
Automatic Protocol-Conformance Recommendations

Ernesto J. Alfonso
Carnegie Mellon University
ealfonso@andrew.cmu.edu

Abstract
Misuse of reusable components in software is common.
Systems of software analysis based on formal specifica-
tions provide a mechanism for automatically detecting non-
conformance to protocols. The focus of this research is to au-
tomatically generate task-specific user recommendations for
correcting misuse of arbitrary protocols using results from
software analysis systems.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Verification

Keywords protocol, automatic fix, suggestions, error mes-
sage generation, predicate logic, specifications

1. Introduction
As the utility of a reusable software artifact increases, so
does the complexity of its public interface and usage pro-
tocols. This often leads to errors of misuse at the points
of contact of reusable artifacts with their users. In order to
explicitly enforce proper usage protocols, formal specifica-
tions of reusable components may be used by software anal-
ysis systems in order to automatically verify conformance to
these protocols. However, upon discovery of a misuse, any
user feedback provided directly by such systems must be in
terms of the protocol specification, which is unusable to the
user who is not already an expert in the protocol. The con-
tribution of this research is a system which automatically
generates task-specific, user level recommendations for cor-
recting misuse of protocols, based on results from analysis
mechanisms with formal specifications.

2. Motivating Example
Consider the following example of a protocol misuse,

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

Listing 1. Misuse of the iterator protocol
1

2 public Object clumsyPoll(Queue queue) {
3 Iterator iter = queue.iter();
4 Object o = null;
5 if (iter.hasNext())
6 o = iter.next();
7 iter.remove();
8 return o;
9 }

Listing 2. Current feedback from Fusion
1 Broken constraint: Removable(iter)

Currently, the formally specified iterator protocol along with
the Fusion[1] program analysis provide the feedback in list-
ing 2 in response to the protocol misuse in listing 1 (i.e. Iter-
ator.next must be called before Iterator.remove). Despite list-
ing 2 being a relatively intuitive error message, which might
serve a user already familiar with the very simple protocol,
this type of error still refers to the internal representation
of Fusion and the Iterator specification implementation, and
in general does not provide any direction towards fixing the
problem. Note also, whereas the example in listing 1 is in-
tentionally simple, real life examples of misuse tend to be
more involved.

Our goal is to provide task-specific recommendations
which the user can understand, such as the following sug-
gestions independently addressing the misuse in listing 1:

• Move call to “iter.remove()” to line 7 within if-block
starting at line 5.

• Remove the method call to “iter.remove()” on line 7
• Call “iter.next()” before line 7

Approach
Consider,

• An analysis system which relies on a formal specification
language (e.g. Fusion and its spec. language)

• A reusable component which usage protocol is specified
for the above system (e.g. Iterator)

• A user program U which uses the reusable component
improperly, breaking specification C (e.g. U, C are list-
ings 1, 2 resp.)

207



Our goal is to produce a small set of recommendations to fix
U ’s misuse of the protocol of the reusable component. For
a given analysis system, we must define the following two
functions, A, H:

• A such that A(U,C) is a finite set of close alternatives
to U which do not break C. A member of A(U, C) is a
program which results from a small modification to U
and is possibly within protocol.

• H such that if X is a set of alternatives to U correcting C
(e.g. X = A(U, C)), then H(X) : X ⇒ N is a heuristic
which sorts alternatives according to their likelihood of
being correct. The benchmark correct alternative(s) is
defined to be what a human expert would suggest to
correct the broken spec. C.

The final result to the user is the top k alternatives from
H(A(U,C)). The capabilities of A and H will depend di-
rectly upon the analysis system used.

Generating Fusion Suggestions
Fusion provides an expressive specification language to en-
code arbitrary software protocols, and we define A and H
within the context of this analysis system. A brief overview
of the system’s analysis approach is provided.

Fusion’s specification language is based on a first order
logic over relationships, which are protocol abstractions that
indicate meaningful associations between objects upon spe-
cific protocol operations. A protocol specification for Fusion
defines pre and post conditions upon specific protocol oper-
ations, in the form of predicate logic over relationships. By
keeping track of the state of relationships throughout the pro-
gram, Fusion reports a broken specification, along with the
offending operation, whenever the precondition is false for
that operation.

Given a reusable component which implements a Fusion
specification, and a user program U which uses that compo-
nent, breaking a specification C, we now define A and H .

• A(U, C).
Define C(R : RELATIONSHIP → {T, F}) =
TRUE ⇐⇒ the relationships which are T (present)
in R satisfy the precondition for C, and let R be the
relationships T at the point where C is broken.
Let P = {R′|C(R′) = true ∧ ∀R′′.diff(R,R′′) (
diff(R,R′) → C(R′′) = false}, where
diff(A, B) = {r|A(r) 6= B(r)}.
Hence, of all classes of maps which satisfy constraint C,
only the representative which incurs the fewest number
of changes from R is in P .
Define f(r), where
f : (RELATIONSHIP × TRUE, FALSE) →
MODIFICATION = {INSERT ∪
CREATE BRANCH ∪ DELETE ∪ MOV E ∪
{NONE}}, to be the set of source code modi-
fications that under any precondition of any col-

laboration constraint have the effect of negat-
ing r (union-ed with a no-action option), and let
F ({r1 . . . rk}) = f(r0)× . . . f(rk). Hence, F takes a set
of relationships which must be negated, and returns all
possible combinations of modifications that might have
the effect of negating every relationship in the input.
Then A(U, C) =

⋃
Pi∈P F (Pi) ∩ SATISFY C.

Hence, A(U, C) is simply the set of all modifications
which do result in constraint C being satisfied.

• H(X) The sorting function assigns a score based mainly
on whether the alternative does in fact satisfy the con-
straint C and whether a new broken constraint is intro-
duced, although the types of source code modifications
used are also considered.

3. Evaluation
Our system was tested on 23 self contained excerpts of mis-
use of the file IO, iterator, and asp.net protocols. The follow-
ing criteria was used to asses the performance of the system’s
fixes on each misuse example: “expert” if the fix matches
the human expert’s; “correct” if the fix is within protocol
but does not match the human expert’s; “wrong” if the fix is
not within protocol. A test is judged with the highest grade
which appears at least once within the top 3 suggestions. Out
of all 23 examples, 14 were judged “expert”, 7 were judged
“correct” and 2 were judged “wrong”.

4. Future Work
Eventually, H could be improved into a learning algorithm
based on feedback of human experts over time, providing
an indicator of the level of confidence on the correctness for
each recommendation.

5. Related Work
[2] focuses on automatically correcting type errors in a pro-
gram by analyzing similar programs which type-check. This
work focuses on type-checking and not on arbitrary protocol
conformance, and their approach uses a less focused search
than the one described here in order to find feasible alter-
natives. ERL [3] describes a way to improve auto-generated
error messages from a failing logical predicate by concen-
trating only on the failing atomic predicates. This work does
not provide recommendations for fixing errors.

References
[1] C. Jaspan and J. Aldrich. Checking framework interactions

with relationships. In Proceedings of the 23rd European
Conference on Object-Oriented Programming (ECOOP 2009)

[2] B. S. Lerner, M. Flower, D. Grossman, Searching for type-error
in Programming language design and implementation, 2007

[3] Ciera Jaspan, Trisha Quan, and Jonathan Aldrich. Error
Reporting Logic, in the Proceedings of the Conference on
Automated Software Engineering, L’Aquila, Italy, 2008.

208




