
VMIL: Workshop on Virtual Machines and Intermediate Languages

Hridesh Rajanλ, Michael Hauptφ, Christoph Bockischβ, Robert Dyerλ

λIowa State University, φHasso Plattner Institute, University of Potsdam, and βUniversiteit Twente
λ{hridesh,rdyer}@cs.iastate.edu, φmichael.haupt@hpi.uni-potsdam.de, and βc.m.bockisch@cs.utwente.nl

Abstract
The VMIL workshop is a forum for research in virtual ma-
chines (VM) and intermediate languages (IL). It is dedicated
to identifying programming mechanisms and constructs cur-
rently realized as code transformations or implemented in li-
braries but should rather be supported at the VM level. Can-
didates for such mechanisms and constructs include modu-
larity mechanisms (aspects, context-dependent layers), con-
currency (threads and locking, actors, software transactional
memory), transactions, etc. Topics of interest include the in-
vestigation of which such mechanisms are worthwhile can-
didates for integration with the VM, how said mechanisms
can be elegantly (and reusably) expressed at the IL level
(e.g., in bytecode), how their implementations can be op-
timized, and how VM architectures might be shaped to fa-
cilitate such implementation efforts.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features
— Control structures; Procedures, functions, and subrou-
tines; D3.4 [Language Processors]: Compilers, Interpreters,
Memory Management, Run-Time Environments

General Terms Design, Languages, Performance

Keywords virtual machine, intermediate language, dy-
namic dispatch, compilation, interpretation, optimization

1. Motivation and Themes
An increasing number of high-level programming language
implementations is realized using standard VMs. Recent ex-
amples of this trend include the Clojure (Lisp) and Potato
(Squeak Smalltalk) projects, which are implemented on top
of the Java Virtual Machine (JVM); and also F# (ML) and
IronPython, which target the .NET CLR. Making diverse

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

languages—possibly even adopting different paradigms—
available on a robust and efficient common platform lever-
ages language interoperability.

Vendors of standard VM implementations have started to
adopt extensions supporting this trend from the VM side.
For instance, Sun’s JVM will include the invokedynamic
instruction to facilitate a simpler implementation of dynamic
programming languages on the JVM.

It has been observed that supporting language con-
structs in library code, or through code transformations
leads to over-generalized results. Thus, efforts are spent to
implement the core mechanisms of certain programming
paradigms at the VM level, enabling sophisticated optimiza-
tion by direct access to the running system. This approach
has been adopted by several projects aiming at providing
support for aspect-oriented programming or dynamic dis-
patch in general-purpose VMs (Steamloom, Nu, ALIA).

The main themes of this workshop are to investigate
which programming language mechanisms are worthwhile
candidates for integration with the run-time environment,
how said mechanisms can be declaratively (and re-usably)
expressed at the intermediate language level (e.g., in byte-
code), how their implementations can be optimized, and how
VM architectures might be shaped to facilitate such imple-
mentation efforts. Possible candidates for investigation in-
clude modularity mechanisms (aspects, context-dependent
layers), concurrency (threads and locking, actors, software
transactional memory), transactions, paradigm-specific ab-
stractions, and combinations of paradigms.

The areas of interest include, but are not limited to,
compilation-based and interpreter-based VMs as well as
intermediate-language designs with better support for in-
vestigated language mechanisms, compilation techniques
from high-level languages to enhanced ILs as well as na-
tive machine code, optimization strategies for reduction of
run-time overhead due to either compilation or interpreta-
tion, advanced caching and memory management schemes
in support of the mechanisms, and additional VM compo-
nents required to manage them.

2. Relevance to OOPSLA
To date, many kinds of mechanisms and concepts researched
in various communities are mostly reflected in high-level

701



language and library design. The workshop’s main goal is
the discussion of more natural support for such constructs
even within compiled programs, e. g., to improve dynamic
optimization, incremental compilation, and debugging. It is
expected that language constructs benefit from a more effi-
cient execution and better integration into the development
process: both will raise the acceptance of the concepts which
in turn activates further research at the conceptual level.

The VMIL workshop has been successfully conducted
twice (at the conferences OOPSLA 2008 and AOSD 2007).
The scope of the workshop addresses the interests of many
communities typically represented at OOPSLA, includ-
ing the concurrent or transactional programming and the
modularization communities. As multicore programming is
among the main themes of OOPSLA 2009, we expect the
respective community to respond well to this workshop.

3. Invited Talks
Virtual Machine and Intermediate Language Challenges
for Parallelism by Vivek Sarkar A VM specifies the be-
havior of a system at a high level of abstraction that in-
cludes precise semantics for state updates and control flow,
but leaves unspecified the low-level software and hardware
mechanisms that will be used to implement the semantics.
Past VMs have followed the von Neumann execution model
by making sequential execution the default at a high level,
and supporting parallelism with lower-level mechanisms
such as threads and locks. Now that the multicore trend is
making parallelism the default execution model for all soft-
ware, it behooves us as a community to study the fundamen-
tal requirements in parallel execution models and explore
how they can be supported by higher-level abstractions at
the VM level.

In this talk, we discuss five key requirements for paral-
lel VMs: 1) Lightweight asynchronous tasks and commu-
nications, 2) Explicit locality, 3) Directed Synchronization
with Dynamic Parallelism:, 4) Mutual Exclusion and Iso-
lation with Dynamic Parallelism, and 5) Relaxed Excep-
tion semantics for Parallelism. For completeness, these re-
quirements need to be addressed at both the VM and IL
levels. We summarize the approach being taken in the Ha-
banero Multicore Software Research project at Rice Uni-
versity (http://habanero.rice.edu) to define a Parallel
Intermediate Representation (PIR) to address these require-
ments, and then identify key research challenges in develop-
ing VMs and ILs for parallelism.

Abstraction Without Guilt by Steve Blackburn While on
the one hand systems programmers strive for reliability, se-
curity, and maintainability, on the other hand they depend on
performance and transparent access to low-level primitives.
Abstraction is the key tool for enabling the former but it typi-
cally obstructs the latter. This talk addresses this conundrum
from three distinct angles; as a producer, a consumer, and
an evaluator of high level programming languages, and is

based on ten years of experience in each of these roles. I
will discuss my experience as a producer, engineering a low-
overhead, highly-expressive Java dialect suitable for systems
programming; and as a consumer, using Java and object ori-
ented programming principles to build a JVM and memory
management subsystem. Key to both of these is the role as
an evaluator, measuring and understanding the complex be-
havior of managed runtime systems. The phrase “abstraction
without guilt”, coined by Ken Kennedy, nicely captures our
philosophy on systems building.

The Maxine Virtual Machine by Doug Simon and Ben L.
Titzer Maxine (http://research.sun.com/projects/
maxine/) aims to support VM research and enable fast
prototyping of language features and implementation tech-
niques. A meta-circular design implemented in the JavaTM

programming language blurs the distinction between VM
and application and greatly simplifies important VM com-
ponents. This talk will present details of the VM that make
it attractive as a high performance but malleable platform
for VM research. We will discuss two of the three compil-
ers in Maxine: C1X, a port of the HotSpot client compiler,
and the bootstrap compiler, which is based on continua-
tion passing style. In addition, we will present the Maxine
Inspector, a combined object browser and debugger that ex-
tensively leverages the meta-circularity of the VM to present
a high-fidelity and robust debugging and inspection tool for
Maxine.

4. Organization
The organizers of the workshop are as follows. Hridesh Ra-
jan is an assistant professor at the Iowa State University. His
main research is on AOSD, and on specification and verifica-
tion languages. Michael Haupt is a post-doctoral researcher
at the Hasso-Plattner-Institut in Potsdam. His research in-
terests are in improving the modularity of complex systems
software. Christoph Bockisch is an assistant professor at
the University of Twente with a research focus on the de-
sign and implementation of programming languages with
advanced dispatching mechanisms. Robert Dyer is a third
year Ph. D. student researching the design of IL models and
VM support for advanced modularization techniques.

The program committee of VMIL 2009 consists of Eric
Bodden (McGill University), Alex Buckley (Sun Microsys-
tems), Andreas Gal (University of California Irvine), Doug
Lea (SUNY Oswego), Stefan Marr (Vrije Universiteit
Brussel), Filip Pizlo (Purdue University), Andreas Sewe
(Technische Universität Darmstadt), Jan Vitek (Purdue Uni-
versity), and the organizers.

Acknowledgments
The organization of this workshop was supported in part by
the NSF under grants CNS-08-08913, CNS-0627354, CCF-
08-46059 and the AOSD-Europe Network of Excellence.

702

http://habanero.rice.edu
http://research.sun.com/projects/maxine/
http://research.sun.com/projects/maxine/

	Motivation and Themes
	Relevance to OOPSLA
	Invited Talks
	Organization

