting a compiled system. We
then had to determine how to boot and initialize the sys-
tem. When we asked Peter Deutsch about this possibility,
he responded that it had been so long since anyone at
Xerox had tried, he didn't know if the initialization code
worked any longer. Fortunately for us, the code in the
SmaUtalk system for booting was correct. We wrote one
procedure that would call and initialize all of the
appropriate objects and begin spinning off the necessary
background processes. The procedure, called genesis,
consists of less than a dozen lines of Smalltalk.

Dead processes. There was another consequence of our
decision to "stackify" the Smailtalk activation records:
we could no longer depend on automatic storage manage-
ment to reclaim dead processes. The problem occurs
principally because the Xerox Smalltalk implementation
simply suspends processes and depends on reference
counting to reclaim the storage; hence, it does not pro-
vide a "terminate process" primitive. While generation
scavenging reclaims the process objects themselves, the
activation record stacks are not Smalltalk objects in heap
space and must be treated differently. But the lack of a
'process terminate' means it is difficult to tell when
activation record stacks can be reclaimed. We have

September 1986 OOPSLA '86 Proceedings 115

solved this problem by having our version of the
"suspend process" primitive check all process suspensions
in the context of the call to determine if it really is a
suspension or an effective process termination. For a ter-
mination, the process stack is reclaimed immediately.

8. Results

Anyone interested in implementing Smalltaik
efficiently needs not only to understand the dynamics of
ST-80 as defined, but also the potential consequences of
modifying that definition. In Table 13 we present figures
from our simulations of our system running' the standard
macrobenchmarks 2 to judge the execution efficiency of
Smalltalk implementations.

One conclusion is apparent: the system primitives
are important. For every second spent in compiled code,
three seconds are spent in the runtime system.

Of all the features designed into the system, the
software features turn out to be more important than the
hardware features in their effect on the final performance
figures. The speedups attributable to specific features of
the hardware and software are summarized in Table 14.
This table indicates how much longer a task would take
if the indicated feature were removed from our system.
For example if we removed the Deutsch and Schiffman
in-line cache from our system, it would run 26% slower.
If all the features indicated were removed, a task that
currently takes I00 seconds would then take 263 seconds.

The SOAR project took the well-worn phrase
"hardware prices are falling" at face value and assumed
that users would rather spend money on memory chips
than on complicated mechanisms. Compiling Smalltalk
into SOAR increases the size of the Smalltalk image by
about 0.5 Mb. Deutsch and Schiffman estimated that
compiling all of the Smalltalk image into 68000 code
would increase its size by one megabyte. Given that the
original Smailtalk image is over 1.5 Mb, compiling to
SOAR is a reasonable tradeoff.

Table 15 contains information on the amount of
code that had to be written to implement Smalltalk on
SOAR. The C code running on the Sun includes the
interface routines with the SOAR board, interface rou-
tines with the Sun's graphics display device s , floating
point routines, and file system interface routines. It does
not include the code for Bill Bush's Smalltaik--*SOAR
compiler written in Smalltalk, nor the code in genesis.

7. Conclusions

Our experience has confirmed that it is possible to
compile Smailtalk to the native code of more traditional
yon Neumann architectures and achieve reasonable per-
formance. In-line caching of method lookup, use of a
conventional activation stack (with relatively inconse-
quential modifications to the semantics of blocks and
activation contexts), use of direct object pointers, and use
of generation scavenging for storage reclamation were of
particular importance in achieving this performance. In
considering features of RISC architectures for supporting

As distinguished from the microbenchmarks, which check
the efficiency of the more primitive facilities of the system (plus,
array reference, string concatenation, for example).

s BitBIt is on the Sun side, but CharaeterScanner is on the
SOAR side.

T a b l e 18. T i m e in m a j o r ac t iv i t i e s fo r m s e r o b e n e h m s r k s .
Benchmark time in time in total time in

runtime library cache check runtime system
classOrganizer 59% 14% 73%
compilerBenchmark 66% 10% 76%
decompiler 68% 10% 78°J~
printDefinition 62% l 1~o 73%
printHierarchy 76% 7% 83%

average 68% 10% 76%

T a b l e 14. S o f t w a r e vs. H a r d w a r e I m p r o v e m e n t s .
Software 158%

compilation (estimated) 100%
in-line cache 26%
direct pointers + GS 32%

Hardware 105oJ~
register windows 46%
tagged integers 33%
non-delayed jumps 11%
single cycle nilling of activation record 4%
software interrupt 7%
trap instructions 4%

116 OOPSLA '88 Proceedings September 1986

Table 15: Code for S O A R run t ime sys tem.
files lines words chars function
19 3365 ! 2491 90094 mist files
16 3847 11799 95817 prim files
2 1126 4845 34141 trap handler files
3 364 1604 11063 process files

40 8702 30739 231115 SOAR sub-total files
22 3134 9900 73518 Sun interface files (in C)
66 11836 40648 304633 grand totals

Smalltalk, we found that register windows and very sim-
ple dynamic type checking for the common primitive
arithmetic operations on integers provided almost 75% of
the performance improvement we achieved through
hardware.

A bytecode virtual machine is very effective for
defining precisely the semantics of a language, and
byteeode interpretation is an exceptionally fast way of
obtaining a slow implementation of that language. The
SOAR project has confirmed that memory can be traded
for performance--that compiling directly to native code
on a RISC architecture is a viable implementation route
for a fast implementation. Smalltalk on 400ns SOAR will
run as fast as the fastest known implementation, the
Xerox Dorado.

8. Acknowledgements

Many of the ideas in this paper are refinements of,
direct theft of, or reactions against ideas batted around
in conversations with Peter Deutseh: his inspiring
influence is gratefully acknowledged. We would also like
to thank Bill Bush for writing the Smalltalk version of
the Smalltalk--,SOAR compiler and for many discussions
on design issues; Joan Pendleton, Will Brown, and Frank
Dunlap for help in (almost) mastering board schematics;
and, of course, Dave Patterson for support, monetary and
otherwise.

This project was sponsared by Defense Advance
Research Projects Agency (DoD) ARPA Order No. 3803,
monitored by Naval Electronic System Command under
Contract No. N00034-K-0251. It was also sponsored by
Defense Advance Research'Projects Agency (DoD) Arpa
Order No. 4871, monitored by Naval Electronic Systems
Command under contract N00039-84-C-0089. Dain Sam-
pies is supported in part by an AT&T Bell Laboratories
Scholarship.

9.]Bibliography

!. Turbo-Pascal, Borland International, Scotts Valley,
Ca., 1986.

2. William R. Bush, "Smalltalk-80 to SOAR Code",
Master's thesis, University of California at Berkeley,
CS Dept., Nov. 1985.

3. L. Peter Deutsch, "The Dorado Smalltalk-80 Imple-
mentation:]Iardware Arehitecture's Impact on
Software Architecture, " in Smalltalk-80: Bits of
tlistory, Words of Advice, G. Krasner (editor),
September, 1983, pp 113-126.

4. L. Peter Deutsch, Allan M. Schiffman "Efficient
Implementation of the Smalltalk-80 System", l l th
POPL, Salt Lake City, Utah, 1984 pp 297-302.

5. Joseph R. Falcons, "The Analysis of the Smalltaik-80
System at Hewlett-Packard", in Smalltalk-80: Bits of
ilistory, Words of Advice, G. Krasner (editor), Sep-
tember, 1983.

6. A. Goldberg, D. Robson Smalltalk-80: The Language
and its Implementation, Addison-Wesley, Reading,
MA, 1983.

7. G. Krasner, Smalltalk-80: Bits of History, Words of
Advice, Addison-Wesley, Reading, MA, 1983.

8. Manolis G.It. Katevenis, Reduced Instruction Set
Computer Architectures for I~LS[, PhD thesis,
University of California, Berkeley, October 1983.

O. Butler W. Lampson, "The Dorado: A High-
Performance Personal Computer", Xerox PARC
Technical Report CSL-81-1, Jan. 1981.

I0. Peter K. Lee, "The Design of a Debugger for SOAR",
Master's Report, UC Berkeley, 1984.

l l. David M. Lewis, David R. Galloway, Robert J.
Francis, Brian W. Thomson "Swamp: A Fast Proces-
sor for Smalltalk-80," Proceedings OOPSLA 1986,
ACM, 1086.

12. D. A. Moon, "Architecture of the Symbolies 3600,"
Twelfth Annual International Symposium on Com-
puter Architecture, l~oston, MA, June 1985, pp 76-83.

13. David Patterson, "Reduced Instruction Set Comput-
ers," Communications of the ACM, 28(1) Jan. 1985,
pp 8-21.

Septmnber 1986 OOPSLA '86 Proceedings 117

14. Joan Pendleton, "A Design Methodology for VLSI
Processors", PhD thesis, Dept. of EECS, University of
California, Berkeley, Sept. 1985.

15. Dain Samples, Mike Klein, Pete Foley, "SOAR Archi-
tecture", Computer Science Division (EECS), Univer-
sity of California, Tech. rep. UCB/CSD 85/226,
March 1985.

16. Norihisa Suzuki, Minoru Terada "Creating Efficient
Systems for Object-Oriented Languages", l l th POPL,
Salt Like City, Utah, 1984, pp 290-296.

17. David Ungnr, David Patterson, "Berkeley Smalltalk:
Who Knows Where the Time Goes!", in
Smalltalk.80: Bits of History, Words of Advice, G.
Krasner (editor), September, 1983.

18. David Ungur, Generation Scavenging: A Non-
disruptive High Performance Storage Reclamation
Algorithm, ACM Software Eng. NoIes/SIGPLAN
Notices Software Engineering Symposium on Practi-
cal Software Development Environments, Pittsburgh,
PA, April, 1984.

19. David Ungnr, Ricki Blau, Peter Foley, A. Daln Sam-
pies, and David Patterson, "Architecture of SOAR:
Smalltalk on a RISC", l l th Annual International
Symposium on Computer Architecture, Ann Arbor,
Michigan, June 4-7, 1084.

20. David Ungar, "The Design and Evaluation of A High
Performance Smalltalk System", PhD thesis, UC
Berkeley, 1086; issued as tech. rpt. UCB/CSD 86/287.

21. Dave Wallace, "Making Smalitalk less Becoming:
Removing Primitive Becomes from Smalltalk-80", in
Smalitaik on a RISC, Architectural Investigations,
Proceedings of CS292R, April, 1983.

22. Your Waring Cookbook: The /~easure of Blending
(For the 14-speed blender), Waring Food Corporation,
[undated], p 1.

118 OOPSLA '86 Proceedings September 1986

