
Experience with CommonLoops
James Kempf
Warren Harris
Roy D’Souza
Alan Snyder

Hewlett-Packard Laboratories
1501 Page Mill Rd., Palo Alto, CA, 94304

Abstract
CommonLoops is an object-oriented language embedded
in Common Lisp. It is one of two such languages selected
as starting points for the Common Lisp Object System
(CLOS) which is currently being designed as a standard
object-oriented extension to Common Lisp. This paper
reports on experiences using the existing Portable
CommonLoops (PCL) implementation of CommonLoops.
The paper is divided into two parts: a report on the
development of a window system application using the
CommonLoops programming language, and a description
of the implementation of another object-oriented language
(CommonObjects) on top of the CommonLoops metaclass
kernel, paralleling the two aspects of CommonLoops: the
programming language and the me&ass kernel. Usage
of the novel features in CommonLoops is measured
quantitatively, and performance figures comparing
CommonLoops. CommonObjects on CommonLoops, and
the native Lisp implementation of CommonObjects are
presented. The paper concludes with a discussion about
the importance of quantitative assessment for
programming language development.

1. Introduction
CommonLoops [Bobrow is an object-oriented
extension to the Common Lisp programming language
[Steele84]. and is one of two such languages’ selected as
starting points for the Common Lisp Object System
(CLOS) [ANSI87], a standard object-oriented Lisp

1. The other is New Flavors ~Moon86].

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1987 ACM o-89791-247-0/87/00i0-0214 Sl.50

extension currently under discussion. Since it is probable
that the CLOS (and thus the features of CommonLoops
incorporated into it) will see widespread use, both for
applications prototyping and for production code, it seems
prudent that the novel features of CommonLoops be
assessed for their utility in object-oriented programming.
A similar, though more formalized, review procedure was
followed with SmaIltalk-80 when it was first released
[McCullough831 [Falcone83] tBallard831.

The novel features of CommonLoops discussed in
[Bobrow include the following:

It is the first object-oriented language or object-
oriented language extension to appear in a highly
portable, public domain implementation2. This
implementation has proven to be an invaluable
contribution to education and research in object-.
oriented programming,

The partial integration of the Common Lisp type
system with CommonLoops classes which are
themselves lirst class objects. This allows method
dispatching on certain Common Lisp data objects
having standard Common Lisp types, as well as on
objects which are instances of CommonLoops classes,

The use of generic function syntax for method
dispatching rather than a specific method invocation
operator3,

The ability to define methods that discriminate on
more than just the tirst argument. These methods are
called “multimethods,” as opposed to “classical
methods,” which dispatch only on the first argument,

2. “Highly portable” means that a Common Lisp programmer with a
complete implementation of Common Lisp can generally bring up
CommonLoops in a morning. Object-oriented languages such as
C++ [Stroustrup86] and Objective-C [Cox86] arc “moderately
portable,” since their compilers and preprocessors can be ported, but
potting requires considerable time and effort.

3. Another object-oriented language which uses generic funaion syntax
is New Flavors.

214 OOPSLA ‘87 Proceedings cktober 4-a. 1987

. The support for implementation of and graceful
coexistence with other object-oriented languages
using the metaclass kernel.

The latter feature is particularly attractive, since it
supplies a means whereby code in existing object-
oriented languages can be reused, as well as provides an
avenue for experimenting with new object-oriented
languages.

The experiments presented in this paper used Portable
CommonLoops wu an implementation of
CommonLoops designed to run on as wide a variety of
Common Lisp implementations as possible. PCL has
been available through the ARPAnet since January, 1986.
The version of PCL released on l/26/87 was used for the
experiments reported in this paper.

The experiments are divided into two parts:

l An implementation of an X-based [ScheitIer86]
window system library. The implementation was not
designed to test CommonLoops, but after it was
finished, it seemed to represent a good candidate for
assessing the usefulness of CommonLoops, since
windowing and graphics applications are in some
sense the canonical object-oriented application.

mAn implementation of HP’s CommonObjects
[Snyder86a] using the CommonLoops metaclass
kernel. This experiment was designed to test the
utility of the metaclass kernel for implementing an
objects language with substantially different
inheritance semantics.

Extensive profiling measurements, undertaken to
characterize the performance of CommonObjects on
CommonLoops (COOL) vis-b-vis a native Lisp
implementation of CommmonObjects, are also reported.
From these profiling measurements, information was
obtained which allowed COOL class definition time to be
reduced by almost two orders of magnitude. This
information was also used to pinpoint a bottleneck in the
portable implementation that could profitably be
eliminated by some machine dependent assembly code.
The final section of the paper presents conclusions and
suggests areas for further research.

2. Experience with the Language

The design and implementation of an object-oriented
window library, called Beatrix, using CommonLoops
permitted an assessment of the various language features
to be made. The language features which will be
discussed arc the inheritance algorithm, the use of

multimethods and generic function syntax, the partial
integration with Common Lisp data types, the lack of
method combination, and the lack of encapsulation.

2.1 The Inheritance Algorithm

As part of an effort to redesign the HP Common Lisp
Development Environment [Cagan86], a new window
system was desired. One of the goals was to base the
window system on the new window system standard, X.
Although X provides a common platform for all tools
(including Common Lisp) to communicate with the
display, the programmatic interface to X (Xlib) is fairly
low level. An example of functionality that is difficult to
achieve with Xlib is specializing a given type of window
to achieve an application specific configuration.

The necessary flexibility can be achieved by using the
“mixin” style of object-oriented programming
[WeinrebSl]. Mixins are sets of behaviors that can be
combined using inheritance to achieve a specialized
result. The mixin style of programming views classes as
sets of nonhierarchical behaviors and inheritance as a
means of combining them, with the intent of specializing
some more general behavior [Cannon82]. This approach
contrasts with the abstract data type style (supported by,
among others, Smalltalk [Goldberg83], C++, and
CommonObjects) in which classes are data types and
inheritance specities the structuring of the type lattice for
subtyping4.

An initial set of mixin classes for Beatrix was designed
and is shown in Fig. 1. As the names indicate, the classes
were divided into two groups: a set of basic window
classes and a set of mixin classes for specializing the
basic classes to a particular application. Mixins differ
from regular classes in that, since they are intended to
provide incremental functionality, they themselves must
not be instantiated independently (similar to the abstract
superclass idea of SmalltaIk). In particular, instantiation
should only proceed when the mixin is associated with a
more gqneral parent class. In old Flavors, mixins are
supported by the options xequired-flavors and :mixture
to the flavor definition macro deffiavor [Symbolics84].

As an example, consider trying to construct a class of
windows having a border and title from the classes given
in Fig. 1:

4. CommonObjects also provides a means whereby the programmer can
modify the default subtyping algorithm.

Odober 48,1987 OOPSIA ‘87 Proceedings 2l5

Foreign

System Display Color Basic-Window Sprite Font

PixmapMixin Borders-Mixin Gr8phics-Mixin

Mobile-Mixin Text-Mb&t

Zoom-Mixin Title-Mixin Stream-Mixin

Figure 1. Window System Classes

(defclass
(bordered-titled-window
(xlass class)
(:include
(borders-mixin title-mixin basic-window)

< slot definitions >
)

A bordered-titled-window can also be build by
constructing the inheritance hierarchy illustrated in Fig. 2,
with the additional benefit of giving users the option of
being able to instantiate a titled-window or a bordered-
window if desired.

Foreign

Basic-Window

Bordered-Window Text-Window

Bordered-Titled-Window

Figure 2. Inheritance for bordered-titled-window

CommonLoops computes a linearization of the
inheritance tree, called the class precedence list, which is
used during any operation involving a class’ superclasses.
As its name implies, the class precedence list determines
which class in the inheritance chain has precedence when
a conflict arises, for example, in determining which of a
number of inherited methods to invoke. The
CommonLoops algorithm for the default metaclass class
produces the following class precedence list for the class
bordered-titled-window illustrated in Fig. 2:

(bordered-titled-window bordered-window
titled-window text-window
basic-window foreign
T

1

The algorithm proceeds by doing a depth first traversal of
the hierarchy, removing all but the last occurance of
duplicate classes.

The classes are arranged with the most general superclass
at the end of the class precedence list, and more specific
classes closer to the subclass, so that methods defined on

216 OOPSLA ‘87 Proceedings October 4-8, 1987

the subclass will specialize the more general behavior of
the superclass. Although the CommonLoops inheritance
algorithm required structuring the code hierarchically, the
effect of a nonhieramhical mixin system can be achieved.

Note that the CommonLoops inheritance algorithm is the
same as for New Flavors but different from old Flavors.
In old Flavors, the equivalent class precedence list would
have been:

(bordered-titled-window bordered-window
basic-window foreign
vanilla titled-window
text-window

1

since the duplicates basic-window and foreign are
eliminated except for the first occurance rather than the
last. This class precedence list makes specialization
difficult, since any methods defined by titled-window and
text-window which are designed to specialize the more
general behavior of basic-window wiIl not do so.

2.2 Multimethods and Generic Function
Syntax

One of the important innovations introduced
CommonLoops is multimethods. Multimethods

by

methods that dispatch on more than one argument. In
addition to multimethods, CommonLoops uses generic
function syntax to invoke a method, so a method
invocation looks like a function call. The notion of a
distinguished “self’ parameter, as in Smalltalk or
Flavors, disappears since dispatching can occur on any or
all of the method’s required parameters.

In general, the use of generic function syntax was viewed
as a positive step, since it removed the syntactic
distinction between object-oriented and functionally-
oriented code. This was, in fact, one of the original goals
of CommonLoops. In languages that originally were not
object-oriented, like Lisp, use of a messaging operator
requires the programmer to make an explicit decision
when to use object-oriented constructs and when to use
functional constructs. By moving to generic function
syntax, the additional cognitive load of having to make
this decision is eliminated. The programmer simply uses
functional syntax for operation invocation. and can
implement the operation as either a function or a method
depending on what seems appropriate at a particular time
during the development process. In addition, the standard
Lisp debugging utilities can be used on method
invocations.

The usefulness of multimethods was judged to be less
clear. Most methods that discriminated on more than one

argument in the window system application were SO
written primarily as an aid to type checking. Presuming
CommonLoops classes and generic functions were
integrated with Common Lisp’s declaration mechanisms,
multimethods would be redundant for this purpose, since
the Common Lisp declare special form allows the
argument and result types of functions to be declared.

Multimethods and generic functions in some sense
remove the concept of a method being defined “on” a
class, since the name space of method operations is no
longer segmented by the class hierarchy, but rather
through the Common Lisp package system’. This change
reduces the usefulness of classes for implementing the
medium scale (or module level) structure of a system,
because the connection between methods and classes is
broken. However, since the package system was designed
to serve as the basis of modularization in Common Lisp,
the designer can fall back upon it to group classes and
operations under a particular package name, which then
serves as the module.

One way to objectively assess the usefulness of generic
functions and multimethods is to measure CommonLoops
code and determine how often the system developer used
these constructs, Measurements were made both on
Beatrix and on the CommonLoops system itself. Since a
large part of CommonLoops is written in itself, the latter
would give a measure of how useful the developers found
generic functions and multimethods. The results of these
measurements are shown in Fig. 3 and 4.

In Fig. 3, the usefulness of generic functions is measured
as the percentage of overloading on generic function
names. A generic function name is overloaded if more
than one method has the same name. The figure plots
overloading as the percent of total generic function names
that had one or more methods on the name’s symbol. For
the CommonLoops kernel, the great majority (89%) of the
generic function symbols had a single method associated
with them. In contrast, most of Beatrix’s generic function
symbols (67%) had two associated methods, and there
were more generic function names that were heavily
overloaded (up to 16).

These measurements suggest that function overloading
was more useful during application development than
during the implementation of CommonLoops itself. A
caveat is necessary here, since many of the generic
functions in the CommonLoops system are part of the

5. The package system establishes a mapping from print names to Lisp
symbols, and thus serves to partition the name space for symbols.

October 4-8,1987 OOPSLA ‘87 Proceedings 217

100.0
T

90.0 90.0

860 860

70.0 70.0

% of 60.0 % of 60.0
Total Total

Generic 50.0 Generic 50.0
Function Function
Names 40.0 Names 40.0

30.0

% of
Total

Methods

1 2 3 4 5 6 7 8 9 10111213141516

Number of Methods on Same Name

Figure 3. Function Overloading Figure 4. Multimethod Usage

metaclass kernel, and can presumably be specialized by a
programmer implementing a new language through
another metaclass. One measure of this hypothesis is to
see how many new methods were defined on
unoverloaded generic functions during the COOL
development. Looking at the COOL implementation,
only one method was defined on a CommonLoops
metaclass method which previously was not overloaded

Fig. 4 plots the results of measuring the percentage of
total methods that discriminated on zero6 or more
arguments, and is thus a measure of how often the
implementers used multimetbods. As can be seen, in both
the CommonLoops system itself and in the window
system application, methods discriminating on a single
argument, or classical methods, were used far more often
than multimethods. Whether or not this was duesto the

6. A method discrimintaing on zero arguments is a default method, and
is called if the argument classes do not match the specifiers for ‘any
other method with the same name.

90.0

80.0
t

0 1 2 3 4

Number of Arguments Discriminated On

1 PCL,n=l06 [1 BeatriX,n=335

implementers’ experiences with classical methods in
other object-oriented languages is open to question, but
presumably as developers become more experienced with
multimethods, multimethod usage may increase.

In the CommonLoops kernel, the maximum number of
arguments discriminated on was two. Despite the limited
use of multiargument dispatching, many of these methods
are in a critical part of the method definition code where
dispatching on both a discriminator object and a method
object logically makes sense, since the operation to be
performed may vary according to the classes of both the
discriminator and the method If multiargument
dispatching were removed, either a dispatching class
would be required or the methods on the method and
discriminator classes would be required to differentiate
using a case analysis on the class of the nonself argument.
A more accessible example of how multimethods can
simplify code when method behavior requires dispatching
on two arguments is given in Section 5.

In contrast, as mentioned previously, most of the
multiargument dispatching in BeatriX is used for type
checking. An indication of this was the fact that only

2l8 OOPSIA ‘87 Proceedings October 4-8, 1987

11.1% of the methods defined to discriminate on more is prohibited, because the built-in shadow classes for the
than one argument actually differed in the second or third Common Lisp types are of a different metaclass, and
argument from other methods. Many of the generic inheritance between metaclasses is forbidden. If such a
functions with more than one argument specifier had only class could be defined, then all the basic Common Lisp
one associated method; others were overloaded but only output functions could become generic functions,
the first argument was relevent for dispatching. The other simplifying the coding of device independent presenters.
argument specifiers were the same fc argument specifiers were the same for all methods with
the same name. For those cases in WI the same name. For those cases in which the second and
third arguments were actually use1 third arguments were actually used to dispatch, the
second and third argument werf second and third argument were often used to
discriminate between a method in w discriminate between a method in which the arguments

. were not typed and a method in which type discriminators
were specified.

The measurements of generic function and multimethod

the flexibility of late binding generic functions and
multimethods is really needed during execution or

usage were made on the source code and therefore
represent the static structure of the system. Dynamic
monitoring of how often function overloading is really
used during execution, and how often the second and
third arguments are really needed during method
discrimination would provide relevent data on whether

One possible solution to this problem would be to define a
new metaclass that allowed inheritance from the built-in
classes, perhaps as a mixin of the built-in metaclass and

2.4 Lack of Method Combination

class. Exactly how to accomodate the desire for flexibility
in specializing built-in classes is difficult to determine,
because there are some built-in classes for which
inheritance might be difficult to arrange or semantically
meaningless. This is a result of the Common Lisp type
system not being a true lattice. The type system in
Common Lisp was deliberately designed without a partial
order on all components to allow implementers freedom
to implement some types in terms of others without
having the implementation dependency show up in the
type system.

whether early binding, type checking, and declarations
could be used to remove the run time lookup. The static
measurements reflect the usefulness of these concepts
during the design and implementation of the system.

2.3 Partial Integration with Common Lisp
Data Types

Another important feature of CommonLoops is the
existence of classes that shadow certain of the basic
Common Lisp data types. This feature allows method
implementers to write methods that discriminate on
objects of an underlying Common Lisp type, as well as on
objects which are instances of a CommonLoops class.
Beatrix used discrimination on Common Lisp types in
16% of its methods, exclusively on second or third
arguments. As was mentioned above for multimethods,
type checking was the major reason.

Unlike Flavors, CommonLoops allows no daemon
methods to be defined for a method. This eliminates
complicated method combination procedures, but limits
the ability of a programmer to add functionality to an
existing method for which the source code was not
provided. An example of where method combination
would have been useful in Be&X is for programming a
counter to keep track of the number of window refreshes.
In Flavors, a daemon method could be defined to maintain
the counter:

(defmethod
(basic-window :after :refresh) 0

(incf *refresh-counter*)
1

During the initial design of Beatrix, a heavier use of In CommonLoops, the same effect requires specializing

discrimination on Common Lisp types was anticipated. basic-window and adding a special refresh method which

CommonLoops does not, however, allow CommonLoops runs the super method:

classes to inherit from and thus specialize classes that
shadow Common Lisp types. Thus the natural way of (defmeth refresh ((w my-basic-window))

defining a stream that communicates with a window: -

(defclass
(window-stream
(:class class)
(:include (stream))

(progl
(run-super)
(incf *refresh-counter*)

October MI,1987 OOPSIA ‘87 Proceedings 2l9

This solution will not work if the counter is to be
incremented for all windows and not just for instances of
my-basic-window’. To solve this, the user must modify
the source code of basic-window.

2.5 Lack of Encapsulation

CommonLoops also provides no facilities for hiding parts
of a class representation from a user. The function get-
slot provides slot access even outside a method. Accessor
functions for slots are also available globally, within the
name space established by the package where the class is
defined.

The lack of encapsulation presented a problem with
software change management in Beatrix. In version 10 of
X, there is a large degree of inconsistency between when
to use a color map register and when to use a solid color
pixmap as an actual parameter to an X function. In
Beatrix, it was necessary to have both a slot for the
background color register and the background color
pixmap in the basic-window class. In version 11 of X,
much of this inconsistency is eliminated, making it
possible to remove one of these instance variables.
However, the ready availability of accessor functions
allows users to gain access to and thus become dependent
on the implementation of Beatrix’s internals. Beatrix
implementers are therefore dependent upon convention
rather than enforced language mechanisms to avoid
having internals leak out into applications,

Another more fundamental problem with the lack of
encapsulation involves inheriting from classes shadowing
the built-in types. Subclasses in CommonLoops have
access to the full internal definition of their supers,
including slot accessors. It is not possible, for example,
to encapsulate a superclass, so that a subclass can inherit
from it, but will not inherit slot accessors. Superclass
designers can make no assumptions about what data
remains hidden. In particular, with implementation
dependent classes such as stream, lack of encapsulation
between a subclass and its superclass means that
inheritance must be forbidden u priori.

3. Experience with the Metaclass Kernel

An important feature of CommonLoops is the metaclass
kernel. Unlike Smalltalk and Objective-C, metaclasses in
CommonLoops are neither automatically generated when
a class is defined nor are they generators for instances of a
class, but rather are defined by a language implementer to

7. ‘Ihe CLOS sumlard will include method combination. as a
czmtribution of New Flavors.

support a particular embedded object-oriented language.
Different me&lasses can be used to implement different
inheritance algorithms, different storage allocation
strategies for instances, and different method dispatch
strategies. Classes in the CommonLoops language are
instances of the default metaclass class. Metaclasses
offer both a means of maintaining compatibility with
existing object-oriented languages and a supporting base
for experimenting with new languages.

To assess the usefulness of the metaclass kernel for
supporting different object-oriented languages, the
CommonObjects language was implemented using the
metaclass kernel. The following subsections discuss the
important features of the implementation.

-+ Foreign c

Basic-Window

Slots

b

Slots

1 b

.--

Slot.3 Slots

b -9Borah?d-wiJdmv b-Tat-Window
- .--

b

Slots

b -TitIed- Window

Figure 5. Structure of a Single CommonObjects
bordered-titled-window Instance

3.1 Inheritance Semantics

CommonObjects supports a very different inheritance
semantics from CommonLoops. In Fig. 5, the structure of
a single COOL bordered-titled-window instance with
the same inheritance as in Fig. 2 is illustrated. The
italicized names correspond to class objects, and the
letters are keyed to the list of instance parts at the end of

220 OOPSIA ‘87 Procefdngs October q-8,1987

this subsection. Notice that a set of slots for the shared
ancestor superclasses basic-window and foreign is
duplicated along the two inheritance branches through
which bordered-titled-window inherits basic-window
and foreign. In a CommonLoops instance with this
inheritance, the two occurances of basic-window would
be mergea, as was discussed in Section 2.1.
CommonObjects inheritance is tree-structured, as
opposed to the linearizing inheritance of Flavors and
CommonLoops, since no attempt is made in
CommonObjects to eliminate duplicate state during
processing of a class definition. Another form of
inheritance, graph-structured inheritance, merges state
but maintains seperate methods along diverging
inheritance branches, so duplicate method invocations are
possible. Graph-structured inheritance is used by
Smalltalk with multiple inheritance [Boming82] and
Trellis/Owl [Schaffert86]. The selection of tree-
structured inheritance in the CommonObjects design grew
from a desire to maintain encapsulation between
superclasses and their inheriting subclasses [Snyder86b].

In addition, CommonObjects supports inrfance centered
encapsulation, a style of encapsulation in which methods
can only access instance data in instances on which the
method was invoked (similar to Smalltalk, Objective-C,
and Flavors). A looser style of encapsulation, class
centered encupsuhrion, allows methods to access data in
any instance of the class on which they were defined.
CLU [Liskov77] and C++ support this kind of
encapsulation. CommonLoops, as mentioned above, has
-no encapsulation whatsoever, since any method or
function can access instance data if the slot name or
accessor function name is known.

CommonObjects enforces a stricter kind of encapsulation
than other instance centered languages, since inheriting
classes cannot access superclass slots without invoking a
method. In other instance centered languages, like
Smalltalk and Objective-C, superclass instance variables
are lexically accessible within methods defined on the
class. A form of syntatic sugar is provided to simulate
lexical reference in CommonObjects, but the result is
translated into a method invocation, and if the user
redefines the superclass accessor method, the new
accessor method will be invoked.

Given the large difference in inheritance semantics,
CommonObjects would seem to provide a challanging
test of the flexibility of the CommonLoops kernel.
Suprisingly, the inheritance semantics were the easiest
aspect of the CommonObjects specification to implement,
mainly because the CommonLoops class precedence list
calculation was bypassed and inheritance was maintained
separately by COOL. An instance of an inheriting class

consists of multiple parts, one for each direct superclass,
recursively to the top of the superclass tree. For example,
as shown in Fig. 5, the bordered-titled-window instance
has the following parts:

a. A pointer to the object piece corresponding to self,

b. A pointer to the class object,

c. A part containing storage for the instance’s slots,

d. A pointer to an object piece for each direct
superclass.

3.2 CommonObjects Methods
Since CommonObjects classes do not use the
CommonLoops class precedence list for method
inheritance, method inheritance must be arranged
differently. In fact, CommonObjects semantics require
method inheritance to be computed at compile time, so
method inheritance in COOL is done by automatically
defining a method on the inheriting class which simply
calls the superclass method directly.

The CommonLoops class precedence list is used,
however, for the “universal methods.*’ CommonObjects
semantics require that all CommonObjects classes have a
set of standard methods defined on them at class
definition time, which implement certain universally
useful operations [Snyder86a]. The class precedence list
for all CommonObjects classes is ordered with the class
itself first, then the CommonObjects metaclass
(common-objects-class), then the CommonLoops class
object, which is a specifier for some of the kernel
methods, such as print-instance. The CommonLoops
class precedence list for a CommonObjects class having
the inheritance structure in Fig. 2 would be:

(bordered-titled-window
common-objects-class
object

IT

Thus the CommonObjects inheritance tree is maintained
seperately from the CommonLoops class precedence list.
The set of universal methods can, in effect, be shared by
all CommonObjects classes by defining them on the
metaclass common-objects-class. Only the :initialize-
variables method need be generated on a per class basis.
since programmers are allowed to specify custom
initialization code for slots and CommonObjects
semantics require that the code execute in the context of a
method definition. This arrangement modifies the
semantics of undefining a CommonObjects method

odober 4-8,1987 OOPSLA ‘87 Proceedings 22l

somewhat, since a user can no longer undefine a default
universal method. Redefining a universal method on a
class, or undefining a universal method that has been
redefined is still valid, however.

3.3 Difficulties

The lack of hooks into the PCL code walker made the
implementation of a number of features impossible. One
of them was lexical reference to parent slots. Checking
for improper use of the distinguished lexical variable self
within a method, and the checking of slot types were also
not implemented because of the code walker difficulties.

Another area where CommonObjects semantics has been
lost is in the ability to define methods that have varying
numbers of required parameters. Since the number of
required formal parameters must match between
CommonLoops methods with the same generic function
name, the ability to define methods with differing
numbers of method parameters is no longer possible*.
CommonObjects methods are simply implemented as
CommonLoops generic functions, so the CommonLoops
restriction must he propagated to them as well.

The generic function style of programming is somewhat
different from the message operator style, which
CommonObjects supports. In the generic function style,
name clashes are avoided by convention and use of the
package system, while the message operator style avoids
clashes by partitioning the method name space on the
basis of class name. Clashes are possible using the
message operator style if one tries to define a subclass
with two superclasses having inconsistent definitions of a
method. Implementing the message operator style on top
of the generic function style increases the potential for
clashes. For example the move operation applied to a file
object might take only one argument, the name of the new
file, while the same operation applied to an icon might
require two, the x and y co-ordinates of the new location.
With the generic function style, either one of the two
operations would have to be renamed or put in a sepamte
package, or the operation to move an icon could be
redefined to take a single point argument, which is then
decomposed into co-ordinates within the method.

A more serious restriction resulted from
underspecification of the compile time semantics of
CommonLoops. CommonObjects uses a form of case
analysis called “moderation compilation” [Creech85] to
carefully control when a class or method definition is

8. The CLOS could potentially allow this difference to bc finessed
through method combiiticn.

replaced in the compile time environment. Enough
information about a class or method is maintained in the
compilation environment so that method inheritance
between a superclass method and an inheriting subclass
defined in the same file will compile correctly.
CommonLoops methods are not defined until load time.
As a result, it is not possible to compile the COOL
methods for a superclass and the class definition for an
inheriting subclass in the same file, since the superclass
methods are not available until load time. In addition,
since CommonLoops fully defines classes as objects at
compile time, any preexisting definition will be destroyed.

Perhaps the most serious problem with implementing
COOL was the inability to implement the
CommonObjects call-method or apply-method
correctly. These forms provide a means whereby a
method can call another method on a class or one of the
direct superclasses without going through method lookup.
Implementing the semantics requires that it be possible to
create compiled code which will reference a symbol that
can only be created at load time. Although Common Lisp
has a reader macro that is supposed to arrange for
execution at load time, this functionality is undefined if
the code is being processed by the compiler. Common
Lisp also has a top level form, eval-when, that allows
load time control over evaluation of other forms at the top
level. The lack of a Common Lisp function to execute a
form at load time within macro generated code required
the implementation of a very fragile solution depending
on equivalence of interned symbols in the compile and
execution environments. The solution has the serious
drawback that name clashes could occur in the symbol
names, although the names are chosen to avoid clashes as
often as possible.

3.4 Size

The total number of noncommented source lines in
COOL is 1842, 6133 including the PCL kernel. This
compares favorably with the native Lisp implementation
of CommonObjects, which is 4726 noncommented source
lines. For a slightly larger system, COOL provides most
of CommonObjects semantics with the additional
functionality of the CommonLoops language, and the
extensibility of the CommonLoops kernel. Thus COOL
gives programmers more options, since those who want to
program in either the encapsulation style of
CommonObjects or the mixin style of
Flavors/CommonLoops can easily do so.

3.5 Portability and AvaiIability

In addition to running on HP Common Lisp, in which it
was developed, COOL has been ported to Kyoto
Common Lisp’. COOL was designed to be as portable as

222 OOPSLA ‘87 Proceedings October 48,1987

PCL, and therefore should run on any Common Lisp that
runs PCL. A series of regression tests and performance
tests are included with the distribution. The PCL version
on which COOL currently runs is also included in the
distribution, to avoid software tracking problems.

4. Performance

Performance analysis helped to identify problem areas in
COOL and also served as a useful benchmarking
mechanism to obtain a rough comparison of COOL
performance with the Portable CommonLoops language
implementation and with the native Lisp CommonObjects
implementation. As an example of how performance
analysis helped improve COOL, an initial naive
implementation of COOL generating universal methods
on a class by class basis was almost three orders of
magnitude slower during compilation than the native
CommonObjects. A solution involving the
CommonLoops class precedence list, as described in
Section 3.2 above, allowed default universal methods to
be defined on all CommonObjects classes via common-
objects-class.

The hardware configuration used during performance
testing was an HP9OOO/Series 320 68020 workstation,
running at 16.5 MHz with 6 megabytes of main memory.
The tests were run with the HP-UX operating system in
state 1, so no other background processes were in
operation, and the Common Lisp image size was 10
megabytes. The paging disc was an HP 7914. A special
10 psec clock was used to obtain the measurements, so
the measured times should be accurate to 10 psec. Both
the CommonLoops language and COOL were compiled
with the maximum portable optimization on (e.g.
(optimize (speed 3) (safety O))), the native
CommonObjects was as distributed with the HP Common
Lisp Development Environment [Hp86].

The tests were executed by using a Common Lisp macro
to generate a function that performed the operation to be
tested 20 times, and the function was subsequently
compiled and executed. No compiler optimizations were
turned on for the tests, except those that the
CommonLoops language and COOL locally enabled.
Both the compilation time and execution time of the
function were measured. Care was taken to avoid garbage
collection by garbage collecting before the measurements,
to avoid paging by doing the full test (i.e. 20 iterations)

9. COOL is currently available thnwgh anammyous FTP from
ingres.berkeley.arpa in the directory /pub/cool or by electronic
mail request from cool@hplabs.

before a series of the same tests, and to prime the
workstation’s cache by doing each operation once before
the measurements were made.

All measurements are given as the ratio of the time taken
by an operation for COOL or the CommonLoops
language to the time taken by the same operation for the
native Lisp code implementation of CommonObjects.

4.1 Definition Performance

The performance of class and method definition was
measured for all three implementations. Class definition
operations consisted of defining a class with zero, one,
two or three slots but no parents, then with one, two, or
three parents but no slots. For each implementation, the
default slot accessibility was used, thus slot accessors
were not generated for COOL or CommonObjects but
were for the CommonLoops language. Method definition
operations consisted of defining a method for which zero,
one, two or three methods of the same name existed for
different classes. The generated CommonLoops language
method was classical (i.e. not a multimethod).

Operation Slots supers COOL/CO
0 0 0.30
1 0 0.47

Define 2 0 0.67
Class 3 0 0.76

0 1 0.89
0 2 0.95
013 1.04
010 57.00
1 0 7.14

Create 2 0 7.55
rnstiince 3 0 3.39

0 1 12.96
0 2 8.93
0 3 21.22

Inherited - 0 5.67

PCWCO
0.93
1.88
2.61
3.44
1.04
0.94
0.87

24.52
4.55
4.69
2.25
4.90
2.39
4.15
4.83
4.29
4.86
4.43

TABLE 1. Class Definition, Instance Creation, and
Inherited Operation Invocation

The results for class definition are tabulated in the upper
part of Table 1 while the upper part of Table 2 shows the
results for method definition. COOL compares favorably
with CommonObjects, as does the CommonLoops
language, with the exception of the increase in class
definition time as the number of slots increases for the
CommonLoops language, due to the generation of

October 4-8,1987 OOPSLA ‘87 Proceedings 223

accessor functions. Presumably, a similar increase would
occur in COOL and CommonObjects if slot accessors
were requested during class definition.

An explanation for the greater amount of time involved in
class definition for CommonObjects as opposed to the
CommonLoops language and COOL can probably be
found in the richer compilation semantics of
CommonObjects, as explained in Section 3.3. Moderation
compilation takes longer than simply defining the class
outright. As mentioned above, CommonLoops
compilation semantics simply defines a class fully at
compile time, and does not fully define a method until
load time. The extra amount of checking required to
implement moderation compilation makes
CommonObjects definition operations somewhat slower
than COOL or the CommonLoops language.

It should be noted that redefinition times for COOL
classes were more than 30 times slower than the initial
definition times. This was not true of either the
CommonLoops language or CommonObjects, and is
probably due to the algorithm in the COOL
implementation used to determine whether an
incompatible change to the class occured. Some room for
improvement exists there.

Operation

Define
operation

operation
Invocation

Functions
0

:
3
1 5.67 4.83
2 25.67 24.67
3 19.38 18.75
4 22.86 21.43

COOL/CO FcIfco
0.57 0.45
0.70 0.46
0.76 0.50
0.83 0.49

TABLE 2. Method Definition and Operation Invocation

4.2 Method Invocation and Instance
Creation Performance

The method invocation test consisted of invoking a
method when one, two, three, or four methods were
defined on the same generic function symbol. Since PCL
caches most recently used methods in the generic
function, a special strategy was used to avoid simply
measuring the speed of a cached invocation and thus to
obtain measurements of method lookup time. When more
than one method was defined on the generic function,
invocation proceeded sequentially through. instances of
the various classes. This assured that the FCL method
cache would be cleared and the actual method lookup
time would be measured, rather than simply measuring

the time to invoke a cached method. The inherited
method invocation test consisted of invoking a method
inherited through zero, one, two or three parents. Times
for compiling the invocation form are not included in the
measurements, since they were the same for all three
systems. The instance creation test was performed by
simply creating 20 instances of a class with the
appropriate number of slots and parents.

The results of the method invocation tests are tabulated in
the lower parts of Tables 1 and 2. Clearly, for method
invocation, the native Lisp implementation of
CommonObjects is the better performer, especially for
inherited methods, by factors of from 5 to 25. The
superior performance of CommonObjects can probably be
ascribed to a number of factors. CommonObjects uses
some special assembly code to implement inherited
methods, while COOL simply generates a Common Lisc
function that calls the superclass method. An assembly
coded function is also used during method dispatch in
CommonObjects. In addition, the portable dispatch
function in FCL is not properly tail recursive, so
optimization of the actual method function call to a direct
jump, without pushing the return address on the stack, is
not done by the compiler.

For instance creation, the native Lisp CommonObjects
also performs better. However, the performance of COOL
and CommonLoops improves as the number of slots
increases. As the number of parents increase, the timings
of both COOL and CommonLoops become slower,
though COOL becomes slower faster than
CommonLoops. A possible reason is that the
initialization protocol in COOL requires more messaging
than in CommonLoops, so more time may be transpiring
during messaging.

In an effort to improve method dispatch performance, a
dispatch function for classical methods was hand coded in
assembler and the implementation of the method table in
the generic function discriminator was changed from
being an association list to a fixed size hash table.
Additionally, the underlying representation of classes (but
not instances) was changed so every class has a unique,
28 bit id which is used as a hash key. The resulting
speedup made method dispatch between 20% to 50%
faster than CommonObjects for classical methods. Since
most of the PCL kernel is implemented using methods,
the speedup of method dispatch had a significant effect on
the performance of the entire system.

5. Conclusions and Suggestions for Further
Research

Although most of the code for handling inheritance in
COOL was written with minimal use of the

224 OOPSLA ‘87 Proceedings October 4-8# 1987

CommonLoops kernel, the metaclass protocol provided a
supporting mechanism for maintaining information about
defined methods and classes. This information could be
useful in a programming environment, for example, since
the kernel provides a standardized interface for accessing
information about all object-oriented languages in the
environment. For implementing a language with
linearizing inheritance, more of the met&ass kernel
could probably be used. Perhaps most importantly, the
ability to provide two languages with different inheritance
semantics in the same system allows users to choose a
particular style of inheritance to fit their application, while
still allowing the two languages to share some common
code. The performance figures indicate that generic
functions should be efficiently implementable on
conventional architectures such as the MC68020. though
the efficiency of multimethods remains an open question.

The results of the code measurments reported in Section
2.2 suggest that generic functions were more heavily used
in Beatrix than in the CommonLoops kernel itself. For
multimethods, the code measurements imply that
discrimination on a single argument, or classical methods,
was more heavily used than discrimination on multiple
arguments. An examination of the CommonLoops
method definition code suggests, however, that
multimethods might actually be more important than the
statistics imply, and that the statistics may rather be a
reflection of prior programmer experience. In addition,
multimethods in the CommonLoops kernel l may
contribute to making the system more extendable.

Another example of how multimethods might be even
more useful than first appears comes from the realm of
user interfaces. One of the often mentioned advantages of
object-oriented programming for user interfaces is that a
display method can be defined on a class, and thus
objects of various classes can display themselves in a
class dependent manner without requiring the
programmer to use extensive case analyses to determine
how to display something. The Smalltalk Model-View-
Controller [Goldberg841 evolved as a response to this
need, but segregating functionality into these three
categories has proven difficult. The difficulty is that
displaying an object requires knowing the particular
characteristics of the output device, as well as the
characteristics of the object to be displayed. Displaying
an object in a text window requires different low level
actions from displaying it in a graphics window, for
example. Users of traditional object-oriented languages
are therefore required to write a case analysis into the
model or display classes to handle different types of
displays. An interesting direction for future research
would be to explore the use of multimethods in
programming user interface systems.

The analysis in Section 2 brings up a point related to
computer language design and engineering. While most
language designs are subject to a prototyping phase, in
which a small community of trial users implement in the
language and give feedback to the language designers,
language designers rarely attempt to quantitatively access
which constructs were most useful and which were less
so, or if particular idioms could be built into the language
to save programmer effort. Most trial user feedback
comes in the form of qualitative comments. Often it is
difficult to judge whether these comments are peculiar to
the particular group of trial users, or whether the
comments have wider applicability.

As languages become more and more complex and evolve
further and further away from being models of the
underlying processor, it becomes more important to
quantitatively access the usefulness of particular language
features. Removal of rarely used features in the early
stages of a design can save later implementers much extra
effort. Similarly, identification of features that appear on
the surface to be relatively unused but which, when used,
perform a very crucial function (as is the case with
multimethods) can suggest areas where extra
documentation and programmer education may be
needed. In addition, identification of commonly occuring
language idioms may suggest areas where the language
design can be augmented to provide additional
functionality.

Developers of new languages might therefore consider
building statistical collection code into their translation
software tools, and, after properly informing their trial
user community, have the results summarized and mailed
to them periodically to facilitate collection of quantitative
information on language construct usage. Such a
procedure, commonly followed in other engineering
disciplines, could allow language designs to evolve on a
more quantitative basis.

Acknowledgements
We would like to thank Larry Rowe and his Objfads
study group, for letting us use ingres to distribute the
COOL software and the ANSI Common Lisp Object
System standardization subcommittee, for listening to our
comments on the metaclass kernel. Special thanks go to
Gregor KiczaIes, whose valiant efforts against the Dragon
of Importability have yielded the Sugar Magnolia: a
flexible, portable object-oriented programming system.

References
[ANSI871 Daniel Bobrow, David Moon, et al,, “Common
Lisp Object System Specification,” ANSI X3J13
Document 87-002, American National Standards Institute,
Washington, DC, 1987.

October 4-8, 1987 OOPSLA ‘87 Proceedings 225

[Ballard831 Stoney Ballard and Stephen Shirron, “The
Design and Implementation of VAX/Smalltalk-80”, in
Smalltalk-80: Bits of History, Words of Advice, Glenn
Kramer, ed., pp. 127-149, 1983,

[BobrowS Daniel Bobrow, et al., “CommonLoops:
Merging Common Lisp and Object-Oriented
Programming,” Proceedings of OOPSLA, SIGPLAN
Notices, 21(11), pp. 17-29, 1986.

[Borning82] Alan Boming and Daniel Ingalls, “Multiple
Inheritance in Smalltalk,” Proceedings of AAAI, pp.
234-237, 1982.

[Cagan86] Martin Cagan, “An Introduction to Hewlett-
Packard’s AI Workstation Technology,” Hewlett-
Packard Journal, Vol. 37(3), pp. 4-14.1986.

[Cannon821 H. I. Cannon, “Flavors: A Non-Hierarchical
Approach to Object-Oriented-Programming,” 1982.

[Cox86] Brad Cox, Object-Oriented Programming,
Addison-Wesley, Reading, MA, 274 pp., 1986.

fCreech851 Michael Creech, “The Compile Time
Environment,” STL Internal Memorandum, 1985.

[Falcone83] Joseph R. Falcone and James Stinger, “The
Smalltalk- Implelmentation at Hewlett-Packard,” in
Smalltalk~SO: Bits of History, Words of Advice, Glenn
Krasner, ed., pp. 79-112, 1983.

[Goldberg831 Adele Goldberg and David Robson,
Smalltalk-80:The Language and Its Implementation,
Addison-Wesley, Reading, MA, 714 pp., 1983.

[Goldberg841 Adele Goldberg, Smalltalk-80:The
Interactive Programming Environment, Addison-
Wesley, Reading, MA, 1984.

[HP861 Lisp Programmer’s Guide, Hewlett-Packard
Co., 1986.

lLiskov77] Barbara Liskov, et al., “Abstraction
Mechanisms in CLU,” Communications of the ACM,
Vol. 20(8), pp. 564-576, 1977.

[McCullough831 Paul McCullough, “Implementing the
Smalltalk- System: The Tektronix Experience,” in
Smalltalk-80: Bits of History, Words of Advice, Glenn
Krasner, ed., pp. 59-78,1983.

[Moon861 David Moon, “Object-Oriented Programming
with Flavors,” Proceedings of OOPSLA, SIGPLAN

Notices, 21(11), pp. l-8, 1986.

[Schaffert86] Craig Schaffert, et al., “An Introduction to
Trellis/Owl,” Proceedings of OOPSLA, SIGPLAN
Notices, 21(11), pp. 9-16, 1986.

[Scheifler86] Robert Scheifler and Jim Gettys, “The X
Window System,” MIT LCS Memo LCS-TM-368,
Massachutsetts Institute of Technology, Cambridge, MA.,
1986.

[Snyder86a] Alan Snyder, “CommonObjects: An
Overview,” SIGPLAN Notices, 21(10), pp. 19-28, 1986.

ESnyder86bl Alan Snyder, “Encapsulation and
Inheritance ’ Object-Oriented Programming
Languages,” Leedings of OOPSLA, SIGPLAN
Notices, 21(H), pp. 38-45, 1986.

[Steele841 Guy Steele, Common Lisp: The Language,
Digital Equipment Corp., 465 pp., 1984.

[stroustrup863 Bjame stroustrup. The c++
Programming Language, Addison-Wesley, Reading,
MA, 327 pp., 1986.

[Symbolics84] “FLAV Objects, Message Passing, and
Flavors,” Symbolics, Inc., 1984.

JWeinreb81] Daniel Weinreb and David Moon, Lisp
Machine Manual, Symbolics, Inc., 1981.

226 OrlPSLA ‘87 Proceedings October 4-8,1987

