Moving Back to Scrum and Scaling to
Scrum of Scrums in Less Than One Year

Rafael P. Maranzato Marden Neubert Paula Herculano
Universo Online S.A. Universo Online S.A. Universo Online S.A.
Dept. of R&D Dept. of R&D Dept. of R&D

Sao Paulo, SP, Brazil
rmaranzatoQ@uolinc.com

Abstract

We report on the experience of re-introducing Scrum in a project
team that had previously failed to adopt that agile method. We
explore the reasons we believe that caused the failure and explain
how we approached the team to uncover them. Then, we describe
our strategy to avoid incurring in those problems again and to take
the team to a higher level of productivity, quality and personal
satisfaction. We also present the motivation and the actions taken to
go further and scale this scenario to multiple feature-oriented teams
using Scrum of Scrums. All these changes occurred in less than one
year.

Categories and Subject Descriptors
Management]: Management techniques

K.6.1 [Project and People

General Terms Experimentation, Management, Human Factors

Keywords Scrum, agile, scaling Scrum, Scrum of Scrums, expe-
rience, cultural change

1.

This paper is based on our experience in the Research and Devel-
opment (R&D) department of Universo Online (UOL), the largest
Internet portal in Brazil. UOL was launched in 1996 as an Internet
Service Provider focusing on content providing and basic Internet
services, such as chat and e-mail. Most of the projects were small
and short lived; services were launched and few of them evolved
significantly after that. Around 2006, following the company’s IPO
in the Brazilian stock market, it expanded its portfolio to offer new
services that would be managed by independent business units.
Most of those services were meant to compete with incumbent
Internet companies in Brazil and included an online marketplace,
a price comparison shopping, a sponsored links platform, among
many others.

In the Research and Development (R&D) department, signifi-
cant changes also happened during this period. In the first few years
there was no formal process and each team decided how to develop
and deliver software to the company. In 2000 we started using the
Rational Unified Process (RUP) [3]. At first, we used most of the

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’11 Companion, October 22-27, 2011, Portland, Oregon, USA.

Copyright © 2011 ACM 978-1-4503-0942-4/11/10. .. $10.00

Sao Paulo, SP, Brazil
mneubert@uolinc.com

125

Sao Paulo, SP, Brazil
pherculano@uolinc.com

documents and templates provided by RUP, but along the years we
adapted our process and focused only in core artifacts such as Vi-
sion and Use Cases [2]. Although we felt that this process was in-
efficient, until 2006 it was compatible with the type of projects that
we were assigned—simple and fixed scope, relatively short dura-
tion (at most three months) and no fixed team.

Around 2006 we began to realize that this process was becom-
ing a burden given the new business needs of the company. The
newly constituted business units demanded continuous effort in the
development and evolution of their software products. Soon the
company decided that these products should have fixed teams, but
at first, these teams were composed only of Java developers. Other
skills necessary to build the software, such as testers, webmasters,
data administrators and system administrators, were still allocated
by demand from the functional teams they belonged. This situation
exacerbated the inefficiency of our process and we began to actively
discuss how we should change the way developed software.

In the beginning of 2008, we had come to the conclusion that
Scrum [5] was the best choice for our scenario and we started its
implementation in three pilot projects. One of the authors had the
opportunity to be the first Scrum Master of the company and was
involved in two of the pilot projects. One of them was the evolution
of a very complex software, an online marketplace for buying and
selling products. The other project was creating a new tool for
managing complex sets of data and metadata, targeted to internal
users. Although these projects were very different in their scope,
stage of development and relevance to the company, Scrum proved
to be an excellent fit for both.

The third pilot Scrum project was also very ambitious and still
different in purpose from the other two: its goal was to rewrite a
very large system, replacing an old and limited platform with a new
and efficient one, while maintaining all functionalities. However,
Scrum was not successfully implemented in this project. Viewed
from the outside, the team seemed just not able to make progress.
As we later learned, they were lost in pointless technical analyses,
endless discussions and personal conflicts. Initially expected to be
completed in nine months, the project was already running for al-
most one and a half years when management concluded that Scrum
might be causing the delays. In order to meet a new deadline, they
returned to a more traditional project management approach, aban-
doning Scrum. The project was actually delivered a few months af-
ter the new deadline, but not without much distress, extra hours and
removed functionalities. After the release one, a group of managers
with more experience with Scrum, including two of the authors,
was involved in the project and to put the team back on the tracks
with Scrum. And in less than one year, we have scaled Scrum in
four feature teams. This is the experience that we will describe in
this paper.

This paper is organized as follows. Section 2 presents the team
in which we based our study and its first experience with Scrum.
Section 3 describes how Scrum was reintroduced to this team and
the new approaches that we took. Section 4 draws conclusions on
our report. Some Scrum terminology can be found in Appendix 5.

2. First Agile Experience

As soon as the company decided to adopt Scrum in early 2008,
the next step was to provide training in agile fundamentals for
all professionals involved in product development, from software
engineers to business specialists. Beside the pilot product teams, we
created interest groups gathering Scrum Masters, Product Owners
and other technical skills. The new product teams were at the
spotlight of the company and Scrum was the most spoken word
in the environment. Everyone wanted to learn or teach something.
The groups were infected by agile feelings. People did not need
to use boring processes and corporate tools anymore. They were
allowed to choose the tools they considered appropriate because,
after all, the Agile Manifesto said “Individuals and interactions
over processes and tools [1].

As we mentioned before, one of the pilot product teams had to
rewrite a system built in an old platform. The requirements were
well known and there were not many business risks involved, but
there were significant technology risks. The team was formed by
professionals that had never been in a product team before. Instead,
they came from different departments, organized according to their
technical skills. This should not be a problem if the involved depart-
ments had common goals, but that was not the case. The department
managers gave directions to their professionals according to their
old way of working, without considering that things had changed.
For example, in the old methodology there was a person responsi-
ble for testing. With Scrum, there is a testing role inside the team,
which could be performed by a test engineer or a software engineer.
But this did not sound correct to the functional departments, and
they wanted to create rules for their members. For instance, each
funcional manager involved wanted to define what the concept of
Sprint Done meant, according to their own criteria.

As we should expect, team members coming from different
functional departments did not agree with each other. Each was
following a different agenda, according to the objectives of their
departments. This led to very long discussions during the sprints,
mostly during the Daily Scrums, which almost always exceeded
the recommended 15 minutes. There were also lots of blaming
and unfruitful discussions in Retrospectives. Since people were not
aiming at the same target, which should be delivering business
value in the form of working software, they could not agree on
many topics. One example of disagreement was related to the use of
a new technology in the project. One of the functional departments
decided that the project was a good opportunity to validate a new
technology they wanted to employ in their own projects. Since
most of the developers of the team reported to that department,
they were instructed to study and use this technology. This decision
slowed down the project for about three months. When the Product
Owner noticed this and questioned the head of that department, he
answered that, according to Scrum, this technology decision was
a prerrogative of the team, so there was nothing wrong with their
choice. After a few months debate, the issue scaled up to the head
of R&D and the team was instructed to abort the use of the new
technology.

Sprint after sprint, most of the user stories were considered Not
Done, due to the conflicting definitions that each department had
on the concept of Done. This would accumulate more work to each
subsequent sprint, generally to make adjustments that would not
generate value to the end product. As a consequence of all these
unsuccessful sprints, the conflicts inside the team were becoming

126

more frequent. Discussions on sprint velocity and the format of
meetings were also among the top discussions and disagreements.
Surrounding all conflicts, or adding one more, there was the es-
timated time to accomplish the project, which was uncertain yet.
And all of these problems became due to Scrum, so they were con-
sidered all Scrum’s fault. By that time the mindset was: “If we want
to deliver this project we should come back to the traditional model
because we know we have problems but we deliver projects. And
then the decision was made: the team was not required to use Scrum
anymore and then could be free again. The release one was deliv-
ered but there was a directive to use Scrum again, since it was being
successfully used in other teams in the company.

3. Moving Back to Scrum

In the beginning of 2010, before returning to Scrum, we talked a
lot with the most experienced people in the team to discover what
they were expecting from that return and what important lessons
could be learned from the past. After some talks we could see they
were very focused on some rules, such as the definition of done, the
opposite of Scrum and agile values. At this time, over the regular
evolution of the system, there was a business need to integrate that
system with other services of the company. We could see that it was
a different backlog, and a good approach would be to split the team
as we split the product backlog.

To start the process, we reintroduced Scrum to the team focus-
ing on the values, like commitment, transparency, teamwork and so
on. and we had to change one important concept of the majority of
the team: that it was possible to have more than one team working
in the same software components. So, we broke the team and the
backlog by feature, creating feature teams [4]. Another important
change that we made was to add three new members to the team
that had experience in working with Scrum. Besides their technical
skills, these three professionals were easygoing people who could
aggregate positive attitudes during the sprints.

One important concept that we have empathized and that contin-
ues nowadays is that we could break the backlog into two or more
feature teams but everybody were part of one team. No matter what
happens, we were one team. It was very important because it is not
possible to have team competition, velocity comparison, owner of
software components, bugs per team and things that could be harm-
ful to teamwork.

With this preparation, we started these two sprint plannings on
the same day and we invited people from the other team to be
at the sprint planning, to see what features would be created. We
also invited them to the sprint review to share what each team had
produced.

We also asked team members to help and participate of some
decisions, like suggestion to the backlog (including features to the
product and technical improvements), test infrastructure and other
question that in the past were concentrated at the management level
or with one or two team members - the others were just informed
of those decisions, and we think that approach is opposed to agile
values, since we need people commitment.

After six months of these two teams running sprints quite well,
we could see the good results of creating features teams. At the
same time, the results of the business and the increase of revenues
and users in the product, made the business owners and the IT
management consider creating more teams to focus on specific
backlogs. It was good because we could see that our approach was
bringing results, but, of course, we also faced some problems.

At this moment, one of the problems was the need of hiring
more team members and how to put them in a system that has
a lot of business rules and deals with money. We agreed that it
would be better to hire good people and wait to start new feature
teams instead of just increasing the team members and starting new

teams. We also have proposed to transfer people from other teams
inside the company because they were used to developing with the
company procedures and rules.

As we were hiring, we increased the existent teams before
creating the third and the forth one that we have identified as
priority. In parallel, we created the backlog for the new feature
teams. Another decision that we made was not to start the forth
team at the same time as the third one: we knew that we would
learn from that division and face some impediments. When we had
people and the backlog ready to start, we initiated the third team
and we found some issues. The most relevant were:

e Teams per release: we observed that having more than 3 teams
per release would be hard to manage considering the number of
functionalities, bug fixes and database modifications.

e Merge instead of one build: considering the previous issue, we
prefer to maintain two branches of code. One to the teams A &
B and other to teams C & D, for example. As A & B deliver,
teams C & D merge the code and A & B start a new branch.
The opposite occurs when C & D deliver. This example is in
Figure 1.

Sprint length: before starting the third team, we spend 3 weeks
in the sprint. We agreed that to add one more week would be
easy to fit the sprint length during the days of the week.

Develop environment: each team needs a proper environment
without sharing with another team. The Quality Assurance
(QA) environment is unique for all the teams because it reflects
the production environment and when features from different
teams run in the same build.

Branch
Teams C & D

Branch
Teams A & B

Release
Teams A & B

Merge

Release
Teams C & D

Release
Teams A & B

Figure 1. Branches between teams

These impediments and others helped us to understand how to
implement a good Scrum of Scrums. We could see it would be very
important to improve the communication among ScrumMasters,
Product Owners and all the teams. So, as we had some rituals in
the Scrum, we added some meetings to the team agenda:

e All Product Owners and ScrumMasters: there is a meeting every
week with all Product Owners and ScrumMasters to talk about
features that have impact on the other teams or about subjects
that are relevant for everyone. We spend around 90 minutes on
this meeting.

127

e Mega Planning: just after we finish the sprint planning of the
teams, that is usually every other Monday, we talk to all the
team members about the stories that each team has chosen.
These meetings are very important because a member of one
team can advise or warn the others and people can see the
impact of these stories among the teams. It is important to
emphasize that we start this meeting talking about the schedule
ahead for everyone to know the deadlines and the relevant
dates during the sprint. We also address generic topics that are
important to most of the team and team members. We spend
less than one hour with this meeting.

Mega Daily: in the weeks when we do not have sprint plan-
nings, there is a meeting that is similar to the Mega Planning.
The main difference is that we focus on the status of develop-
ment of new features and it lasts around 30 minutes.

Knowledge Sharing: once or twice a month, usually on Fridays,
we have some presentations about training or conferences peo-
ple attend, relevant features or best practices that we consider
important for everyone. We also share experiences from some
teams to the others.

Members of new teams: we do not create new teams with new
people in the organization. Basically we add new employees
into the existent teams and we create new teams with the old
ones. It motivates everybody because people know that there
will be opportunities of creating and learning new things. It is
also important to knowledge sharing.

One example of this meeting during the weekdays is the listed
schedule in Table 1. As we can see, we add more points of com-
munication to our Scrum framework. We believe that improving
communication and creating these rituals we can synchronize the
development of the features in each team with the whole system.
‘We think we can add two more teams to that agenda, but more than
that would probably be hard to administrate.

Another issue that we think we could have is that although
our mega meetings are productive, it is hard to find rooms that
are big enough for everyone. When this happens, we will have
to try other approaches like virtual meetings or we may choose
teams’ representatives to attend these meetings and pass on all
the information after the daily Scrum. But we are not comfortable
with this situation because we think this is an important channel
of communication that we have nowadays, especially with mega
plannings and mega dailies.

If the team, in the beginning of this process, was very distrustful
about splitting the job into feature teams, nowadays they have
learned how to work in this way and are contributing to scale our
development process. One example is related to improvements in
our development environment and refactorings that are necessary
to facilitate working in parallel. It is important to remember that
the system was created with a vision of one or two teams working
in parallel, but the business is growing fast and we cannot stop the
market — we need to keep up with this growing. So, people started to
suggest refactoring in components, builds and other things because
they are convinced that it is the responsibility of all the feature
teams - and they are happy with the results of their work.

After 10 months of returning to Scrum, we checked with our
business clients how they evaluated these changes. We did had a
meeting - similar with to the Scrum retrospectives - and the balance
was very positive: they were satisfied with the feature teams and
they asked us how to create more teams, because the backlog is
enormous and it is impossible for only one or two teams only to
develop it. Another important improvement that we had was in
the relationship between the R&D and business people. Before
Scrum there was a lot of misunderstands and competition between

[Monday | Tuesday | Wednesday | Thursday | Friday]
Planning A & B Mega Planning Knowledge Sharing
Mega Daily Review C & D Release C & D Retrospective C & D
Planning C & D Mega Planning Knowledge Sharing
Mega Daily Review A & B Release A & B Retrospective A & B
Planning A & B Mega Planning Knowledge Sharing

Table 1. Basic Schedule

areas. Nowadays this relationship is much more trustful and we are
continuing trying to improve it.

As explained before, the relationship between the teams and the
environment had an improvement if you compare it to the times
without Scrum. We can also observe that the business area is happy
with the new methodology. Besides that, we have had an increment
in the team velocity.

When we started the second team and split the backlog, we told
the teams to create its own velocity and we did the same to the third
and fourth ones. After that, we conducted an experiment to compare
the story’s sizes of teams and we observed that the estimates were
very similar among these teams. It can be a coincidence but we
believe that is explained because some members worked in two or
more teams and probably influenced this fact.

Considering that the estimates are similar, we could see that
we have had an improvement in team velocity meanwhile we were
adding more members and creating new teams. In Figure 2, we can
see that our velocity was growing month by month (line points)
and our productivity too (line points per person). There is a peak in
October but we consider that an abnormal event because it is out of
the trend.

Productivity

9 200

) //:j::
g

o

5 /\VJ/
N /\//\/
A\ Vad

T
B
8

Total Points

Points per person

1 20

(] T T T T T T T T T T T o
fev-10 mar-10 abr10 mar10 jun1¢ jul10 ago-10 set-10 out-10 nov-1¢ dez-10 jam-11 fev-u

‘ @ DOINtS Per person e points ‘

Figure 2. Productivity

As you can see, we have made a lot of modifications with this
team in less than one year. Firstly, we had a cultural change while
the management and the methodology were modified. Secondly,
we changed their vision of the product so that we could have a
lot of feature teams but we are just one big team. In addition,
we changed the methodology in the product development using
Scrum, focusing on values like commitment and transparency. And
finally, we scaled Scrum creating more feature teams, using Scrum
of Scrums.

Nowadays, our main challenge is to maintain our vision and
values meanwhile we continue creating more feature teams. We
believe that we will face some problems and issues but we also
believe that by using an approach similar to the one that we have
used until now we will be able to do that.

128

4. Conclusion

This paper described how we managed to implement Scrum in a
team that had previously failed to adopt the agile culture. We also
showed how we were able to scale this team to multiple feature-
oriented teams, using Scrum of Scrums. All this transformation
was done in less than one year. We found that some key factors
for our success were the early identification of the causes of the
initial failure of Scrum adoption, the allocation of professionals to
Scrum roles according to their abilities and the addition of new
professionals with good team skills and experience with Scrum.

Regarding the need for scaling the team, we demonstrated that
separating teams by feature was the best decision in order to focus
on the main priorities for the evolution of the product and to avoid
conflicts in backlog management. We concluded that it is very
important to create each new team with at least one professional
with good technical skills and knowledge of Scrum, backed-up by
an experienced ScrumMaster and a Product Owner. The practices
we employed to deal with multiple teams — such as mega plannings
and mega dailies — were crucial to keep the information flowing
through all teams and maintain the concept that everybody belongs
to one big team. Moreover, techniques such as parallel version
control, continuous integration and carefully planned deploys were
important to keep the quality of the work even with many new
members being added in a short period of time.

5. Appendix: Scrum Terminology
This section is based on [6].
® Daily Scrum Meeting: A stand up fifteen-minute daily meeting
for each team member to answer three questions:

1. "What have I done since the last Daily Scrum meeting? (i.e.
yesterday)”

2. ”What will I do before the next Daily Scrum meeting? (i.e.
today)”

3. ”What prevents me from performing my work as efficiently
as possible?”

The third question refers to the Impediments and it is assigned
to the ScrumMaster.

Impediments: Anything that prevents a team member from per-
forming work as efficiently as possible is an impediment. The
ScrumMaster is charged with ensuring impediments get re-
solved.

Product Backlog: The product backlog (or backlog”) is the
requirements for a system, expressed as a prioritized list of
product backlog Items. These included both functional and non-
functional customer requirements, as well as technical team-
generated requirements. While there are multiple inputs to the
product backlog, it is the sole responsibility of the product
owner to prioritize the product backlog.

Product Backlog Item: In Scrum, a product backlog item
("PBI”, "backlog item”, or “item”) is a unit of work small
enough to be completed by a team in one Sprint iteration.

Backlog items are decomposed into one or more tasks. Some
practitioners represent backlog items into User Stories.

e Product Backlog Item Effort: Some Scrum practitioners esti-
mate the effort of product backlog items in ideal engineering
days, but many people prefer less concrete-sounding backlog
effort estimation units. Alternative units might include story
points, function points, or “t-shirt sizes” (1 for small, 2 for
medium, etc.).

e Scrum Roles: There are three essential roles in any Scrum
project:

= Product Owner: A person that represents the customer’s in-
terest in backlog prioritization and requirements questions.

= ScrumMaster: A facilitator for the team and product owner

= Team: A group of people responsible for constructing and
delivering the product. The team members are usually a
mixture of software engineers, architects, programmers, an-
alysts, QA experts, testers, Ul designers, etc. This is often
called cross-functional project teams”.

e Sprint: An iteration of work during which an increment of
product functionality is implemented.

e Sprint Backlog: Defines the work for a sprint, represented by
the set of tasks that must be completed to achieve the sprint’s
goals, and selected set of product backlog items.

e Sprint Planning Meeting: The Sprint planning meeting is when
team and the Product Owner negociate and agree on what will
be delivered in the end of the Sprint.

e Sprint Review Meeting: A Sprint Review is a meeting where the
team demonstrates working software corresponding to project
backlog items they have completed in a given Sprint.

e Sprint Retrospective Meeting: The Sprint retrospective meeting
is when the team discusses what went well and they should keep
doing and what to improve in the next Sprint.

e Velocity: The velocity is calculated based on how much product
backlog effort a team can handle in one Sprint. This is based on
the average of previous Sprints and it should assume that the
team composition and the Sprint lenght are kept constant.

129

Acknowledgments

First of all, we thank the Phoenix team, which we analyzed in
this report. All team members were completely available to our
interviews and provided very sincere and insighful opinions on the
project. We also thank Marcio Drumond, head of the Department
of R&D, for supporting this research and revising our drafts.

References

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. Manifesto for agile software development, 2001. URL
http://www.agilemanifesto.org/.

[2] M. Fowler and K. Scott. UML distilled - a brief guide to the Standard
Object Modeling Language (2. ed.). notThenot Addison-Wesley object
technology series. Addison-Wesley-Longman, 2000. ISBN 978-0-201-
65783-8.

[3] P. Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition,
2003. ISBN 0321197704.

[4] C.Larman and B. Vodde. Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum. Addison-Wesley
Professional, 1 edition, 2008. ISBN 0321480961, 9780321480965.

[5] K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, st edition, 2001.
ISBN 0130676349.

[6] V. Szalvay. Glossary of scrum terms @online, mar
2007. URL http://www.scrumalliance.org/articles/
39-glossary-of-scrum-terms.

