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It is so difficult to find the beginning. Or, better, it supposed. This survey of our implementation should pro- 
is difficult to begin at the beginning. And not try to 
go further back. 
- Ludwig Wittgenstein, On Certainty, §471. 

A b s t r a c t  

We have implemented Smalltalk-80 on an instruction- 
level simulator for a RISC microcomputer called SOAR. 
Measurements suggest that even a conventional computer 
can provide high performance for Smalltalk-80 by aban- 
doning the 'Smalltalk Virtual Machine' in favor of com- 
piling Smalltalk directly to SOAR machine code, linearis- 
ing the activation records on the machine stack, eliminat- 
ing the object table, and replacing reference counting 
with a new technique called Generation Scavenging. In 
order to implement these techniques, we had to find new 
ways of hashing objects, accessing often-used objects, 
invoking blocks, referencing activation records, managing 
activation record stacks, and converting the virtual 
machine images. 

1 .  Introduction 

This paper focuses on software techniques to support 
Smalltalk I on conventional architectures. It reports on 
our experiences implementing Smalltalk on a reduced 
instruction set computer (RISC [13,8]) called SOAR (for 
Smalltalk On A RISC). Although SOAR has some 
hardware support for running Smalltalk, our experience 
has led us to the conclusion that efficient execution of 
Smalltalk requires less hardware support than we initially 

I Smalltnlk-80 is a trademark of the Xerox Corporation. 
Whenever we are referring to the o~eiaJ Smalltalk-80 Isaguqe 
and implementation [6J, we wW use the abbreviation ST-80. 
Whenever we refer to the lanouaOe and its variants generically, 
apart from say implementation, we will simply sty "SmalJtslk." 
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vide a roadmap for those wanting to implement Smalltalk 
on conventional architectures. In the discussion that fol- 
lows, we assume the reader is somewhat familiar with 
both ST-80 [6], and with RISCs. 

The designers of ST-80 adopted the purist position 
that everything in the system would be an "object." 
This was not limited to the usual basic data types, but 
extended even to the state of the machine: activation 
records, instructions, and program counters all conformed 
to a specified format. For example, since the design did 
not countenance pointers into the middle of subroutines, 
the return address for every subroutine call and even the 
program counter had to be an integer offset, not an abso- 
lute addres& Even the most frequently aceeued of all 
data - instructions - were constrained by this design. The 
language was defined in terms of an interpreter for a vir- 
tual machine with a set of instructions called 
"bytecodes". This made ST-80 portable since interpreters 
for this virtual machine can be straightforward. ST-80 
was developed on research machines (the latest of which 
is the Dorado [3,9]) that had writable control stores and 
could do the interpretation in firmware. So with the 
Dorado's 70ns micro-cycle time, they were able both to 
define a portable virtual machine for Smalltalk, and still 
achieve very acceptable performance interpreting 
bytecodes (although in some circles this is not called 
interpretation, but execution of native machine code.) 

There are several reasons why Smalitalk programs 
have proven especially difficult to execute quickly. 

• The language has been defined in terms of a 
bytecode interpreter. Interpreters are slow. 

• The pure object-orientation of the language implies 
a huge number of procedure call. ("me~ages"), 
which are often time-consuming in conventional 
implementations. 

• The definition of Smalltalk execution and the style 
of its customary use require the rapid creation and 
automatie reclamation of many objects. This puts a 
heavy demand on the memory management mechan- 
ism. 
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Most of the early implementations of Smalltalk on 
"traditional" yon Neumann architectures have been 
evaluated as slow to abysmal, as evidenced by Krasner's 
collection of Smalltalk implementation studies [7]. Efforts 
to speed up interpreters' execution have included Suzuki 
and Terada's predeclaration of object types [16] and 
Deutseh and Schiffman's caching of Smalltalk procedures 
in native machine code while otherwise preserving the 
bytecode orientation of the definition [4]. The SOAR 
project differs from Suzuki and Terada's effort in that we 
do not require pre-declaration of types for efficient execu- 
tion. We differ from Deutsch and Sehiffman in that we 
do not try to maintain the illusion of a virtual machine 
executing byteeodes. The semantics of SOAR Smalltalk 
differs from ST-80 in several ways: 

• Our compiled methods contain integers (which are 
also SOAR machine instructions); ST-80's contain 
byteeodes. 

u Our method contezts(ST-80's activation records) 
have fixed size, reside on the machine stack, and are 
moved into heap space only when necessary. 
ST-80's are allocated from the heap like all other 
objects. 

u Our block contezts are different from their activation 
records; ST-80 blurs the distinction between a block 
and its activation record. 

These differences have no effect on almmt all Smalltalk 
programs, since most programs do not deal directly with 
this level of the system. Furthermore, these differences 
involve parts of the system at so low a level that they are 
invisible in almost all other programming languages. Few 
other portable languages provide explicit access to pro- 
cedure stack frames and guarantee the results of manipu- 

Smalltalk-80 image converter 
image (rot) 

(Xerox) (dmu) 

lating them. Therefore, we believe that the differences we 
introduce are entirely reasonable, particularly since they 
allow us to achieve acceptable performance executing 
Smalltalk. 

Our approach does create some performance prob- 
lems with the primitive operation become, which we do 
support. Fortunately, this operation is rather rare, and 
we are tackling the performance problem with a straight- 
forward re-implementation of the system routines to 
avoid using become. Eventually, we may simply cease to 
support it. 

The SOAR project started with the basic RISC 
assumption that memory would be plentifd! and should 
be traded in exchange for speed. There were two ques- 
tions. First, how can Smalltalk be executed quickly on 
more traditional architectures? Second, what changes to 
the traditional architectural model would produce a fast 
execution vehicle? The SOAR project concentrated on 
both questions with approximately equal emphasis, and 
our solution took the form of a judicious split of func- 
tionality between innovative hardware and software sup- 
port. This paper will primarily discuss the project's 
answers to the first question. We have discussed the 
second question in other papers [19,20,15], and Pendleton 
has described the implementation of the SOAR processor 
itself [14]. Currently, we are still executing on a simula- 
tor running on Sun workstations. We have completely 
booted the system; it paints the windows and we have 
run the standard macro-benchmarks. We are waiting for 
completely functional chips to plug into the board to run 
on Sun workstations. The migration path from the 
Xerox image to SOAR is outlined in Fig. 1. It is worth 
noting that we needed to use an existing Smailtalk sys- 
tem to modify the image. BS (Berkeley Smalltalk), a 

Berkeley SmaIltalk SOAR compiler 
(b,) (a~b~) 

(dmu) (ads, pnh) 

El 
J 

SOAR runtime system SOAR membJer SOAR simulator simulation results 
(sy,) ( , . )  (O..daio,) 

(ads, dine, pnh) (ads, dmu, pnh) (ads, dmu) 

0 , 1 3  
F/gure 1: Step# involved in a 8OAR simulation. First, rot removes the ob- 
ject table from the Xerox ST-80 image. We then use BS (Berkeley Smalltalk) 
to make any modifications necessary in the image (e.g. to eliminate some be- 
comes). BS is s 08000 version of ST-80 which maintains the bytecode virtual 
machine as its lowest level: it was not a system noted for speed. Newb2s pro- 
duces a Smalltalk image for SOAR by converting the BS objects to SOAR 
format and running Hilfinger's Slapdash compiler, which translates the 
bytecoded programs to SOAR instructions. We have also coded the 
Smalltalk primitive operations and storage management software in SOAR 
assembly lansusge. After this is assembled, it is fed to our SOAR simulator 
along with the Smalltalk image. The initials below each system indicate its 
author: ads is Daiu Samples, pnh is Paul Hilfinger, and dmu is David Un~u'. 
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bytecode interpreter on Sun workstations that interprets 
bytecodes, provided that system. 

The complete SOAR system is projected to run ten 
times faster than BS, about five times faster than the sys- 
tem that Deutsch and Schiffman describe, or about the 
speed of the implementation on the Dorado. 

We will describe our software solutions in a bottom- 
up (inside-out) order. Thus, we start with general object 
management, including addressing and reclamation, and 
proceed to compiled subroutines, activation records (con- 
texts), and processes. Table 2 summarizes this paper by 
listing problems we have considered and a brief outline of 
our solutions. The byteeode-*SOAR compiler is outside 
the scope of this paper; see Bush's description for more 
details [2]. 

2. Direct Addressing - Elimln&tlng the Object  Table 

ST-80 addresses objects by an integer index into an 
object table, not through a direct word or byte address. 
Few real machines have the ability to perform such 
segment-oriented addressing on 100,000 segments averag- 
ing 14 words in length. Those that can - such as the 
iAPX-432 - pay a large price in speed or cost or both. In 
Smalltalk, the cost of indirection is justified by the need 
for cheap memory compaction: when objects are moved, 
only the object table need be updated. However, we did 
not want to penalize every object access just to ease com- 
paction, so we eliminated the object table by designing & 
reclamation algorithm that also compacts. BS and SOAR 
are the only Smalltalk systems without object tables (Figs 
3 and 4). 

The indirection through such a table is an indirect 
cost of other storage management strategies that is some- 
times overlooked, it can be a bottleneck: we have deter- 
mined that a typical ST-80 system accesses the object 
table 1.2 times per bytecode [17]. Assuming SOAR per- 
forms as fast as the Dorado (300K bytecode/sec), SOAR 
would access the object table 360,000 times per second. 
The absolute minimum table access would be a single 
load instruction, which takes two cycles. Assuming 400 ns 
per cycle, such an indirection would take 800 ns and, at 
360,000 table accesses per second, that would be 0.29 
seconds of indirection time for each second of processing 
time. Discussions with Deutsch suggest that further 
optimization possibly could halve this overhead. In other 
words, an object table would slow SOAR by 15% to 
29%. 

We have also estimated the impact of indirection on 
code size. An Object Table would require an extra 
instruction to load or store a literal variable, and one 
indirection in the method prologue (for the receiver). We 
assume that many indirections will be optimized away as 
in Deutsch and Schiffman's system, that the Object Table 
can reference as many objects as a direct-pointer system 
can, and that all indirect addresses in ST-80 and direct 
addresses in SOAR occupy 32-bit words. Table 5 presents 
our analysis under these assumptions. The extra code for 
an object table would add 2% to the size of the system. 

Table 2: Summary of problems and solutions 

s objec t  addrsJmlng: Use direct pointers, obviating 
the Object Table. 

• • l o w  ' b e c o m e '  pr imi t ive  sans Objec t  T a b l e :  
Rewrite system classes to use explicit indirection. 

• consis tent  hashing  sans  O b j e c t  T a b l e :  Extend 
object headers with a hash value fixed upon object 
creation. 

• accessing wel l -known objects:  Use a registry of 
needed objects. 

• s to rage  rec lamat ion:  Use Generation Scavenging: 
stop and copy young survivors. 

• m e m o r y  f r agmen ta t ion :  Compact young objects 
during scavenging. Reorganize old objects ol~ine. 
Page old objects. 

• efficient cre&tion/delet ion for  ae t lva t lon  
records:  Use a stack of activation records for nor- 
real cases. 

• po in te rs  to  se t lva t lon  records:  Detect non-lifo 
activation records by checking stores and return 
values. Maintain a table of pointers to activation 
records in the stack. On return from a non-lifo con- 
text, copy it to the heap, update pointers by search- 
ing the table, and remove its entries from the table. 
Put object headers in the gaps between activation 
records so that an activation record on the stack 
looks like an object. 

• block contex t  objects:  Separate block objects 
from their activation records. A block object is a 
real object; an activation record is just an activation 
record. Create block objects upon blockCopy (if 
necessary); create activation records upon evaluating 
the block. 

• freeing ac t iva t ion  record  s tack:  The ~mmpend 
primitive checks for calls from terminate, whereupon 
it rescues non-lifo contexts and reclaims the stack. 

• fas t  me thod  lookup: Use an in-line cache-pa tch  
method lookups to direct calls. A method's prologue 
checks that it is appropriate for the receiver's type. 
When methods are redefined, their code is modified 
to force invalidation of cached in-line calls to them. 

• conver t ing  con tex t  objects  in Image:  Throw 
them away--use the genesis method. 

• poin ters  in to  scavenged methods :  Methods must 
be old; they are only garbage collected ollline. 
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Indirect 

Object 1 

table index [ 
table index ~ 
table index 
table index 

Object Table 

add,. ,  ; 
add,* .  

e~t' addrm 
e ~ t  address -- 
e ~ t "  address 

Object 2 

table index 
table index 
table index 
table index 

Figure 8." Indirect addresslno. In traditional ST-80 systems, each pointer is 
really s table index. The table entry contains the tacget's reference count 
and memory address. This indirection required previous ST-80 systems to 
dedicate base registers to frequently accessed objects. The overhead to up- 
date these registers slowed each procedure call and return. 

Direct 

Object 1 Object 2 

-I I J 
l address 

address address 
address address 
address [ address J 

Figure 4: Direct addressing. A SOAR pointer contains the virtual address 
of the tzrget object. This is the fastest way to follow pointers. 

[Table  S: S ta t i c  cos t  o f  objec t  Indh'eet lon.  
method prologues 4654 
literal variable loads 3532 
liters] variable stores 254 

I 

i total image size 1,500 kB 
relative cost of additional code 2.25~ 

Becomes.  Although we eliminated the object table to 
improve performance, there is one ST-80 primitive opera- 
tion that runs much slower without it. The become 
primitive exchanges the identities of two objects, so that 
all pointers to the first object are redirected to the 
second, and vice versa. 

A ST-80 system with an object table can perform a 
become quickly by exchanging object table entries (Figure 
6). A system without an object table {such as SOAR) 
must search objects and exchange pointers. Although we 
have devised strategies to limit the search, a worst case 
become still involves a search throughout virtual memory. 
The resulting long pause is generally unacceptable. We 
avoided this problem by rewriting the software for ST-80 
data structures to avoid becomes. To establish the feasi- 
bility of this approach, we added new Collection classes 
that mimic old ones without resorting to becomes (Figure 
7), and then modified the macro-benchmarks to take 
advantage of our become-less classes. Wallace discusses 
the details [21]. Table 8 presents an analysis of this 
change on system performance. Our efforts to eliminate 
becomes from programs that did use them were hand- 
somely repaid with an 18% to 28% performance 

improvement. 

Although we have eliminated becomes invoked by 
the system classes, the SOAR programmer must either 
shy away from this primitive, or be prepared to pay a 
stiff performance penalty. However, we believe that the 
become primitive is so intrinsically expensive - requiring 
either a scan of virtual memory or a level of indirection 
that slows down many frequent operations - that alterna- 
tives should be sought. Eventually, all instances of 
becomes will be removed from the SOAR system, and the 
primitive no longer supported. The SWAMP project has 
reached the same conclusion [11]. 

F requen t ly -used  objects .  Although we have elim- 
inated the object table, there remain a few objects, such 
as nil, true, false, Point, String etc that the runtime sup- 
port routines must locate quickly. This is almost the 
same set of objects with permanently assigned object 
table indices in ST-80. Our solution to this problem is to 
create the registry, a static system data structure con- 
talning a table of pointers to often-nsed objects. It also 
contains other necessary system data. The registry and 
the "registered" objects (there are about 18 in our sys- 
tem) are locked down by assigning them to fixed locations 
in memory. 

Hashing.  Perhaps the subtlest problem with eliminating 
the object table arises from the semantics required of all 
Smalltalk objects to allow the fast implementation of the 
ubiquitous Smalltalk Dictionaries. For performance, 
Smalltalk requires that each object be capable of quickly 
returning a hash value that remains invariant over the 
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originaJ 
set 

\1/ 
crests copy of self self become: copy 

\I/ \ , /  

F/gure 8: Growinl with become. The sequence above illustrates how a set 
employs become to grow in a ST-80 eystem. Initially, the set is {2, 3, 5} and 
we attempt to add 7 to it. The set createl a larger copy of itself and uses be- 
come: to replace the original set with the larger version. 

original 
set 

:reate new array part 

\ , /  
ES 

~witch internal point* 

\1/ 
I 

Fioure 7: Growing without become. 

The sequence above illustrates how our modified sets Mow without resorting 
to become. The contents are stored in a separate array. To Mow, the set al- 
locates a larger array, initializes it, and redirects an internal pointer to the 
new array. We have replaced cmtly implicit indirection with explicit indirec- 
tion. 

T a b l e  8: P e r f o r m a n c e  i m p s z t  o f  e l l m i n a t l a g  becomes .  

benchmark 

printDeflnition 
compiler 
decompiler 
printHierarchy 

# becomes duration 
w/becomes  

(cycles) 

0 75,475 
7 1,383,201 

38 4,045,841 
3 165,007 

duration 
w/o becomes 

(cycles) 

75,317 
1,127,658 
3,006,074 

110,574 

cycles 
saved 

0% 
18% 

28% 
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ohject's lifetime. Since we assume that time is critical 
and space is plentiful, we chose to add a field to the 
header of each object, containing an integer assigned by 
the iustantiation primitive (new and new:). The hash 
primitive simply returns this field. 

3. Generation Scavenging 

Early in the SOAR project, we realized that 
automatic storage allocation and reclamation could easily 
become a bottleneck. Our measurements as well as those 
of Deutsch and Schiffman, indicated that overhead for 
allocation and freeing in ST-80 systems ranged from 10- 
20%. Furthermore, we knew that some reclamation algo- 
rithms introduced annoying pauses; some required the 
programmer to explicitly free circular structures of 
objects; and most had been implemented in microcode. 
Since we wanted to attain good performance without 
microcode, we designed, implemented, and measured 
Generation Scavenging, a new garbage collection tech- 
nique that limits pause times to a fraction of a second, 
meshes well with virtual memory, reclaims circular struc- 
tures, and uses only 3% of the CPU time on SOAR [18]. 
This is less than a third of the time of deferred reference 
counting, the next best algorithm. The technique 
requires no hardware support--in particular, it requires 
no microcode. (Experience with SOAR has also made us 
realize that some of the other algorithms that are usually 
microcoded need not be.) 

Briefly and simply, memory is divided into two 
regions: one containing 'old' objects, the other containing 
'new' objects. All objects are allocated out of new space, 
and when this space is depleted, the live new objects are 
traversed and copied (see Fig. O). The starting points of 
the traversai are the object pointers in the activation 
stack, together with all pointers from old to new objects. 
To find the latter, the system performs a cross- 
generation check of stores into objects, and updates a 

objects createdbere 

scavenge obieets to bere ~ o J 
survivors of previous scavenge 

promote to here 

table for each store of a new into an old object. Since 
most Smalitalk objects die young, there are relatively few 
objects that survive; on the average, only 3% to 5% of 
new objects survive and have to be moved. The algo- 
rithm actually used is more sophisticated than that just 
described (for example, there are more than two regions), 
but nevertheless executes with less overhead than mark- 
and-sweep or reference counting algorithms (3% vs 9- 
20%). 

Not only is the cost of the scavenging operation per 
se quite small, but the distributed overhead entailed by 
the cross-generation checks is also small. These checks 
require few instructions and no extra data references. 
One could perform them in software by checking the 
source and target pointers against the new/old dividing 
line. The SOAR store instruction does the checks in 
hardware using tag bits in the address field. It turns out 
that doing the check in software is so simple and infre- 
quent (a 1% performance penalty) that it was a mistake 
to have put the check into the hardware. Furthermore, 
storing a young pointer into an old object is so rare (only 
4% of all stores) that recording it adds only 0.05% over- 
head. Using a small number of generations permits a 
cheap software check, and contrasts with, for example, 
ZetaLisp's strategy, which requires extra hardware in the 
page map to keep track of many small generations and to 
check stores [12]. 

4. Activation record mane4ement 

Everything in ST-80 is an object, including activa- 
tion records, if ST-80 were implemented straightfor- 
wardly from its description (as were most of the early 
bytecode interpreters) then each procedure call (message 
send) would require the allocation and initialization of an 
activation record from the heap. Each return would 
leave a dead activation record for garbage collection to 
reclaim. Given the high percentage of procedure calls in 

o00o-~ 

o 

O 0 

O 

new objects 

physics] memory 

old objects 

pqed virtual memory 

Figure g: Bird'e eve uiew of Generation Scauenging. After an object has 
survived enough scavenges, it is promoted to the old object men. New ob- 
jects are locked down in physical memory; old objects reside in virtual 
memory and may be paged out. 
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Smalltalk programs activation record allocation and flee- 
ing can be a very large proportion of the running time. 
Falcone's measurements indicate that 83% of all objects 
allocated in ST-80 are activation records, and 28% of all 
bytecodes executed result in calls of one sort or another 
[5]. So.some sort of blending of Smalltalk's model of 
activation records (context objects} with an efficient stack 
implementation is indicated for smooth execution [22]. 
This mixture seems particularly inviting considering that, 
according to Deutsch and Schiffman, 85% of all Smalltalk 
activation records behave like t radi t ional 'ac t ivat ion 
records during their lifetime. Most of them are created 
by a call, never used as data  objects, and released as soon 
as the executing procedure (method) exits. 

This problem has been attacked in other Smalltalk 
systems on conventional machines. Suzuki and Terada's 
system keeps a small memory area for the machine stack. 
When the stack becomes full, activation records are 
swapped out to heap space in first-in-first-out order 
(much like managing register windows on a RISC chip}. 
If any context in the stack needs to be retained then all 
contexts in the stack are moved to heap space. Deutsch 
and Schiifman's system creates a context object either in 
heap space, or on the machine stack, depending on how 
and when the object is created. If a pointer is generated 
to a context on the machine stack, then it is marked spe- 
cially to be popped into heap space instead of oblivion. 
We understand that the Tektronix system caches the 
current context in a convenient format, and eliminates 
the allocation and initialization for leaf activation 
records. 

Our approach differs in two ways: we have a more 
selective algorithm for detecting those activation records 

that need to be moved to the heap, and we don't  try very 
hard to mask the differences between ST-80 contexts and 
our activation records. Objects in heap space can point 
to contexts still on the stack. Figure I0 illustrates how 
registers are stored in the stack with 'gaps' between the 
activation records: the gaps contain the context object 
headers. The main difference between our implementa- 
tion and ST-80 is that we support only one size of activa- 
tion record: the SOAR stack frame is sixteen words. 
Once this change is promulgated throughout the system, 
it doesn't make any difference to objects manipulating 
activation records whether the AR's are on the stack or 
in heap space. 

But now we have the problem of knowing when an 
activation record on the top of the machine stack must 
be discarded or moved into heap space. For example, a 
subroutine can obtain a pointer to its own activation 
record and place it in a global variable. After the sub- 
routine returns, another routine can inspect the activa- 
tion record via the global variable. In this case, it is 
necessary to have moved the activation from the machine 
stack into heap space. (See Fig. 11.) Extraordinary 
measures are required t o  preserve the correct objects. 
Our strategy is like that for generation scavenging: we 
monitor stores and returns. When a pointer to an activa~ 
tion record is either stored into an object or returned up 
the call stack, the referenced activation record is marked 
as non-lifo: that is, it may outlive its existence on the 
LIFO machine stack. When a non-lifo activation record 
is about to be destroyed (when a return instruction would 
pop it off" the stack) it must be moved from the stack to 
the heap. 

Hish memory 

ARI 
header 
AR2 

header 
AR3 

header 

header 

header 

header 

otack pointer 

Low memory 

F/gore 10: SOAR Activation rccorda, showing the gape in memory in which 
the object headers for the context objects are placed. The dialpram shows 
three active contexts in the stack. 
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Machine 
stack Heap space stack Heap space 

P 

Maeh i~  
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[] 

" ~ -,.....,. 

I p i 
P store~ a pointer to ire When P returns, its activation 

activation record must be moved to Heap space 

because of this pointer. 

Figure 11 Saving activation records 

Dang l ing  P o i n t e r s .  Any time a new activation record 
is allocated on the stack, all entries in that record must 
be initialized to nil to avoid dangling references (see 
Fig. 12). This is an unnecessary overhead if one is using 
fixed-length records that may not be completely utilized 
by all activations, as we are on SOAR. We avoid this 
overhead by keeping a record of the highest point 
reached on the stack with a highwater mark. The SOAR 
register window handler keeps track of this mark. Gen- 
eration scavenging scans the active portion of the stack, 
and ntis all portions of the stack between the current 
activation record and the highwater mark. While objects 
may be scavenged needlessly, (again, see Fig. 12) they are 
guaranteed to exist. By initializing only those portions of 
the activation record that are used, and keeping track of 
the highwater mark between generation scavenges, we 
eliminate any possibility of dangling references, and obvi- 
ate initializing entire activation records. 

Debugge r .  One problem with our modification of the 
format and handling of activation records is that the 
ST-80 debugger that comes with the image from Xerox 
PARC can no longer be used. Debugging is only slightly 
more complicated for SOAR code than with bytecodes. 
It certainly is no worse than any other machine code 
debugger, and, because it will be embedded in a 
Smalltalk system, it will certainly be a 'symbolic' 
debugger: the user should never see have to SOAR 
machine code. While decompiling SOAR code to 
Smalltalk may be difficult, having the source code 
resident removes the difficulty. Because Smalltslk pro- 
cedures are small, and compilation is fast, an error loca- 
tion in a sequence of SOAR instructions can be quickly 
mapped onto the appropriate location in the Smalltalk 
routine by simply recompiling the routine where the 
offense occurred. (The Turbo-Pascal system makes very 
effective use of this technique [1].) We have a debugger 
implemented for Smalltalk on SOAR, although it has not 
yet been incorporated into our system and itself 
debugged [10 I. There are still open questions in this area, 
and work on the debugger remains in progress. 

Blocks .  Activation record management b'ecomes much 
more complicated when SmaUtalk blocks are imple- 
mented. ST-80 blocks implement control structures by 
allowing one routine to control execution in another's 
context. Frequently, a block is created, passed down the 
call chain to a subroutine that repeatedly invokes the 
block and then returns. For good performance, we do 
not mark an activation record as non-lifo if the only 
references to it are from blocks. Instead, the store and 
return checks treat the block as a surrogate for its home 
activation record. If a pointer to a block is stored, its 
home gets marked as non-lifo. In other words, although 
a block is an object that refers to a context, we do not 
mark that context as non-lifo until the block itself 
becomes non-lifo. 

We differ from Deutsch and Schiffman in that, 
apparently, they create activation records for Smalltalk 
blocks automatically in heap space, while we treat them 
as stack allocated activation records. Without going into 
great detail, we would criticize the design of ST-80 on 
this point. While Smalltalk separates the notion of a pro- 
cedure and its associated activation record(s), the separa- 
tion between blocks and their activation records is mud- 
died. In our implementation, we separate these inap- 
propriately confused notions, and keep activation records 
for blocks on the machine stack along with activation 
records for procedures. Blocks are now objects in their 
own right. (Peter Deutsch put this bee in our bonnet.) 

6. Process  Management  

In ST-80, processes are simply objects that point to 
the current activation record, which in turn points to the 
preceding activation. When the process object is no 
longer referenced, it is reclaimed and all activation 
records for that process are also reclaimed if not refer- 
enced elsewhere. Because SOAR handles activation 
records differently, it requires special measures to initial- 
ize processes and activation records, and to reclaim the 
memory they use when they are no longer active. 
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Figure 12: Machine stacks and scavenging of nonezistent objects. (!) Pro- 
cedure A calls procedure B. Procedure B creates a pointer to object C in its 
activation record and (!1) returns. At this point a garbage collection takes 
place and (!11) reclaims the memory occupied by the now useless object C. 
(IV) Procedure A now calls procedure D, which does not rcinitialize the regis- 
ter containing that old pointer to C. If another garbage collection were to  

occur at (IV), the activation record for D would contain a pointer to an ob- 
ject that no longer exists, if no garbage collection were done between (!I) 
and (IV), then C would be retained by a garbage collection at (IV). The 
method described in the text using a hiOh*uatcr mark would have allied the 
pointer to C during the garbage collection at (Ii). 

On SOAR, each process is allocated a fixed size 
chunk of memory for its activation stack. When there 
are more activations in a process than can fit in this 
memory, it allocates a new chunk and links the new 
activation stack to the full one. Managing activation 
stacks works well on SOAR because of mechanisms that 
exist for RISC register windows. Whenever a call (or 
message send) would deplete the number of register win- 
dows available on the chip, the processor branches to a 
window handler. The handler spills the oldest window on 
the chip into the activation stack, and also checks for 
stack overflow, if the activation stack is also about to 
overflow, then the handler spills the register windows still 
on chip into the current activation stack, allocates and 
initializes a new activation stack, and begins execution in 
the new activation stack. When a return instruction is 
interrupted by a window underflow (when the appropri- 
ate activation record is not on chip). The handler per- 
forms the inverse operation. 

Images.  Changing instruction sets presents another 
problem related to processes. SmaUtalk images are saved 
states of execution. There is no such thing as a bootstrap 
of Smalltaik because all images are frozen snapshots of 
executing systems, including any active processes. Some- 
time in the early 1980's one version of ST-80 was booted 
and initialized, and all versions since have been snapshots 
of that original boot. That is, Smalltalk systems are 
saved, but n~)t born again. 

Because we were throwing away bytecodes, lineariz- 
ing activation records on a machine stack, and changing 
the garbage collection method (among other things), we 
determined that converting a running image was much 
more work than simply booting a compiled system. We 
then had to determine how to boot and initialize the sys- 
tem. When we asked Peter Deutsch about this possibility, 
he responded that it had been so long since anyone at 
Xerox had tried, he didn't know if the initialization code 
worked any longer. Fortunately for us, the code in the 
SmaUtalk system for booting was correct. We wrote one 
procedure that would call and initialize all of the 
appropriate objects and begin spinning off the necessary 
background processes. The procedure, called genesis, 
consists of less than a dozen lines of Smalltalk. 

Dead processes. There was another consequence of our 
decision to "stackify" the Smailtalk activation records: 
we could no longer depend on automatic storage manage- 
ment to reclaim dead processes. The problem occurs 
principally because the Xerox Smalltalk implementation 
simply suspends processes and depends on reference 
counting to reclaim the storage; hence, it does not pro- 
vide a "terminate process" primitive. While generation 
scavenging reclaims the process objects themselves, the 
activation record stacks are not Smalltalk objects in heap 
space and must be treated differently. But the lack of a 
'process terminate' means it is difficult to tell when 
activation record stacks can be reclaimed. We have 
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solved this problem by having our version of the 
"suspend process" primitive check all process suspensions 
in the context of the call to determine if it really is a 
suspension or an effective process termination. For a ter- 
mination, the process stack is reclaimed immediately. 

8. Results 

Anyone interested in implementing Smalltaik 
efficiently needs not only to understand the dynamics of 
ST-80 as defined, but also the potential consequences of 
modifying that definition. In Table 13 we present figures 
from our simulations of our system running' the standard 
macrobenchmarks 2 to judge the execution efficiency of 
Smalltalk implementations. 

One conclusion is apparent: the system primitives 
are important. For every second spent in compiled code, 
three seconds are spent in the runtime system. 

Of all the features designed into the system, the 
software features turn out to be more important than the 
hardware features in their effect on the final performance 
figures. The speedups attributable to specific features of 
the hardware and software are summarized in Table 14. 
This table indicates how much longer a task would take 
if the indicated feature were removed from our system. 
For example if we removed the Deutsch and Schiffman 
in-line cache from our system, it would run 26% slower. 
If all the features indicated were removed, a task that 
currently takes I00 seconds would then take 263 seconds. 

The SOAR project took the well-worn phrase 
"hardware prices are falling" at face value and assumed 
that users would rather spend money on memory chips 
than on complicated mechanisms. Compiling Smalltalk 
into SOAR increases the size of the Smalltalk image by 
about 0.5 Mb. Deutsch and Schiffman estimated that 
compiling all of the Smalltalk image into 68000 code 
would increase its size by one megabyte. Given that the 
original Smailtalk image is over 1.5 Mb, compiling to 
SOAR is a reasonable tradeoff. 

Table 15 contains information on the amount of 
code that had to be written to implement Smalltalk on 
SOAR. The C code running on the Sun includes the 
interface routines with the SOAR board, interface rou- 
tines with the Sun's graphics display device s , floating 
point routines, and file system interface routines. It does 
not include the code for Bill Bush's Smalltaik--*SOAR 
compiler written in Smalltalk, nor the code in genesis. 

7. Conclusions 

Our experience has confirmed that it is possible to 
compile Smailtalk to the native code of more traditional 
yon Neumann architectures and achieve reasonable per- 
formance. In-line caching of method lookup, use of a 
conventional activation stack (with relatively inconse- 
quential modifications to the semantics of blocks and 
activation contexts), use of direct object pointers, and use 
of generation scavenging for storage reclamation were of 
particular importance in achieving this performance. In 
considering features of RISC architectures for supporting 

As distinguished from the microbenchmarks, which check 
the efficiency of the more primitive facilities of the system (plus, 
array reference, string concatenation, for example). 

s BitBIt is on the Sun side, but CharaeterScanner is on the 
SOAR side. 

T a b l e  18. T i m e  in m a j o r  ac t iv i t i e s  fo r  m s e r o b e n e h m s r k s .  
Benchmark time in time in total time in 

runtime library cache check runtime system 
classOrganizer 59% 14% 73% 
compilerBenchmark 66% 10% 76% 
decompiler 68% 10% 78°J~ 
printDefinition 62% l 1~o 73% 
printHierarchy 76% 7% 83% 

average 68% 10% 76% 

T a b l e  14. S o f t w a r e  vs.  H a r d w a r e  I m p r o v e m e n t s .  
Software 158% 

compilation (estimated) 100% 
in-line cache 26% 
direct pointers + GS 32% 

Hardware 105oJ~ 
register windows 46% 
tagged integers 33% 
non-delayed jumps 11% 
single cycle nilling of activation record 4% 
software interrupt 7% 
trap instructions 4% 
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Table  15: Code  for S O A R  run t ime  sys tem.  
files lines words chars function 
19 3365 ! 2491 90094 mist files 
16 3847 11799 95817 prim files 
2 1126 4845 34141 trap handler files 
3 364 1604 11063 process files 

40 8702 30739 231115 SOAR sub-total files 
22 3134 9900 73518 Sun interface files (in C) 
66 11836 40648 304633 grand totals 

Smalltalk, we found that register windows and very sim- 
ple dynamic type checking for the common primitive 
arithmetic operations on integers provided almost 75% of 
the performance improvement we achieved through 
hardware. 

A bytecode virtual machine is very effective for 
defining precisely the semantics of a language, and 
byteeode interpretation is an exceptionally fast way of 
obtaining a slow implementation of that language. The 
SOAR project has confirmed that memory can be traded 
for performance--that compiling directly to native code 
on a RISC architecture is a viable implementation route 
for a fast implementation. Smalltalk on 400ns SOAR will 
run as fast as the fastest known implementation, the 
Xerox Dorado. 
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