
Painless Panes for Smalltalk Windows

James H. Alexander

Computer Research Laboratory*
Tektronix Laboratories
Beaverton, OR 97077

ABSTRACT

Current windowing systems (i.e., Macintosh, Smalltalk)
give the user flexibility in the layout of their computer
display, but tend to discourage construction of new window
types. Glazier is a knowledge-based tool that allows users to
construct and test novel or special purpose windows for
Smalltalk applications.

The use of Glazier does not require understanding
Smalltalk’s windowing framework (Goldberg, 1984;
Goldberg & Robson, 1983). As a new window is specified,
Glazier automatically constructs the necessary Smalltalk
ciass, and methods (programs). Windows are interactively
specified in a Glazier window - the user specifies type and
location of panes through mouse motions. Panes can contain
text, bit-maps, lists, dials, gauges, or tables. The behavior
of a pane is initially determined by Glazier as a function of
the pane type and related defaults. These default behaviors
allow the window to operate, but do not always display the
application information desired. In that case, the user can fix
the window’s behavior by further specification. Such
alterations require only knowledge of the application, not of
the windowing system.

Glazier allows the prototyping and development of full-
fledged Smalltalk windows, and allows a flexibility that will
change window usage in two ways. First, it will allow end
users to construct special purpose windows for viewing data
from an application in manners unanticipated by the system
designers. Second, system developers will be encouraged to
prototype and evaluate many window configurations before
settling on a final choice. Both alternatives will result in
windows that are more satisfying to the end-user.

*The author’s current address is: U S W’EST Advanced
Technologies, Science and Technology, 6200 S. Quebec St.,
Suite 170, Englewocxl, CO 80111

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1987 ACM O-89791-247-0/87/0010-0287 $1.50

The makeup of Smalltalk or Macintosh-style
windows is typically viewed as a faed component
of the computer interface. Windows are provided
to the end user by the system designer and cannot be
customized. Sadly, users are not allowed the
flexibility of their window contents that windows
allow for display contents. Thus, the user is forced
to use windows that may not precisely fit the needs
for his or her use of the application.

Of course, the option of adding new windows
is available to some users. A skilled Smalltalk user
can construct a special-purpose window in an
afternoon. Completion of such a task requires
detailed knowledge of Smalltalk’s model-view-
controller (MVC) paradigm (Goldberg, 1984;
Goldberg & Robson, 1983). This is perceived as an
inconvenienct, tedious task and is hardly something
a novice Smalltalk programmer can or should
attempt.

This paper discusses Glazier, a tool that
encapsulates knowledge about building Smalltalk
windows, and assists a user in developing new
Smalltalk windows. Glazier works as an assistant,
relieving the user from the burden of thinking
about windowing details. Instead, the user needs
only to understand how to operate the data
structures for the application being displayed by the
window. Window development now becomes a
symbiotic process, Glazier provides the knowledge
on how to build the window and the user provides
knowledge about how the application is used and
how the window should behave.

There are a numerous other systems to support
interface development in a like manner. Bass
(1985) describes a system for developing VT100
style interfaces on top of base-level applications.
The system supports a wide range of user needs, but
cannot be configured dynamically by the user. The
Trillium System (Henderson, 1986) supports
prototyping of copying machine interfaces and

October 4-8,1987 OOPSLA ‘87 Proceedings 287

Figure 1 - An example GlazierView used for constructing new windows. A prototype of the new
window appears in the proto-window, the top-center subView of the GlazierView. The seven
buttons on the top left of the window are used in adding and modifying panes within the proto-
window. The two subviews on the bottom left are used for inspecting objects in the application
the new window will display. Finally, the three subViews on the right are used for accessing
methods in the class controlling the operation of the new window.

.
allows designers to build and test control panels.
Other user interface management systems support
construction of front ends for applications (Hayes,
Szekely, & Lemer, 1985). None of these systems,
however, has provided the user or developer with a
dynamic environment for building generic
windows. Glazier allows a user to build a wide
range of window types, and use them as they are
being built.

This paper will discuss the operation of the
Glazier, the method for constructing windows, and
finally the implications of this new window
construction technique.

.
1. Overview of Glazier

When a user develops a window with Glazier,
the result is a new Smalltalk class that defines the
operation of the new window. This class is written
by the Glazier, according to a standardized style, as
the user specifies the window. The user constructs
a new window with the help of a special purpose
window, a GlazierView. This window is opened by
a parameterized message which passes a pointer to
an instance of the application which the new
window will be designed to display. In the
GlaizerView the user can dynamically specify and
test a new window. Figure 1 shows a picture of a
GlazierView. This view has four general panes to
assist the user with the construction of the new
window:

The new window pane - The top center pane
of the GlazierView is a prototype of the new
window. This proto-window operates
exactly as the new window will operate
when opened. Initially the proto-window is
empty and gray. As panes (subviews in
Smalltalk terminology) are added to the new
Window, they are displayed as they would
be in an ordinary Smalltalk window. The
user can operate the proto-window and test
it’s functionality. At any time, the user can
open a stand-alone version of the new
Window and it will operate exactly like this
pane in the Glazier.

Buttons - used for creating a new pane,
adding a new instance variable, creating a
new dependent, relocating a subview,
refreshing the proto-window, displaying the
names, and a button for getting a menu of
other available commands.

Data inspectors - Two of the GlazierView’s
panes are object inspectors that allow the
user to examine the values of instance
variables in the proto-window instance and
the application proto-window is designed to
display.

Code browser panes - Three panes represent
a code browser on the class being generated.
One to show the protocol categroies for new
code generated by the Glazier (see below),

288 OOPSIA ‘87 Proceedings October 4-8,1987

one to show the selector names of a protocol
selected in the previous pane, and one to
show the method selected. In these panes the
user can modify and augment the code
automatically generated by Glazier.

1.1 Specification of a new window.

To specify the contents of a new window, what
needs to be specified is the size, location, type and
behavior of the panes in the window. The
developer describes the size, location and type of
pane; Glazier provides default methods for the
behavior, which the user can modify to suit specific
needs.

The user initiates the addition of a new pane to
the proto-window by pressing the button labeled:
subVi ew. First, Glazier will prompt the user for
the name of the new pane. At this point, the user
specifies the size and location of the pane by
indicating a rectangle the pane will occupy. After
the area is specified, Glazier will present a menu of
the types of panes supported and the user can select
the desired type. Supported panes are currently:
FormViews (bit maps), TextViews, ListViews,
TableViews, StatusViews, and ButtonViews. The
pane is added to the window and code describing
the operation of the window is written, compiled in
the new window’s class and displayed in the
GlazierView’s code browser panes. This code is a
set of short modular programs called methods
(according to the Smalltalk convention). New
methods are given selector names composed of the
pane name and the generic function name spliced
into a single word.

The methods generated by Glazier are default
methods describing behavior necessary for
operation of the pane. Typically the defaults will
not operate exactly in the manner desired by the
user. It is up to the user to change these methods to
produce the behavior desired. The default methods
are very stereotypic, and the user changes are
usually regarding data is accessed by the new
window class. Such changes do not require
knowledge of pluggable views or the MVC
framework, only familiarity with the application
supporting the underlying object.

The user can add as many subviews to the new
Window as are needed. In addition to simpIifying
the addition of subviews to a window, Glazier
performs numerous other functions that facilitate
the construction of windows:

l Addition of variables - often the new

Window class needs to keep track of
selections in various panes, history
information or other types of information.
The user can touch the variable button and
add an instance variable to the new class.
Glazier asks the user to enter code
describing the initialization routine of this
variable. The code is added to the
initialization procedures for the new
window.

l Creation of dependencies - When a instance
variable value changes in a manipulator, it is
often appropriate to update a corresponding
pane in the window. The user can indicate
such variable/pane dependencies by
touching the dependent button. Glazier will
present the user with a menu of all the
instance variables, and after selection of one
will ask the user to point to the pane that is
dependent upon that instance variable. This
dependency is stored in the code for the new
window class.

l Relocation of panes - The user can
experiment with multiple pane placements
by touching the relocate button (indicating
the pane to be moved) and framing the new
location. Any pane may be moved at any
time. Panes often need to be relocated
according to specific values and Glazier
provides two other means of relocation:
automatic relocation using an algorithm, or
explicit user input of exact coordinate
locations.

l Other actions - Other functions provided
will allow the user to examine all aspects of
the new subview and manipulate it by hand.
In addition, there are functions for
removing subviews, instance variables, and
dependencies.

2. How Glazier builds a window.

Building a Smalltalk window involves the
creation of a MVC triad that controls the
presentation of object data in a window. A MVC
Triad is pictured in Figure 2. The Glazier takes
advantage of standardized Views and Controllers
available in Smalltalk and builds windows by
helping the user generate a new Model. Thus the
types of windows generated through Glazier is
limited by the views and controllers available in the
Smalltalk system. Because of the conventions built
into some Smalltalk Views (specifically pluggable
views, explained below) the construction of models

October 4-a,1987 OOPSIA ‘87 Proceedings 289

-- Dependenc

Controller

gure 2 - A model-view-controller (MCV) triad in Smalltalk is shown with a manipulator
communicating with the application. The manipulator provides modularity for the application
code as well as the view code. Typically, the manipulator keeps track of selections in the
window, the relationships between panes within a window, and the relationship between
window panes and components of an application. In most cases, communications is achieved
directly by passing messages to instance variables, however communication from the application
object to the manipulator and from the manipulator to the view is achieved through
dependencies.

can be very stereotypical, enabling a mechanized
composed of subviews. For clarity’s sake in

process. To understand this process, however, one
this paper top-level views will be referred to

must understand some about the MVC framework.
as windows, and views within a window will

This will be discussed briefly.
be referred to as panes.

2.1 A MVC Primer

Smalltalk divides the responsibility for
window management among three types of objects:

. The Model - an object representing the
data structure of the application, and contains
or can access information to be displayed in
the window. The model acts as an agent
between the view/controller pair and the
applications object, and communicates
information. These agents are called
browsers, or manipulators.* Formerly, the
application objects themselves served as the
model. However this practice forced
customizations of the object which hinder the
reusability of the code.

l The Controller - an object that controls the
user interaction with the window. In its
simplest form, it determines if and where
the pointer is contained within the window,
it describes what happens when a window
becomes active, and it determines if the user
has pressed any keyboard or mouse buttons.

Smalltalk has classes of Views and Controllers
sufficient to fit the needs a programmer might
encounter. Generally, views and controllers are
developed as matched pairs intended to be used
together and only with each other. For example,
the Standard System View class and the Standard
System Controller class are always used together
and, for our purposes, can be thought of as a single
entity. From here on the term View will be used
loosely to refer to a view/controller pair.

l The View - an object that controls the visual
aspect of the window. In its simplest form a
view keeps track of the bounding box of the
window, and the means for updating the
contents of the window. Views may be

*TO distinguish them from the Smablk system browser, a
smdard fjm&a& window, I will call them ma+XhtOrS.

2.1.1 Pluggable Views

Pluggable-views standardize the interactions
between views and models. This is done through
adaptor messages which are messages implemented
by the model (manipulator) which the view should
send to indicate the need for information or action.
These selector names are held in an instance
variable of the view and executed when
appropriate. Some common adaptor messages are:

OOPSLA ‘87 Proceedings October 4-8, 1987

aspect - sends the view the proper
;lata representation for the view. This will
be different for each pane in a window. For
example a checkbook object might want to
send the balance to one pane, a list of
outstanding checks to another pane, and a
graph of the cumulative balance over the
past month to a third pane. The checkbooks
manipulator would implement one aspect
message for each of these panes in order to
provide the proper data.

l change - activates whenever something is
changed in the view. For example, a button
might be pressed or a text item changed.
The parameter would communicate to the
manipulator the value of the change, and
typically prompt some action in the
application object. In the checkbook
example this could be the action of updating
the balance when a check is written.

l menu - A method implementing the menu
for the view.

Adaptor messages place the responsibility for
customization of view on the manipulator rather
than the view or application data object. Thus, the
standard collection of views and controllers can be
plugged into varying models without modification.
All that changes is the adaptor message held in the
appropriate adaptor message slot.

2.1.2 Building a manipulator for
pluggable views

The manipulator stands between the view (and
controller) and the application object(s) to be
displayed by that view. The manipulator
communicates to the view appropriate information
about displaying various aspects of the object, and
communicates to the application object information
about what changes should be made to it. A
window may be composed of one or more panes of
various types, with each pane showing different
perspectives of the same object. It is convenient
(but not necessary) to have the one manipulator
control all of these panes and coordinate their
behavior.

When a programmer defines a window, s/he
must define three factors:

l The type of each subView composing the
window (i.e., Boolean View, FormView,
TextView).

The location of each subView within the
window.

The behavior of the subViews as defined by
the adaptor messages.

Manipulators typically look like simple state
machines. Creation is a straight forward, but time
consuming process. One needs to define the type
and location of all views that will compose the
window. For each of these views, the proper aspect
methods need to be generated. Typically, one
should build an instance variable .into the
manipulator for each of the views to keep track of
selections in the view.

The prime benefit ;P the manipulator is
modularity. If a window is coded without the use
of a manipulator the windowing code must be part
of either the view class or the application class, thus
reducing the generality of both these classes. By
using the manipulator, the developer can keep the
generality of the view classes and get customization
though the new Manipulator class.

2.2 What Glazier does.

All Manipulators share a similar form, yet
they do not share the type of similarity that can be
shared through Smalltalk inheritance. To inherit
something in Smalltalk, either the structure of a
class or the messages they respond to should be
consistent. Manipulators do not share structure and
do not respond to the same set of methods. Rather,
they have numerous methods that have the same
form, but differ in the selector name. For example,
a manipulator may have two or morefooAspect
methods all of which have the same form, but
different values replacingfoo. Glazier’s
knowledge base allows the programmer to share
knowledge about the structure of these regularities.

Glazier’s knowledge base consists of:

a message for opening each type of
pluggable view in a Smalltalk System

default methods for the adaptor messages
required by the pluggable views.

updating messages for each of the window
types*

*This knowledge base is a reflection of the lack of a standard
to propagate changes in the ST-80 system. A more
consistent updating message convention would obviate this
knowledge.

October 4-8,1987 OOPSIA ‘87 Proceedings 231

This knowledge base is contained in a class called
Manipulator. All manipulators created by the
system are implemented as subclasses of
Manipulator. A subclass of Manipulator, inherits
code that standardizes the operation of the new
manipulator type, but the class includes no
information about the new manipulator or the
window to be controlled by this manipulator. This
code is generated in the process of building a new
window.

The four types of information that is added to the
new Smalltalk class when panes are added within a
window are:

l Pane types - the name and type of each pane

l Pane locafions - an association of the name
and it’s location within the window (in
relative coordinates)

l Instance variable dependents - which
subviews are dependent upon the instance
variables defined by the subclass. Through
the use of this information, when an instance
variable value changes, the appropriate
panes in a window can be changed
accordingly.

l Adaptor messages - speciftc messages for
each of the panes are generated. These
messages are implemented according to
defaults appropriate for the type of pane
being generated.

Unlike normal Smalltalk panes, each pane of a
window has a name attached to it. This gives the
system a handle for the generation of the pane and
the corresponding adaptor messages. In Glazier,
the adaptor messages are prefixed by the pane
name. a new adaptor message set is created for
each and every pane in the window.

3. Correspondence of Glazier generated
windows with normal windows

Glazier was not intended to build windows that
do everything that the programmer can imagine.
Because of this, one of the design goals behind the
Glazier was to continually produce code that is
human readable and conforms to standard
Smalltalk style. To some extent the system both
failed and succeeded on this count.

The adaptor messages written by the Glazier
are typical Smalltalk code. They are simple

methods, and are commented as to their function,
inputs, and outputs. The method names (selectors)
are the pane name concatenated with the adaptor
message name. The automatically generated code is
standardized and easier to read than code normally
found in a programmer developed system.

The main departure from current Smalltalk
style is in window opening methods. Normally a
window is created with code resembling the
following:

open
I topView subView
topView3tandardSystemVIew new.
subView_SelectionlnListView new.
topView addSubView:subView

in: (O@O extent: 1 @l)
borderwidth: 2.

topView controller open

The opening methods actually contain the explicit
specification of the size, location and type of pane
to be added to the window. The Glazier separates
this out by holding the pane types, locations and
sizes in a data structure (actually in a method that
regenerates the data structure). The opening
method for all Glazier developed windows looks
like:

open
I topView subView I
topView,StandardSystemView new.
self addSubViewsTo: topview.
topView controller open

With this aproach, addSubViewsTo:
controls all of the pane addition by consulting the
appropriate data structures. This departure from
the standards is not critical, though it may be
unexpected. In fact it appears to be a convenience
that should be added to all window opening
methods. By keeping the size and location of panes
out of hard coded methods, one is afforded a
flexible window framework. Using this convention
it becomes a simple matter to change and save the
size and location of panes in windows.

4. Summary

4.1 Benefits of Glazier

Glazier should have a revolutionary effect
upon the construction and use of windows in
computer systems. Instead of being fixed interfaces
to an application, windows can now be
experimented with and manipulated for maximum

292 OOPSLA ‘87 Proceedings October 4-8, 1987

efficiency, and for special purpose functions. One
can now imagine a system designer experimenting
with various pane configurations before settling
upon the one that will be delivered with the system.
One can also imagine a user constructing a special
purpose window for a particular application.
Suppose a person needed a special-purpose window
to show all of the checks in a checking account that
were above a certain dollar amount. A user could
quickly set up a window with a list and a dial in
which the setting of the dial represents the cut off
value and the list contents are all of the checks
above that value.

One style of window construction encouraged
by Glazier is a style in which the panes do not
consume all of the internal space of the window.
Thus, the window may have blank space between
the edges of panes. After working with these for a
while, I have become convinced that empty space in
a window design is at least as important as sagacious
use of white space in the layout of a book or letter.
Empty space can be used to guide the eye to related
areas within the window.

4.2 Dependent updating in the Glazier

One of the most confusing components of
building a window in Smalltalk is the propagation
of change messages to dependent panes. Typically,
a view is designated as a dependent of a particular
object, and whenever the object is changed that
view is updated. However there are two problems
with this scheme for our purposes:

l All dependents are updated, causing
unnecessary delays

l If something is made a dependent of an
object and that object is replaced instead of
updated, the dependents cannot be updated.

Glazier allows a more modular updating
mechanism. This mechanism is not particular to
Glazier but has been developed in parallel. With
the new mechanism views can be designated as
dependents of the instance variables of an object
rather that the object or the values held by the
instance variables. Thus, whenever any change is
made to the instance variable a change message can
be issued updating only those panes dependent upon
that instance variable. This causes faster overall
window response than announcing the general
object change and makes windows more responsive
to user inputs.

5. Future work

Glazier is still at a simplistic stage of
development, it builds the default adaptor methods
only as a function of the type of pane they are
constructed for. This means that the default is
typically the greatest common denominator
between the possible objects to be displayed. For
example, the meter panes require the display of
some number. The default method chosen to
display this number must be implemented by all
classes in Smalltalk. One of the few choices that
does this is si ze which has little meaning to the
user for most objects. The next generation of
Glazier will have knowledge on how to write the
methods according to the type of data to be
displayed. This would result in default methods
that would be more likely to be appropriate upon
first creation.

Likewise there are other conventions that
should be added to extend Glazier. ListViews, for
example, often require a special instance variable in
the manipulator to keep track of the item selected.
Also, FormViews usually require a variable for
caching the form to be displayed. It may be
reasonable for Glazier to automatically generate an
instance variable for each new pane added to the
window, and this may be done in the near future,

In addition, Glazier should be expanded to
construct more and more types of windows.
Currently, Glazier only supports panes with limited
intercommunication. Also, it is not possible to
support panes defined by the user. Consequently,
Glazier constructed windows are monolithic, in
that there is only one level of pane depth for a
window. Experience has shown that it is more
convenient to have panes within panes, and this is
another obvious extension for the functionality.

Finally, the type of code sharing implemented
by Glazier suggests many different applications not
possible with libraries or the inheritance
mechanism of Smalltalk. Glazier is a repository
for the knowledge of how to construct
Manipulators. By codifying and automating such
knowledge it is possible to share knowledge on how
to build regular structure. This could be of use in
many areas. For example, two of the most regular
structures in Smalltalk- are Views and
Controllers. One can imagine having two more
Glazier-like entities one for constructing views and
one for constructing controllers. Such possibilities
are being explored.

October 4-8,1987 OOPSLA ‘87 Proceedings 293

6. References

Bass, L. J. A generalized user interface for
applications programs (II). CACM, 1985,28,617-
627.

Goldberg, A. Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley
Publishing Company, Reading, MA: 1984.

Goldberg, A. & Robson, D. Smalltalk-80: The
Language and its Implementation. Addison-Wesley
Publishing Company, Reading, MA: 1983.

Hayes, P. J., P. A. Szekely, & R. A. Lemer. Design
alternatives for user interface management systems
based on experience with Cousin. CH1’85
Proceedings, 1985, 169-174.

Henderson, D. A. The Trillium user interface
design environment. CHI’86 Proceedings, 1986,
221-227.

7. Acknowledgements

I owe thanks to numerous people for the help
they provided on this project. Principally I’d
like to thank Jeff Staley, Ward Cunningham,
Allen Wirfs-Brock and Jeff McKenna for their
suggestions.

294 OOPSIA ‘87 Proceedings October 441987

