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Abstract

Software metrics computation and presentation are consid-

ered an important feature of many software design and de-

velopment tools. The System Grokking Technology devel-

oped by IBM research enables investigation, validation and

evolution of complex software systems at the level of ab-

straction suitable for human comprehension. As part of our

ongoing effort to improve the tool and offer more useful

abstractions we considered adorning the presented informa-

tion with software metrics. The difficulty in doing that is in

selecting among the legions of metrics competing for both

scarce screen space and for the architect’s attention. In this

paper, we describe a new criterion for evaluating the com-

peting metrics based on a normalized version of Shannon’s

information theoretical content. We also give values of these

in a large software corpus and for a large set of metrics.

Based on our measurements and this criterion, we can

recommend the presentation of two metrics: module central-

ity, as measured by a variant of Google’s classical page rank-

ing algorithm, and module size, as measured by Chidamber

and Kemerer’s WMC metric.

Categories and Subject Descriptors D.2.8 [Software Engi-

neering]: Metrics—Complexity measures, Software science

General Terms Design, Measurement

Keywords Metrics, Information

1. Introduction

The total volume of software that the human race produces

(and consumes) increases at a staggering rate. With this in-

crease, and the accompanying blowup in software complex-

ity [24], more and more automatic tools are developed by
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academia and industry [1, 2, 13, 16, 22, 23, 29] to aid in

understanding, validating and evolving of existing software.

The System Grokking technology (SGT) [9, 12] is our

own such tool. It supports software architects in the incre-

mental and iterative user driven understanding of software

systems through higher levels of abstraction. The technology

includes a visual modeling framework for the representation

of domain-specific software elements and the relationships

between these in a graphical manner. SGT was applied to a

spectrum of programming languages, including Java, C, C++

and Cobol, and in a variety of application domains. This was

made possible, by having the framework realized, as often

done in many visual tools of this sort, by a user extend-able

meta-model that defines the abstractions to be presented.

The SGT further includes wizards and easily configurable

queries for user driven investigation of software artifacts.

However, system architects still need help in identifying im-

portant areas to investigate. This work argues that such help

can be automatically provided when the SGT tool is ex-

tended to include visual representation of valuable software

metrics.

The context of this argument is as follows: As part of

our ongoing effort to improve SGT and offer more useful

abstractions, we evaluated the prospects of augmenting it

with the ability to present software metrics. A user extending

the meta-model has then to choose among the legions of

metrics competing for screen real estate, precisely those

metrics which are most useful, either in general or for his

product.

This selection process will undoubtedly apply validity

and reliability criteria: “What do these numbers mean?”,

“how do they reflect on quality?”, “complexity?”, are typ-

ical questions that one would ask when bombarded with a

list of metric values. The quest of answering these validity

questions has been a source for many challenges in software

engineering research. One may also apply “stability” or “re-

liability” criteria to any given metric—after all, there is little

point in presenting highly ephemeral information.

We argue that on top of these hard to apply considera-

tions, and perhaps, even before applying these, the system

architect should consider the scarcity of resources: limited

screen space, limited spectrum of colors, and limited user at-

tention. This is especially true when numerical values need
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to be presented; flooding the user with numbers is likely

to be overwhelming and counter productive, even if these

numbers are presented in less intimidating visual forms, e.g.,

color grades and shades or histograms.

SGT can tip the architect with its estimate on the amount

of information that each of the competing metrics provides:

the architect can then choose to present the metrics which

are more informative than others, either in general, or for the

product or set of products for which a meta-model is tailored.

The main contribution of this work is with a new criterion

for evaluating metrics, which is based on a normalized ver-

sion of Shannon’s information theoretical content. We study

this criterion in the context of a large software corpus, com-

prising close to eighty thousand Java classes and for a set of

36 software metrics. On course, we offer a taxonomy of soft-

ware metrics, based on scope, range of values and other cri-

teria. The software corpus was modeled using graph based

techniques, which are widely utilized [3, 25, 26] in other

computer algorithms.

Based on our empirical findings, we identify a candidate

metric for visual presentation, describing the “centrality” of

a module, as measured by a variant of Google’s page-ranking

algorithm [20]. Second to this comes the module size, as

measured by the well known WMC metric [8].

There is an arguable merit to developers and maintainers

in both metrics: the more central modules should be useful in

identifying the software architecture, while the module size

may be typical of complexity. Naturally, we stay short of

the detailed study of the actual developers and maintainers’s

experience in using the studied metrics, and value they may

draw from them. Such a study requires entirely different

research methods, and could complement our work.

Similarly, the study of “contextual” information, such as

interpretation of the meaning of identifiers, or the text found

in program comments or other documentation[6, 10, 28],

requires very different tools, and is beyond the scope of our

work.

Outline. The remainder of this article is organized as fol-

lows. The data corpus and the way it was selected are de-

scribed in Section 2.

Section 3 presents our metrics taxonomy, which is then

used in Section 4 to present the metrics used in this study.

Section 5 introduces a method of estimating how “informa-

tive” a metric is, along with other descriptive statistics of the

numerical metrics in out suite. Section 6 repeats this analysis

for Boolean metrics. Related work is the subject of Section 7,

while Section 8 concludes.

2. Software Corpus

2.1 Artifacts

The software corpus used in our experiments comprised 19
software artifacts, all drawn from the Qualitas Corpus [27],

a colossal collection of JAVA software that is being used

extensively in many empirical software engineering studies1.

These artifacts included: the JAVA compiler, javac,

ant (JAVA’s equivalent of make), and junit (the JAVA

unit testing library), Eclipse’s JDT core, search, and SWT,

FreeCol (a simulation game), Antlr (a framework for

constructing compilers, interpreters, etc.) hibernate (a

persistence framework), holds (a relational database en-

gine), jgraph (a graph drawing package), log4j (the log-

ging component of Apache), struts (the Apache frame-

work for the creation of web applications), weak (data min-

ing and machine learning software), argouml (an UML di-

agramming application), hsqldb (hyper SQL database en-

gine), jhotdraw (java GUI framework for technical and

structured graphics), jung (framework for modeling, anal-

ysis and visualization of graphs), and proguard (java

shrinker, optimizer, obfuscator and preverifier).

Size Metric Mean Median Min Max Total

Types 822±1, 125 420±285 42 6,444 78,099

Packages 58±98 23±13 3 469 5,500

Edges 3, 767±4, 910 2, 069±1, 437 77 27,764 357,897

Table 1. Size characteristics of the software corpus.

2.2 Versions

For each artifact, we analyzed a number of versions from the

corpus. In total, our corpus comprised 95 versions.

The essential size characteristics of the corpus are sum-

marized in Table 1. The corpus totaled some 78 thousands

types, organized in 5,500 packages.

Each software version was modeled as a directed graph,

in which types serve as nodes, and edges lead from a type

to all types which it uses directly, i.e., inheriting from it,

declaring a variable of it, invoking one of its methods, etc.

Edges leading to outside the artifact, e.g., the edge that leads

from almost every JAVA class to java.lang.Object,

were ignored. The number of edges thus found is shown in

the last row of the table.

Table 1 introduces a ± notation that embellishes the mean

with the standard deviation, e.g., the mean number of types

is 822 (averaged over all 95 software versions), while the

standard deviation is 1, 125. Similarly, the median is embel-

lished with the median absolute deviation (M.A.D.), defined

as the median of the absolute deviations from the median of

the distribution.

The large standard deviation and the wide range of values

are not surprising—software varies greatly in size. For this

reason, we prefer the median and the M.A.D. as a pair of

summarizing statistics over the mean and standard deviation.

Admittedly, the median and the M.A.D are less efficient sta-

tistical measures than the mean and the standard deviation,

1 See http://www.cs.auckland.ac.nz/˜ewan/cor-

pus/publications.html for a partial list.
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but they are robust to outliers, which are unavoidable with

this great variety.

3. Taxonomy of Software Metrics

This section describes the 36 software metrics used in our

experiments, and proposes a taxonomy of metrics of this

sort.

Given is G, the directed graph of software system, where

each node v represents a module of this system, and an

edge e(s, t) leads from a source node s to a target node t if

type s uses type t. A metric then is a function µG (or just µ

if G is clear from the context) that assigns a value µ(v) to

each node v ∈ G.

3.1 Metric nature

If µ(v) depends solely on the topology of G, we say that µ

is topological. In contrast to topological metrics stand se-

mantical metrics whose value takes into account a deeper

analysis of the node contents (by e.g., examining the code in

this node), and the sort of the edges incident on it (e.g., dis-

tinguishing between different kinds of dependencies among

nodes). The suite includes 17 semantical metrics.

3.2 Metric directionality

The dual of a (topological) metric µG is a metric µ′
G, defined

by µ′
G(v) ≡ µG′(v) where G′ is the graph obtained from G

by inverting the direction of all edges in it. Thus, metrics µ1

and µ2 are duals if µ1 computed in G is the same as µ2

computed in G′. A metric is undirected if it is the dual of

itself; it is otherwise directed. Our metrics suite includes 18

directional metrics and 18 unidirectional metrics.

3.3 Metric scope

Another criterion for classification is whether µ(v) depends

on G in its entirety, rather than on a restricted neighborhood

of v. We say that a metric is strictly local if µ(v) does

not change with changes to G that preserve incoming and

outgoing edges to v (along with the identity of the nodes

at the other end of these). In other words, metric µ is strictly

local if µ(v) depends solely on v and its neighbors. Also, µ is

local, if for every v ∈ G there is a set of nodes S ( G, such

that µ(v) does not change despite arbitrary changes to G, as

long as the nodes S ∪ {v} and the edges among these are

intact.

For example, the widely studied Chidamber and Ke-

merer (CK) suite [8] has a number of strictly local methods,

including Number of Children (NOC) and Coupling between

Object Classes (CBO), which is defined as the number of

types whose methods may be invoked in response to call to

the methods of a given type. The Depth in Inheritance Tree

(DIT) metric however is local, but not strictly local.

Obviously, local metrics are more suited to the study of

a single type, or a small portion of the code; this kind of

metrics is not expected to be telling much of the architecture.

Overall, we have 14 local metrics. A subcategory of local

metrics (10 metrics in our suite) is that of internal metrics;

a metric µ is internal if µ(v) depends only on v. A local

metric does not make sense unless it is semantical. Weighted

Methods Per Class (WMC) [8], is an example of an internal

metric.

A metric which is not local is global, e.g., the PageRank

metric mentioned above is global.

3.4 Metric range

Our fourth criterion for classifying metrics is based on the

type of values they yield; continuous metrics (e.g, PageR-

ank) yield real values, while discrete metrics (e.g., CBO,

NOC, and DIT) yield integers, typically drawn from a small

range, say o(|G|). We have 3 continuous metrics, and 19 dis-

crete metrics. The remaining metrics belong to a special kind

of discrete metrics henceforth called markers, which yield

Boolean-, that is true- or false-, values.

4. Metrics Used in the Experiments

The literature defines hundreds if not thousands of code

metrics.

Table 2 enumerates the metrics used in our experiments,

classifying these according to this taxonomy.

Metric Nature Directed Scope Range

final semantical undirectional internal Boolean
abstract semantical undirectional internal Boolean
interface semantical undirectional internal Boolean

sink topological directional local Boolean
source topological directional local Boolean
baloon topological directional local Boolean
wrapper topological directional local Boolean

pure semantical undirectional internal Boolean
pool semantical undirectional internal Boolean
designator semantical undirectional internal Boolean
function pointer semantical undirectional internal Boolean
stateless semantical undirectional internal Boolean
sampler semantical undirectional internal Boolean
canopy semantical undirectional internal Boolean

DIT semantical undirectional local discrete
NOA semantical undirectional local discrete
NOC semantical undirectional local discrete
CBO semantical undirectional local discrete
RFC semantical undirectional local discrete
WMC semantical undirectional local discrete

#Incoming topological directional local discrete
#Clients topological directional global discrete
#Outgoing topological directional local discrete
#Descendants topological directional global discrete

#SCCIncoming topological directional global discrete
#SCCClients topological directional global discrete
#SCCOutgoing topological directional global discrete
#SCCDescendants topological directional global discrete
SCCSize topological undirectional global discrete

#DominatedBy topological directional global discrete
#DominatorHeight topological directional global discrete
#DominatorWeight topological directional global discrete

PageRank topological directional global continuous
Betweeness topological directional global continuous
Belonging semantical undirectional local continuous

Table 2. Metrics used in experiments and their categories
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4.1 Marker Metrics

The first fourteen metrics in the table are markers: final,

abstract and interface are simply the JAVA class attributes

with the same name.

Next comes a group of four topological metrics. The sink

marker is assigned to types from which a bottom-up study

of a software system may start since they are referred by

any other type in the system (either directly or indirectly).

Conversely, the source marker is for types from which a top-

down study may start. The balloon marker (so named after

balloon types [5]) is for types which have only one client,

i.e., nodes whose in-degree is 1. And, the wrapper marker is

just the opposite—nodes whose out-degree is 1.

Following that, we have a group of micro-patterns mark-

ers [11]. For this work, we carried out measurements on

seven of these.

4.2 Chidamber and Kemerer Metrics

The next six metrics are all semantical, undirected, discrete,

and local; they were all drawn from Chidamber and Ke-

merer’s suite [8], including the metrics described above, to-

gether with Response For a Class (RFC), which is the num-

ber of methods that can potentially be executed in response

to an invocation of a method in the type.

The WMC metric was computed by using the total num-

ber of instructions in this method as method complexity. In

addition to these basic metrics, we included a variant of DIT,

Number of Ancestors (NOA) which seems appropriate for

the inheritance structure of interfaces and classes in JAVA.

Of this suite [8], the Lack of Cohesion (LOC) metric was not

included in our study.

4.3 Plain Topological Metrics

The next local metric is #Incoming, which counts the number

of immediate clients a type has. (Of course, this metric is

related to sink and wrapper metrics.) In contrast, #Clients is

a global metric defined as the total number of clients of a

type, including both immediate and non-immediate clients.

#Outgoing and #Descendants are the dual of these two,

counting the number of types that a given type uses directly

and indirectly; observe that #Descendants is identical to

Page-Jones and Constantine’s [21, Chap. 9] encumbrance

metric, which, according to the first author of this book, is

indicative of the “sophistication” of a type, its role and may

even be predictive of its fate.

4.4 Strongly Connected Components Metrics

The next group of metrics is computed from the directed

acyclic graph of strongly connected components of G. Re-

call that there is a directed path between any two nodes that

reside in the same strongly connected component; this the-

oretical structure of a graph makes sense in a software con-

text since all types in such a component are interdependent,

and hence should probably be studied together. A strongly

connected component thus may be thought together of as

super module. In our suite, SCCSize represents the size of

this super module (i.e., the size of the strongly connected

component) that a type belongs to. #SCCIncoming and #SC-

CClients are, respectively, the number of super-modules im-

mediate and indirect clients that the super module serves.

Their duals are #SCCOutgoing and #SCCDescendants.

4.5 Dominators Tree Metrics

The penultimate metrics group is computed from the domi-

nators tree of G. Recall that a node r dominates a node v,

if the only way of getting from into v is through r, and that

there is an edge in this tree if r is the “most immediate”

dominator of v. Thus, the dominators tree is likely to identify

pivotal points of the software system. From this tree we com-

pute the #DominatedBy metric which is the number of nodes

that dominate this node, the #DominatorHeight, which is the

height of the node in the dominators tree, and #Dominator-

Weight, giving the number of nodes that a given node domi-

nates.

4.6 Other Metrics

In the last group of metrics in Table 2 we have PageRank and

Betweenness, yet another measure of graph centrality [7];

roughly speaking, nodes that occur on many shortest paths

connecting other nodes have higher Betweenness value than

those that do not.

The last metric in the table is Belonging used, e.g., in

JDepend2 and in SA4j3, which estimates the extent by which

a type belongs to its package by dividing the number of

edges it has (both incoming and outgoing) to other types in

the package by the total number of edges incident on the

type.

5. Entropy and Information Density of

Numerical Metrics

Having presented the metrics suite and the software corpus,

we now present some summarizing statistics on the behav-

ior of the metrics on the versions in the corpus. The amount

of information that marker metrics may bring to the code

inspector depends on their prevalence. We need more mea-

sures to appreciate the information that numerical metrics

yield.

Range Our range categorization of metrics distinguished

between continuous and discrete metrics. We shall use the

letter k = k(µ,G) to denote the number of values that a

metric µ assumes on a graph G. If k is small, then the metric

cannot be too informative. But, too high a value of k is not

very useful either. Consider PageRank, for example. The

absolute values of PageRank are not very interesting. But,

even an ordinal ranking can be confusing. When told that

“the node corresponding to this class was placed in the 73.9th

percentile by PageRank”, the third and even the second digit

2 http://clarkware.com/software/JDepend.html

3 http://www.alphaworks.ibm.com/tech/sa4j
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of accuracy in this statement will most likely be treated as

noise.

Entropy Recall Shannon’s definition of entropy [4], which

gives a measure of the amount of information of a par-

tition of a set of n elements into nonempty subsets

sized s1, . . . , sk,

H(n, s1, . . . , sk) = −
k∑

i=0

si lg
(si
n

)
. (1)

The above can be viewed as the number of bits required

to represent the partition. Indeed, notice that the maximal

value of the above, n lgn, is achieved when si = 1 for i =
1, . . . , sk, while the minimum, 0, is obtained when the par-

tition is into a single set.

Normalized Entropy Let

H̃(n, s1, . . . , sk) =
H(n, s1, . . . , sk)

n
(2)

denote the normalized entropy of a partition, which can

be thought of as the number of bits of information that

the metric provides for each element participating in the

partition. Then, in the case of a partition into singletons, the

normalized entropy is lgn, while in the case of a partition

into two equally sized sets, the normalized entropy is 1.

The entropy of a metric µ is easily defined with (1),

since µ partitions the nodes in the graph into equivalence

classes, where the value of µ for nodes in each such class is

the same. We can therefore use normalized entropy to com-

pare the amount of information that two different metrics

provide on the same software graph.

Note that a high value of H̃ is not an end by itself. As

we observed above, extra information can be overwhelming

rather than meaningful.

Information Density. The normalized entropy measure is

biased, at least in the case of continuous metrics, to favor

larger graphs. As it turns out, the more nodes in the graph,

the more values a continuous metric tends to have, and

hence the greater the information it carries. To carry out the

comparison between values on graphs of different sizes, we

define the information density of a metric as

α(µ,G) = α(n, s1, . . . , sk) =
H(n, s1, . . . , sk)

n lgn
, (3)

where s1, . . . , sk are the sizes of the equivalence classes.

Thus, the information density is 1 for metrics that provide

maximal information, and 0 for metrics which are constant.

In a particular application of a metric to single software

system, a small number of extreme values, e.g, low informa-

tion density, may indicate a design problem in the system,

e.g., when most of the nodes are in the same strongly con-

nected component.

Table 3 summarizes the values of the above measures

for our corpus and non-marker metrics. Note that the table

Metric k H̃ α (%)

DIT 5±1 1.6±0.3 19±3

NOA 9±3 2.1±0.3 25±3

NOC 11±4 0.7±0.2 8±3

CBO 38±12 4.1±0.2 48±5

RFC 88±31 5.4±0.3 64±5

WMC 224±111 7.0±0.5 81±5

#Incoming 33±13 3.1±0.2 37±7

#Clients 40±22 3.5±0.6 42±10

#Outgoing 27±9 3.3±0.2 38±4

#Descendants 34±20 3.8±0.7 45±10

#SCCIncoming 19±7 2.6±0.3 30±5

#SCCClients 37±21 3.0±0.6 38±8

#SCCOutgoing 19±7 2.6±0.3 30±5

#SCCDescendants 31±18 3.7±0.6 46±8

SCCSize 4±2 0.9±0.1 10±2

#DominatedBy 4±1 0.9±0.2 11±3

#DominatedBy’ 4±1 1.0±0.1 12±2

#DominatorHeight 4±1 0.6±0.1 7±2

#DominatorHeight’ 4±1 0.6±0.1 6±1

#DominatorWeight 9±2 0.7±0.1 8±2

#DominatorWeight’ 10±2 0.7±0.1 8±2

PageRank 229±129 6.0±1.0 69±11

PageRank’ 300±175 7.8±1.0 88±3

Betweeness 92±57 3.0±0.5 33±4

Betweeness’ 102±65 3.0±0.5 35±4

Belonging 79±40 4.4±0.5 47±5

Table 3. Median values of range, normalized entropy, and

information density of numerical metrics applied to versions

in the corpus.

includes also the duals of metrics when this dual makes

sense.

We draw attention of the reader to the following observa-

tions:

• Variety in range between metrics. The measure k varies

greatly between the various metrics.

• Low information density in many small ranged metrics.

For example, almost all the metrics in the dominators tree

example, yield about four values, but these four values

are not distributed equally, as the H̃ column tells. An

equal distribution would have given 2 bits of information

per measured type. However, in this group, values are less

than one.

• High information density in large ranged metrics. PageR-

ank and WMC exhibit the highest information density

amongst the metrics.
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• Dominator tree metrics have few values. Metrics in the

dominator tree group have very few values. This indicates

that the dominator tree is almost degenerate. The height

of this tree is typically four, and the maximal number of

nodes dominated by a node is about nine or ten.

6. Marker Metrics

We now turn to the analysis of the marker metrics. Table 4

gives the essential statistics of the prevalence of the marker

metrics in the suite.

Metric Mean (%) Median (%) Min (%) Max (%)

final 15.0 ± 15.1 7.3 ± 6.9 0.0 48.5

abstract 4.6 ± 2.4 4.1 ± 1.8 0.8 11.8

interface 10.1 ± 5.2 8.1 ± 4.2 1.7 21.2

sink 1.3 ± 2.2 0.6 ± 0.6 0.0 16.7

source 27.7 ± 16.4 29.5 ± 13.7 1.0 55.3

balloon 10.8 ± 8.9 7.2 ± 4.6 1.1 42.1

wrapper 25.7 ± 7.1 23.9 ± 3.0 12.0 49.5

pure 8.9 ± 5.0 8.1 ± 3.7 0.8 21.2

pool 1.4 ± 1.2 1.0 ± 0.6 0.0 5.9

designator 0.4 ± 0.6 0.2 ± 0.2 0.0 4.3

function pointer 0.2 ± 0.4 0.0 ± 0.0 0.0 2.2

stateless 28.7 ± 8.8 29.3 ± 4.9 9.8 53.0

sampler 0.9 ± 0.7 0.8 ± 0.3 0.0 3.2

canopy 17.1 ± 9.1 15.9 ± 7.8 3.4 47.6

Table 4. Essential statistics of the prevalence of the marker

metrics in the suite.

It is easy to pick out interesting bits of information from

the table, e.g., about 4% of all types are abstract, while

another 15% being final; the variance of the final at-

tribute is greater than that of abstract, with some ver-

sions not using it at all, while others using it almost half of

the classes; the sink and sourcemarkers. The prevalence

of sinks is low, but still could be very telling of the architec-

ture of the underlying software. About one in three types is a

source in our corpus. This is explained by the large number

of frameworks and libraries in our dataset.

However, it is even easier to get lost with all these num-

bers and with their meaning and interpretation. In the con-

text of a design of a meta-CASE tool, such as SGT, it is

much more useful to examine properties common to all met-

rics. In comparing the min and max columns we can quickly

observe that there is a great variety in the prevalence of met-

rics (and accordingly, in the amount of information it car-

ries), depending on the examined software artifact/version.

This observation is also supported by the comparison of

the standard deviation (the ± adornment of the “mean” col-

umn), with the mean: we see that the standard-deviation is

almost always greater the mean. Thus, a decision of present-

ing a marker metric should be made application- or at least

application-domain specific.

The median column is also interesting: in approximating

the error of the median, we have used the M.A.D (median

absolute deviation from the median), which is more robust to

outliers than the standard-deviation. Still, M.A.D statistics is

typically large in comparison to the median (the only notable

exceptions being the “wrapper” and “stateless” markers).

This great variety strengthens our conclusion that the

presentation of marker metrics must be user configurable.

The essential statistics of the normalized entropy of the

marker metrics in the suite is presented in Table 5. We

use normalized entropy instead of information density since

markers are constrained, by definition, to two values; a divi-

sion by an extra lgn factor will bias the results in favor of

smaller software artifacts.

Metric Mean Median

final 0.47± 0.36 0.38± 0.33

abstract 0.26± 0.10 0.25± 0.09

interface 0.45± 0.17 0.41± 0.17

sink 0.08± 0.10 0.06± 0.06

source 0.74± 0.28 0.87± 0.12

balloon 0.44± 0.23 0.37± 0.17

wrapper 0.80± 0.10 0.79± 0.05

pure 0.41± 0.17 0.41± 0.12

pool 0.10± 0.07 0.08± 0.04

designator 0.03± 0.04 0.02± 0.02

function pointer 0.01± 0.03 0.00± 0.00

stateless 0.84± 0.12 0.87± 0.07

sampler 0.07± 0.05 0.07± 0.02

canopy 0.62± 0.20 0.63± 0.19

Table 5. Normalized entropy of marker metrics.

Examining the table, we see that many marker metrics

carry minimal information, e.g., “sink” offers less than a

tenth of a bit of information. User interface design should

give such metrics special attention: if these low information

metrics are to be presented, this must be in the form that

does not clutter the main display, e.g., since the vast major-

ity of types are not “designator”s, then only types which are

“designator”s, should be marked as such—no special flag-

ging should be made of types which do not meet the criteria

of this micro-pattern.

7. Related Work

A measure of the relative importance of components within

the software structure was examined in [18]. The authors

suggested to use CODERANK, the software equivalent of

Google’s well known PAGERANK [20] method for ranking

web pages, metric to indicate how important a specific com-

ponent is based on its coupling to the rest of the system. In an

earlier work [14], for the same purpose the authors suggested

to use a similar metric called COMPONENT RANK. The main

difference between these metrics is that the CODERANK is

computed based on the weighted graph that represents vari-

ous usage relations between the components and the number

of time each usage occurs. This research is consistent with

our finding that PAGERANK is an informative metric.

Lorenz et al. [17] recommend using a wide range of

metrics to test the quality of models, classes and methods.
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Various metrics related to coupling, inheritance and size of

classes and methods play the major role in deducting the

quality of the software. Our work may help decide which

metrics out of this wide range should be presented to the

architect as the most important to look at.

Lajios et al. [15] investigated the correlation of various

software metrics to the defect found in software modules

and proposed an approach to determine a sets of metrics for

quality assessment of complex software systems. First they

calculated various quantitative, complexities, coupling and

other metrics at the class level for several similar projects

using different open source tools. Then they found the cor-

relation of these metrics to the history of bugs using ma-

chine learning techniques. They found that although some of

the metrics are more suitable for the assessment of software

quality, these metrics differ between the analyzed projects

even though their natures are similar. They also discovered

that 5 out of 11 metrics were irrelevant for the analyzed sys-

tems. This research completes ours in the attempt to find

which metrics are informative and which are irrelevant.

Ordonez et al. [19] examined various metrics used in soft-

ware industry to measure code size and design complexity.

They mentioned that NASA used the first five metrics pre-

sented in [8] in the tool they developed for analyzing source

code with respect to its architecture. The author’s analysis

was focused on how reliable are specific software modules

with respect to their maintainability and the probability of

causing defects. The information those metrics carry was not

covered and might be useful for this work as well.

8. Conclusions

We presented a metrics suite comprising 36 code metrics

drawn from various independent sources, and offered a tax-

onomy in which these, and many others can be organized.

Our taxonomy of metrics included a distinction between se-

mantical and topological metrics, a breakdown by direction-

ality, and range of values yielded by the metric.

We observed that numerical valued metrics present a

challenge for visual CASE tools such as SGT. Flooding

the user with numbers is likely to be overwhelming and

counter productive. Even though there are means for pre-

senting numbers in less intimidating visual forms, e.g., color

grades and shades, or as histograms, the design of SGT (and

other SGT like tools) meta-model should try to minimize the

use of resources such as screen real-estate, color spectrum

and most importantly, user attention.

Our study proposed the information density property of a

software metric as a criterion for selecting candidates com-

peting on these resources. A very noteworthy candidate for

visual presentation is the “centrality” of a module, as mea-

sured by what we called, PageRank’, which is nothing but

the application of Google’s famous and now classical page-

ranking algorithm to the graph of dependency among soft-

ware modules (more precisely, to the graph in which the in-

verse of use-edges are used).

The second informative candidate is the module size, as

measured by the well known WMC metric. Of course, other

metrics that we did not investigate could make even better

candidates.

Boolean metrics were discussed as well, with the main

observation being that the decision of their use is very much

application dependent.
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metrics tools. In Proc. of the 2008 international symposium

on Software testing and analysis, (ISSTA’08), pages 131–142,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-050-0.

[17] M. Lorenz and J. Kidd. Object-oriented software metrics: a

practical guide. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1994. ISBN 0-13-179292-X.

[18] B. Neate, W. Irwin, and N. Churcher. Coderank: A new fam-

ily of software metrics. In Proc. of the 17th Australian Soft-

ware Engineering Conference, (ASWEC 2006), pages 369–

378, Sydney, Australia, Apr. 18-21 2006. IEEE Computer So-

ciety. ISBN 0-7695-2551-2.
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