
Object-Oriented Megaprogramming 

(PANEL) 

Peter Wegner, Brown University, (moderator) 

William Scherlis, DARPA 
James Purtilo, University of Maryland 

David Luckham, %ZnfOTd University 

Ralph Johnson, University of Illinois 

1 Overview 

Though the term “megaprogramming” is some- 

what macho in its connotations, is captures the 

idea of scaling up from object-oriented systems to 

very large systems of heterogeneous, distributed 

software components. The issues to be addressed 

by this panel include: 

1. How can object-oriented technology be scaled 

up to handle very large, concurrent, hetero- 

geneous, distributed, spontaneously evolving 

objects. 

2. What are the architectures, design principles, 

management principles, and methodologies of 

megaprogramming? 

3. How can module interconnection formalisms 

provide an effective “glue” for the manage- 

ment and composition of large systems of het- 

erogeneous modules. 

4. What research and development questions 

must be addressed to scale up from object- 

oriented programming to megaprogramming? 

The term “megaprogramming” was introduced by 

DARPA in 1990 to motivate the scaling up of soft- 

ware technology to very large systems of hetero- 

geneous , distributed software components. The 

panelists will strive to make this term concrete, 

presenting complementary perspectives on differ- 

ent aspects of megaprogramming. 

Bill Scherlis of DARPA, one of the originators 

of megaprogramming [I], suggests that a product- 

line approach and domain-oriented software archi- 

tecture are as important as technology support in 

the realization of megaprogramming. 

James Purtilo of the University of Maryland, 

who has designed a module interconection language 

for heterogeneous systems, examines the current 

state and future prospects for module interconnec- 

tion formalisms. David Luckham of Stanford Uni- 

versity, who developed the Anna system for the 

verification of Ada programs, will examine mega- 

trends in architecture and applications. Ralph 

Johnson of the University of Illinois, who has con- 

tributed to the development of application frame- 

works and developed a Smalltalk compiler, will ar- 

gue that many projects within the object-oriented 

programming community are aleady addressing is- 

sues of megaprogramming. Peter Wegner of Brown 

University, the coauthor of a paper on megapro- 

gramming with Gio Wiederhold and Stefano Ceri 

[2], will be a participating panel chairman, sug- 

gesting that megaprogramming can be realized by 

strengthening the encapsulation power of objects. 

OOPSLA’92 

392 



The extension of object-oriented programming 

to concurrent, distributed, persistent, heteroge- 

neous systems of components is clearly an impor- 

tant future direction that must be addressed if 

object-oriented programming is to evolve to play 

a role in next generation software technology. 

2 William Scherlis: 
Megaprogramming and Ob- 
ject Oriented Software 

Megaprogramming refers to the practice of building 

and evolving software component by component, 

following a product-line approach. Component ori- 

entation naturally yields an increased emphasis on 

architecture, component interfaces, and reuse, with 

a decreased emphasis on the exact details of compo- 

nents implementations. In a product line approach, 

management incentives are structured in order to 

favor aggregate return on investment over a family 

of related products (or stages of development of an 

evolving system) even when portions of that invest- 

ment - whose benefits are realized over the entire 

product line - may be higher than they would be 

if applied only to an individual product instance. 

The megaprogramming approach is not a silver 

bullet, but is rather a balancing of technology and 

management elements related to successful reuse 

and evolutionary development. It is based on an 

identification of four principal elements underly- 

ing most existing successful reuse efforts: (1) A 

product line approach, which enables investment 

in reuse resources to be linked directly by a prod- 

uct line manager to reuse savings across a product 

line or overall in an evolutionary development pro- 

cess. (2) Domain oriented software architectures, 

which are conventionalized architectures developed 

for classes of related systems or subsystems. (3) 

Technology support, which includes module inter- 

connect frameworks (MIFs) and support for multi- 

language systems. MIFs include means for (a) ar- 

chitecture description, (b) system configuration de- 

scription, and (c) run-time interoperability support 

in a heterogeneous environment. (4) Appropriate 

assignment of reuse roles in organizations, which 

means, for example, that incentives for reuse do 

not lie entirely with specific groups such as librar- 

ians, consumers of components, or others. 

Megaprogramming aggregates technology and 

management issues in a way that is useful for orga- 

nizations seeking to exploit the advantages of ar- 

chitecture conventionalization, object-orientation, 

or other approaches that can contribute to evolu- 

tionary development or product-line software man- 

agement. The value of megaprogramming is that 

it provides a user-oriented framework for a wide 

range of research and management issues, and that 

it is not overly technologically (or managerially) 

prescriptive. 

From an organizational perspective, a successful 

megaprogramming effort can be structured into five 

functional areas. Each of these five functional areas 

has issues and research problems associated with it, 

as detailed in the reference cited below. 

The areas are: (1) architecture determination, 

corresponding to product line or market structur- 

ing, (2) architecture/component description, corre- 

sponding to product line or market description, (3) 

component constuction, corresponding to producer 

activity, (4) component composition/assembly, cor- 

responding to consumer activity, and (5) compo- 

nent interchange, corresponding to brokerage in a 

market. For larger scale systems, this kind of five- 

part structuring can occur at multiple levels in an 

organization, yielding a complex overall “market 

structure” of producers and consumers of compo- 

nents. 

The success of object oriented approaches can 

be understood, in the context of this framework, 

on the basis of the fact that the rich abstraction 

mechanisms of object orientation directly facilitate 

architecture conventionalization, architecture de- 

scription, and component composition. But the 

framework also suggests some challenges, includ- 

ing interoperability among languages (facilitating 

“heterogeneous software”), the role of object ori- 

entation in MIF design (consider, for example, the 

type systems now emerging that combine dynamic 

and static features), the conventionalization pro- 

393 



cess for classes, and issues related to performance. 

Megaprogramming has provided a useful frame- 

work for organizing research issues related to 

achieving evolutionary software development and 

product-line approaches at various levels of scale 

in software engineering. One issue, for example, 

is architecture conventionalization for specific do- 

mains. Efforts in Domain Specific Software Ar- 

chitectures deal with domain analysis, convention- 

alization, and description for a variety of specific 

application or subsystem domains. Another issue 

is the development of languages suited to rapid or 

evolutionary prototyping, particularly in a struc- 

ture in which heterogeneous software can be toler- 

ated. Note that as emphasis shifts towards archi- 

tectures and component assembly, language choice 

for individual components becomes less critical, en- 

abling broader use of domain specific approaches 

and application generators for individual compo- 

nents. 

A third issue is the development of MIF technol- 

ogy. There are good examples of existing technolo- 

gies at each of the three levels (mentioned earlier), 

but there are challenges in achieving an effective 

integration that does not turn the MIF into a Pro- 

crustean bed for larger scale systems efforts. A 

fourth issue relates to software process, and the 

means to design and manage effective evolutionary 

development processes. These processes provide 

the most effective means to reduce risk in larger un- 

precedented developments, but they are also very 

difficult to instrument and manage. 

An additional issue is the design of appropriate 

environment and tool support. Environment and 

tool products can often support complex processes 

and manage shared reusable assets. But there re- 

main research issues to be settled before environ- 

ment and tool products will provide effective sup- 

port for all of the facets of megaprogramming, par- 

ticularly evolutionary processes and product-line 

asset management. 

3 James Purtilo: 
The Dual Technological Chal- 
lenges of Megaprogramming: 
Module Interconnection Lan- 
guages and Module Intercon- 
nect ion Formalisms 

Megaprogramming promises improved productiv- 

ity in our software development environments, 

since programmers will leverage the power of entire 

modules rather than lines of code at each step. To 

support megaprogramming, the development envi- 

ronment must provide many services, such as as- 

sistance in identifying modules for reuse, guidance 

in preparation of modules to operate in this en- 

vironment, configuration control in managing the 

apparatus, and tools for both visualization and in- 

strumentation. Basic to all of these requirements is 

the technology for interconnecting those modules: 

this is MIF, or Module Interconnection Formalism. 

An effective MIF will allow the programmer to de- 

fine a configuration of modules, and will then auto- 

matically derive the large collection of executables 

and objects needed to validly implement the appli- 

cation. 

Once programmers have defined a configuration 

abstractly - that is, they have established their 

design - then figuring out how to integrate the 

module implementations and derive executables is 

comparatively easy. The advent of such technolo- 

gies as software bus organization simplify the task 

of reasoning about compatibility of software mod- 

ules, and enable automatic derivation of interfacing 

code in heterogeneous (mixed language and host 

platform) execution environments. Indeed, module 

interconnection in this sense is arguably a ‘solved 

problem’. But if that is the comparatively easy 

part, then figuring out how to interconnect the 

right modules is truly the hard part, and this rep- 

resents the first key challenge to us as megapro- 

gramming technologists. How can we relate the 

emerging large-scale design methodologies with the 

underlying fabrication technology that is necessary 

for megaprogramming success? In the first part 

394 



of my remarks I will survey the current state of 

our field’s efforts to devise a MIF that is suitable 

for megaprogramming. This includes a review of 

the requirements for MIF, as established within the 

DARPA Prototech program, along with a descrip- 

tion of what this program is doing to meet those 

requirments. 

In the remainder of my time I will discuss the 

dual problem, which is also MIF, a Method for 

Interconnecting Formalisms. To understand this 

problem, let us remember that the purpose of a 

megaprogramming environment is to help us op- 

erate upon applications whose scale may be be- 

yond the ability of our current software technol- 

ogy to handle. It is inescapable that substantial 

portions of the megaprogram must be objects that 

are reused, not reinvented, else we would not reap 

the economic leverage initially promised. In order 

to reuse modules on any serious scale, the mod- 

ules must be drawn from across many organiza- 

tions and sources . . . and no single formalism (cov- 

ering type, control and functional specifications) 

will have been used to define all of those modules. 

Moreover, in describing data types, no single sys- 

tem can suffice across all domains. 

In order to build megaprograms using modules 

from multiple, disparate, separately-specified do- 

mains, we need a method for understanding and 

then relating the diverse formalisms underlying 

each of those domains, i.e., we need the second form 

of MIF. The term “ontology” [2] has been used 

to describe the terminology and formalisms used 

to describe a given component, and in this sense 

the second MIF addresses the problem of relating 

the ontologies of multiple components. Our field 

spent the last decade finding out how to accom- 

modate heterogeneity in individual programming 

languages; now we must discover how to accommo- 

date heterogeneity in our specification languages 

and models. Moreover, we need an operational so- 

lution to this problem, so that megaprogramming 

can deliver on all its promises. Our preliminary 

work in this area is embedded in a proposed MIF 

system called DITech, which we will describe along 

with a set of sample application problems DITech 

is intended to help solve. 

4 David Luckham: 
Architectures, Appli- 
cations, and Emerging Trends 
of Megaprogramming 

Architectures, Applications, and Emerging Trends 

of Megaprogramming 

1. 

2. 

3. 

4. 

5. 

5 

Relevance of Architecture to Megaprogram- 

ming, 

Theory of Architecture 

Computer Language for expressing Architec- 

ture, 

Applications 

Current emerging trends - from objects to 

large systems. 

Ralph Johnson: 
Megaprogramming = 
Objects + Glue 

Although the name is new, megaprogramming has 

long been a concern in the OOPSLA community. 

This concern is just starting to bear commercial 

fruit in the OMG effort and in systems like Apple’s 

AppleEvents and Microsoft’s DDE. Megaprogram- 

ming has two key ideas: future applications will 

probably be built from large, preexisting compo- 

nents, each with their own vocabulary and pro- 

gramming paradigm, and these components will 

probably run on different machines. Thus, it is 

not easy to compose these modules; a megapro- 

gram needs “glue” to convert data from one format 

to another and to coordinate the execution of its 

megamodules . 

Systems like the OMG’s ORB provide a way for 

distributed modes to communicate with each other. 

What they lack is a simple way to specify the glue 

395 



between modules. Apple and Microsoft (and per- 

haps other companies as well) have scripting tools 

that can provide that glue. The simple module in- 

terface description languages of these systems do 

not automatically transform data from one format 

to another like Polylith, but instead rely on a few 

primitive data types and the object-oriented na- 

ture of the underlying modules to convert from one 

form to another. What they share with the vi- 

sion of megaprogramming is that they will be used 

to connect large, independently developed applica- 

tions, and that the whole will be greater than the 

sum of its parts. 

Although distribution complicates large systems, 

the hardest problem in megaprogramming is rec- 

onciling the diverse ontologies (i.e. vocabularies, 

kinds of data, programming paradigms) of differ- 

ent modules. Connecting a display server to a file 

system does not necessarily make any sense, since 

displaying a text file is different from displaying an 

image or a compressed encoding of a VLSI design. 

The problems of integrating systems that were not 

designed together is hard and important even for 

systems built entirely in one language. 

The problem of what to do when ontologies don’t 

overlap is an old one that is usually solved in the 

object-oriented community by writing glue code. 

The paper by Berlin at ECOOP/OOPSLA ‘90 dis- 

tribes cases when glue code won’t work. Polylith 

automates as much of the glue code as possible, 

which is valuable, but ways of preventing the prob- 

lems described in Berlin’s paper require standards 

to prevent conflicting design decisions. My guess 

is that the only real way to prevent these kinds of 

problems is standards. 

Component composition has always been the im- 

portant problem in OOP. Although inheritance is 

important, composition is more important. Suc- 

cessful systems of reusable software like MacApp, 

Interviews, and Model/View/Controller use com- 

position more than inheritance. This will clearly 

continue in importance as system sizes scale up. 

One of the differences between the vision de- 

scribed in the megaprogramming paper in CACM 

and the systems coming on line that I claim realize 

it is that the vision assumes asynchronous commu- 

nication and the systems assure synchronous com- 

munication. The debate as to which is best is just 

starting, and there are some commercial systems 

like HP Sockets that rely on asynchronous commu- 

nication. It will be interesting to see which wins in 

the long run. 

It is easy to believe that megaprogramming will 

result in new problems, since increasing the size of 

an engineering effort usually results in new prob- 

lems. However, I don’t think we know what those 

problems will be. In my opinion, the most impor- 

tant research problem in megaprogramming is to 

find out what the problems of scale will be. The 

most obvious way to find out is to build some large 

systems this way and see. 

References 

PI 

PI 

Barry W. Boehm and William L. Scherlis 

Megaprogramming (preliminary version) In 

PYVC. DARPA Software Technology Confer- 

ence. 1987. 

Gio Wiederhold, Peter Wegner, and Stefano 

Ceri Stanford University, Report No.STAN- 

CS-90-1341, Brown University, Report No.90- 

20, Oct.1990, and Politecnico di Milano, Di- 

partimento di Elettronica, N. 90-055. (Sub- 

mitted to the Communications of the ACM). . 

., 

396 


