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Abstract 
CommonLoops is an object-oriented language embedded 
in Common Lisp. It is one of two such languages selected 
as starting points for the Common Lisp Object System 
(CLOS) which is currently being designed as a standard 
object-oriented extension to Common Lisp. This paper 
reports on experiences using the existing Portable 
CommonLoops (PCL) implementation of CommonLoops. 
The paper is divided into two parts: a report on the 
development of a window system application using the 
CommonLoops programming language, and a description 
of the implementation of another object-oriented language 
(CommonObjects) on top of the CommonLoops metaclass 
kernel, paralleling the two aspects of CommonLoops: the 
programming language and the me&ass kernel. Usage 
of the novel features in CommonLoops is measured 
quantitatively, and performance figures comparing 
CommonLoops. CommonObjects on CommonLoops, and 
the native Lisp implementation of CommonObjects are 
presented. The paper concludes with a discussion about 
the importance of quantitative assessment for 
programming language development. 

1. Introduction 
CommonLoops [Bobrow is an object-oriented 
extension to the Common Lisp programming language 
[Steele84]. and is one of two such languages’ selected as 
starting points for the Common Lisp Object System 
(CLOS) [ANSI87], a standard object-oriented Lisp 

1. The other is New Flavors ~Moon86]. 
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extension currently under discussion. Since it is probable 
that the CLOS (and thus the features of CommonLoops 
incorporated into it) will see widespread use, both for 
applications prototyping and for production code, it seems 
prudent that the novel features of CommonLoops be 
assessed for their utility in object-oriented programming. 
A similar, though more formalized, review procedure was 
followed with SmaIltalk-80 when it was first released 
[McCullough831 [Falcone83] tBallard831. 

The novel features of CommonLoops discussed in 
[Bobrow include the following: 

It is the first object-oriented language or object- 
oriented language extension to appear in a highly 
portable, public domain implementation2. This 
implementation has proven to be an invaluable 
contribution to education and research in object-. 
oriented programming, 

The partial integration of the Common Lisp type 
system with CommonLoops classes which are 
themselves lirst class objects. This allows method 
dispatching on certain Common Lisp data objects 
having standard Common Lisp types, as well as on 
objects which are instances of CommonLoops classes, 

The use of generic function syntax for method 
dispatching rather than a specific method invocation 
operator3, 

The ability to define methods that discriminate on 
more than just the tirst argument. These methods are 
called “multimethods,” as opposed to “classical 
methods,” which dispatch only on the first argument, 

2. “Highly portable” means that a Common Lisp programmer with a 
complete implementation of Common Lisp can generally bring up 
CommonLoops in a morning. Object-oriented languages such as 
C++ [Stroustrup86] and Objective-C [Cox86] arc “moderately 
portable,” since their compilers and preprocessors can be ported, but 
potting requires considerable time and effort. 

3. Another object-oriented language which uses generic funaion syntax 
is New Flavors. 
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. The support for implementation of and graceful 
coexistence with other object-oriented languages 
using the metaclass kernel. 

The latter feature is particularly attractive, since it 
supplies a means whereby code in existing object- 
oriented languages can be reused, as well as provides an 
avenue for experimenting with new object-oriented 
languages. 

The experiments presented in this paper used Portable 
CommonLoops wu an implementation of 
CommonLoops designed to run on as wide a variety of 
Common Lisp implementations as possible. PCL has 
been available through the ARPAnet since January, 1986. 
The version of PCL released on l/26/87 was used for the 
experiments reported in this paper. 

The experiments are divided into two parts: 

l An implementation of an X-based [ScheitIer86] 
window system library. The implementation was not 
designed to test CommonLoops, but after it was 
finished, it seemed to represent a good candidate for 
assessing the usefulness of CommonLoops, since 
windowing and graphics applications are in some 
sense the canonical object-oriented application. 

mAn implementation of HP’s CommonObjects 
[Snyder86a] using the CommonLoops metaclass 
kernel. This experiment was designed to test the 
utility of the metaclass kernel for implementing an 
objects language with substantially different 
inheritance semantics. 

Extensive profiling measurements, undertaken to 
characterize the performance of CommonObjects on 
CommonLoops (COOL) vis-b-vis a native Lisp 
implementation of CommmonObjects, are also reported. 
From these profiling measurements, information was 
obtained which allowed COOL class definition time to be 
reduced by almost two orders of magnitude. This 
information was also used to pinpoint a bottleneck in the 
portable implementation that could profitably be 
eliminated by some machine dependent assembly code. 
The final section of the paper presents conclusions and 
suggests areas for further research. 

2. Experience with the Language 

The design and implementation of an object-oriented 
window library, called Beatrix, using CommonLoops 
permitted an assessment of the various language features 
to be made. The language features which will be 
discussed arc the inheritance algorithm, the use of 

multimethods and generic function syntax, the partial 
integration with Common Lisp data types, the lack of 
method combination, and the lack of encapsulation. 

2.1 The Inheritance Algorithm 

As part of an effort to redesign the HP Common Lisp 
Development Environment [Cagan86], a new window 
system was desired. One of the goals was to base the 
window system on the new window system standard, X. 
Although X provides a common platform for all tools 
(including Common Lisp) to communicate with the 
display, the programmatic interface to X (Xlib) is fairly 
low level. An example of functionality that is difficult to 
achieve with Xlib is specializing a given type of window 
to achieve an application specific configuration. 

The necessary flexibility can be achieved by using the 
“mixin” style of object-oriented programming 
[WeinrebSl]. Mixins are sets of behaviors that can be 
combined using inheritance to achieve a specialized 
result. The mixin style of programming views classes as 
sets of nonhierarchical behaviors and inheritance as a 
means of combining them, with the intent of specializing 
some more general behavior [Cannon82]. This approach 
contrasts with the abstract data type style (supported by, 
among others, Smalltalk [Goldberg83], C++, and 
CommonObjects) in which classes are data types and 
inheritance specities the structuring of the type lattice for 
subtyping4. 

An initial set of mixin classes for Beatrix was designed 
and is shown in Fig. 1. As the names indicate, the classes 
were divided into two groups: a set of basic window 
classes and a set of mixin classes for specializing the 
basic classes to a particular application. Mixins differ 
from regular classes in that, since they are intended to 
provide incremental functionality, they themselves must 
not be instantiated independently (similar to the abstract 
superclass idea of SmalltaIk). In particular, instantiation 
should only proceed when the mixin is associated with a 
more gqneral parent class. In old Flavors, mixins are 
supported by the options xequired-flavors and :mixture 
to the flavor definition macro deffiavor [Symbolics84]. 

As an example, consider trying to construct a class of 
windows having a border and title from the classes given 
in Fig. 1: 

4. CommonObjects also provides a means whereby the programmer can 
modify the default subtyping algorithm. 
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Foreign 

System Display Color Basic-Window Sprite Font 

PixmapMixin Borders-Mixin Gr8phics-Mixin 

Mobile-Mixin Text-Mb&t 

Zoom-Mixin Title-Mixin Stream-Mixin 

Figure 1. Window System Classes 

(defclass 
(bordered-titled-window 
(xlass class) 
(:include 
(borders-mixin title-mixin basic-window) 

< slot definitions > 
) 

A bordered-titled-window can also be build by 
constructing the inheritance hierarchy illustrated in Fig. 2, 
with the additional benefit of giving users the option of 
being able to instantiate a titled-window or a bordered- 
window if desired. 

Foreign 

Basic-Window 

Bordered-Window Text-Window 

Bordered-Titled-Window 

Figure 2. Inheritance for bordered-titled-window 

CommonLoops computes a linearization of the 
inheritance tree, called the class precedence list, which is 
used during any operation involving a class’ superclasses. 
As its name implies, the class precedence list determines 
which class in the inheritance chain has precedence when 
a conflict arises, for example, in determining which of a 
number of inherited methods to invoke. The 
CommonLoops algorithm for the default metaclass class 
produces the following class precedence list for the class 
bordered-titled-window illustrated in Fig. 2: 

( bordered-titled-window bordered-window 
titled-window text-window 
basic-window foreign 
T 

1 

The algorithm proceeds by doing a depth first traversal of 
the hierarchy, removing all but the last occurance of 
duplicate classes. 

The classes are arranged with the most general superclass 
at the end of the class precedence list, and more specific 
classes closer to the subclass, so that methods defined on 
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the subclass will specialize the more general behavior of 
the superclass. Although the CommonLoops inheritance 
algorithm required structuring the code hierarchically, the 
effect of a nonhieramhical mixin system can be achieved. 

Note that the CommonLoops inheritance algorithm is the 
same as for New Flavors but different from old Flavors. 
In old Flavors, the equivalent class precedence list would 
have been: 

( bordered-titled-window bordered-window 
basic-window foreign 
vanilla titled-window 
text-window 

1 

since the duplicates basic-window and foreign are 
eliminated except for the first occurance rather than the 
last. This class precedence list makes specialization 
difficult, since any methods defined by titled-window and 
text-window which are designed to specialize the more 
general behavior of basic-window wiIl not do so. 

2.2 Multimethods and Generic Function 
Syntax 

One of the important innovations introduced 
CommonLoops is multimethods. Multimethods 

by 

methods that dispatch on more than one argument. In 
addition to multimethods, CommonLoops uses generic 
function syntax to invoke a method, so a method 
invocation looks like a function call. The notion of a 
distinguished “self’ parameter, as in Smalltalk or 
Flavors, disappears since dispatching can occur on any or 
all of the method’s required parameters. 

In general, the use of generic function syntax was viewed 
as a positive step, since it removed the syntactic 
distinction between object-oriented and functionally- 
oriented code. This was, in fact, one of the original goals 
of CommonLoops. In languages that originally were not 
object-oriented, like Lisp, use of a messaging operator 
requires the programmer to make an explicit decision 
when to use object-oriented constructs and when to use 
functional constructs. By moving to generic function 
syntax, the additional cognitive load of having to make 
this decision is eliminated. The programmer simply uses 
functional syntax for operation invocation. and can 
implement the operation as either a function or a method 
depending on what seems appropriate at a particular time 
during the development process. In addition, the standard 
Lisp debugging utilities can be used on method 
invocations. 

The usefulness of multimethods was judged to be less 
clear. Most methods that discriminated on more than one 

argument in the window system application were SO 
written primarily as an aid to type checking. Presuming 
CommonLoops classes and generic functions were 
integrated with Common Lisp’s declaration mechanisms, 
multimethods would be redundant for this purpose, since 
the Common Lisp declare special form allows the 
argument and result types of functions to be declared. 

Multimethods and generic functions in some sense 
remove the concept of a method being defined “on” a 
class, since the name space of method operations is no 
longer segmented by the class hierarchy, but rather 
through the Common Lisp package system’. This change 
reduces the usefulness of classes for implementing the 
medium scale (or module level) structure of a system, 
because the connection between methods and classes is 
broken. However, since the package system was designed 
to serve as the basis of modularization in Common Lisp, 
the designer can fall back upon it to group classes and 
operations under a particular package name, which then 
serves as the module. 

One way to objectively assess the usefulness of generic 
functions and multimethods is to measure CommonLoops 
code and determine how often the system developer used 
these constructs, Measurements were made both on 
Beatrix and on the CommonLoops system itself. Since a 
large part of CommonLoops is written in itself, the latter 
would give a measure of how useful the developers found 
generic functions and multimethods. The results of these 
measurements are shown in Fig. 3 and 4. 

In Fig. 3, the usefulness of generic functions is measured 
as the percentage of overloading on generic function 
names. A generic function name is overloaded if more 
than one method has the same name. The figure plots 
overloading as the percent of total generic function names 
that had one or more methods on the name’s symbol. For 
the CommonLoops kernel, the great majority (89%) of the 
generic function symbols had a single method associated 
with them. In contrast, most of Beatrix’s generic function 
symbols (67%) had two associated methods, and there 
were more generic function names that were heavily 
overloaded (up to 16). 

These measurements suggest that function overloading 
was more useful during application development than 
during the implementation of CommonLoops itself. A 
caveat is necessary here, since many of the generic 
functions in the CommonLoops system are part of the 

5. The package system establishes a mapping from print names to Lisp 
symbols, and thus serves to partition the name space for symbols. 
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Figure 3. Function Overloading Figure 4. Multimethod Usage 

metaclass kernel, and can presumably be specialized by a 
programmer implementing a new language through 
another metaclass. One measure of this hypothesis is to 
see how many new methods were defined on 
unoverloaded generic functions during the COOL 
development. Looking at the COOL implementation, 
only one method was defined on a CommonLoops 
metaclass method which previously was not overloaded 

Fig. 4 plots the results of measuring the percentage of 
total methods that discriminated on zero6 or more 
arguments, and is thus a measure of how often the 
implementers used multimetbods. As can be seen, in both 
the CommonLoops system itself and in the window 
system application, methods discriminating on a single 
argument, or classical methods, were used far more often 
than multimethods. Whether or not this was duesto the 

6. A method discrimintaing on zero arguments is a default method, and 
is called if the argument classes do not match the specifiers for ‘any 
other method with the same name. 

90.0 

80.0 
t 

0 1 2 3 4 

Number of Arguments Discriminated On 

1 PCL,n=l06 [1 BeatriX,n=335 

implementers’ experiences with classical methods in 
other object-oriented languages is open to question, but 
presumably as developers become more experienced with 
multimethods, multimethod usage may increase. 

In the CommonLoops kernel, the maximum number of 
arguments discriminated on was two. Despite the limited 
use of multiargument dispatching, many of these methods 
are in a critical part of the method definition code where 
dispatching on both a discriminator object and a method 
object logically makes sense, since the operation to be 
performed may vary according to the classes of both the 
discriminator and the method If multiargument 
dispatching were removed, either a dispatching class 
would be required or the methods on the method and 
discriminator classes would be required to differentiate 
using a case analysis on the class of the nonself argument. 
A more accessible example of how multimethods can 
simplify code when method behavior requires dispatching 
on two arguments is given in Section 5. 

In contrast, as mentioned previously, most of the 
multiargument dispatching in BeatriX is used for type 
checking. An indication of this was the fact that only 
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11.1% of the methods defined to discriminate on more is prohibited, because the built-in shadow classes for the 
than one argument actually differed in the second or third Common Lisp types are of a different metaclass, and 
argument from other methods. Many of the generic inheritance between metaclasses is forbidden. If such a 
functions with more than one argument specifier had only class could be defined, then all the basic Common Lisp 
one associated method; others were overloaded but only output functions could become generic functions, 
the first argument was relevent for dispatching. The other simplifying the coding of device independent presenters. 
argument specifiers were the same fc argument specifiers were the same for all methods with 
the same name. For those cases in WI the same name. For those cases in which the second and 
third arguments were actually use1 third arguments were actually used to dispatch, the 
second and third argument werf second and third argument were often used to 
discriminate between a method in w discriminate between a method in which the arguments 

. . . . . . . . were not typed and a method in which type discriminators 
were specified. 

The measurements of generic function and multimethod 

the flexibility of late binding generic functions and 
multimethods is really needed during execution or 

usage were made on the source code and therefore 
represent the static structure of the system. Dynamic 
monitoring of how often function overloading is really 
used during execution, and how often the second and 
third arguments are really needed during method 
discrimination would provide relevent data on whether 

One possible solution to this problem would be to define a 
new metaclass that allowed inheritance from the built-in 
classes, perhaps as a mixin of the built-in metaclass and 

2.4 Lack of Method Combination 

class. Exactly how to accomodate the desire for flexibility 
in specializing built-in classes is difficult to determine, 
because there are some built-in classes for which 
inheritance might be difficult to arrange or semantically 
meaningless. This is a result of the Common Lisp type 
system not being a true lattice. The type system in 
Common Lisp was deliberately designed without a partial 
order on all components to allow implementers freedom 
to implement some types in terms of others without 
having the implementation dependency show up in the 
type system. 

whether early binding, type checking, and declarations 
could be used to remove the run time lookup. The static 
measurements reflect the usefulness of these concepts 
during the design and implementation of the system. 

2.3 Partial Integration with Common Lisp 
Data Types 

Another important feature of CommonLoops is the 
existence of classes that shadow certain of the basic 
Common Lisp data types. This feature allows method 
implementers to write methods that discriminate on 
objects of an underlying Common Lisp type, as well as on 
objects which are instances of a CommonLoops class. 
Beatrix used discrimination on Common Lisp types in 
16% of its methods, exclusively on second or third 
arguments. As was mentioned above for multimethods, 
type checking was the major reason. 

Unlike Flavors, CommonLoops allows no daemon 
methods to be defined for a method. This eliminates 
complicated method combination procedures, but limits 
the ability of a programmer to add functionality to an 
existing method for which the source code was not 
provided. An example of where method combination 
would have been useful in Be&X is for programming a 
counter to keep track of the number of window refreshes. 
In Flavors, a daemon method could be defined to maintain 
the counter: 

(defmethod 
(basic-window :after :refresh) 0 

(incf *refresh-counter*) 
1 

During the initial design of Beatrix, a heavier use of In CommonLoops, the same effect requires specializing 

discrimination on Common Lisp types was anticipated. basic-window and adding a special refresh method which 

CommonLoops does not, however, allow CommonLoops runs the super method: 

classes to inherit from and thus specialize classes that 
shadow Common Lisp types. Thus the natural way of (defmeth refresh ((w my-basic-window)) 

defining a stream that communicates with a window: - 

(defclass 
(window-stream 
(:class class) 
(:include (stream)) 

(progl 
(run-super) 
(incf *refresh-counter*) 

October MI,1987 OOPSIA ‘87 Proceedings 2l9 



This solution will not work if the counter is to be 
incremented for all windows and not just for instances of 
my-basic-window’. To solve this, the user must modify 
the source code of basic-window. 

2.5 Lack of Encapsulation 

CommonLoops also provides no facilities for hiding parts 
of a class representation from a user. The function get- 
slot provides slot access even outside a method. Accessor 
functions for slots are also available globally, within the 
name space established by the package where the class is 
defined. 

The lack of encapsulation presented a problem with 
software change management in Beatrix. In version 10 of 
X, there is a large degree of inconsistency between when 
to use a color map register and when to use a solid color 
pixmap as an actual parameter to an X function. In 
Beatrix, it was necessary to have both a slot for the 
background color register and the background color 
pixmap in the basic-window class. In version 11 of X, 
much of this inconsistency is eliminated, making it 
possible to remove one of these instance variables. 
However, the ready availability of accessor functions 
allows users to gain access to and thus become dependent 
on the implementation of Beatrix’s internals. Beatrix 
implementers are therefore dependent upon convention 
rather than enforced language mechanisms to avoid 
having internals leak out into applications, 

Another more fundamental problem with the lack of 
encapsulation involves inheriting from classes shadowing 
the built-in types. Subclasses in CommonLoops have 
access to the full internal definition of their supers, 
including slot accessors. It is not possible, for example, 
to encapsulate a superclass, so that a subclass can inherit 
from it, but will not inherit slot accessors. Superclass 
designers can make no assumptions about what data 
remains hidden. In particular, with implementation 
dependent classes such as stream, lack of encapsulation 
between a subclass and its superclass means that 
inheritance must be forbidden u priori. 

3. Experience with the Metaclass Kernel 

An important feature of CommonLoops is the metaclass 
kernel. Unlike Smalltalk and Objective-C, metaclasses in 
CommonLoops are neither automatically generated when 
a class is defined nor are they generators for instances of a 
class, but rather are defined by a language implementer to 

7. ‘Ihe CLOS sumlard will include method combination. as a 
czmtribution of New Flavors. 

support a particular embedded object-oriented language. 
Different me&lasses can be used to implement different 
inheritance algorithms, different storage allocation 
strategies for instances, and different method dispatch 
strategies. Classes in the CommonLoops language are 
instances of the default metaclass class. Metaclasses 
offer both a means of maintaining compatibility with 
existing object-oriented languages and a supporting base 
for experimenting with new languages. 

To assess the usefulness of the metaclass kernel for 
supporting different object-oriented languages, the 
CommonObjects language was implemented using the 
metaclass kernel. The following subsections discuss the 
important features of the implementation. 

-+ Foreign c 

Basic-Window 

Slots 

b 

Slots 

1 b 

.-- 

Slot.3 Slots 

b -9Borah?d-wiJdmv b-Tat-Window 
- .-- 

b 

Slots 

b -TitIed- Window 

Figure 5. Structure of a Single CommonObjects 
bordered-titled-window Instance 

3.1 Inheritance Semantics 

CommonObjects supports a very different inheritance 
semantics from CommonLoops. In Fig. 5, the structure of 
a single COOL bordered-titled-window instance with 
the same inheritance as in Fig. 2 is illustrated. The 
italicized names correspond to class objects, and the 
letters are keyed to the list of instance parts at the end of 
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this subsection. Notice that a set of slots for the shared 
ancestor superclasses basic-window and foreign is 
duplicated along the two inheritance branches through 
which bordered-titled-window inherits basic-window 
and foreign. In a CommonLoops instance with this 
inheritance, the two occurances of basic-window would 
be mergea, as was discussed in Section 2.1. 
CommonObjects inheritance is tree-structured, as 
opposed to the linearizing inheritance of Flavors and 
CommonLoops, since no attempt is made in 
CommonObjects to eliminate duplicate state during 
processing of a class definition. Another form of 
inheritance, graph-structured inheritance, merges state 
but maintains seperate methods along diverging 
inheritance branches, so duplicate method invocations are 
possible. Graph-structured inheritance is used by 
Smalltalk with multiple inheritance [Boming82] and 
Trellis/Owl [Schaffert86]. The selection of tree- 
structured inheritance in the CommonObjects design grew 
from a desire to maintain encapsulation between 
superclasses and their inheriting subclasses [Snyder86b]. 

In addition, CommonObjects supports inrfance centered 
encapsulation, a style of encapsulation in which methods 
can only access instance data in instances on which the 
method was invoked (similar to Smalltalk, Objective-C, 
and Flavors). A looser style of encapsulation, class 
centered encupsuhrion, allows methods to access data in 
any instance of the class on which they were defined. 
CLU [Liskov77] and C++ support this kind of 
encapsulation. CommonLoops, as mentioned above, has 
-no encapsulation whatsoever, since any method or 
function can access instance data if the slot name or 
accessor function name is known. 

CommonObjects enforces a stricter kind of encapsulation 
than other instance centered languages, since inheriting 
classes cannot access superclass slots without invoking a 
method. In other instance centered languages, like 
Smalltalk and Objective-C, superclass instance variables 
are lexically accessible within methods defined on the 
class. A form of syntatic sugar is provided to simulate 
lexical reference in CommonObjects, but the result is 
translated into a method invocation, and if the user 
redefines the superclass accessor method, the new 
accessor method will be invoked. 

Given the large difference in inheritance semantics, 
CommonObjects would seem to provide a challanging 
test of the flexibility of the CommonLoops kernel. 
Suprisingly, the inheritance semantics were the easiest 
aspect of the CommonObjects specification to implement, 
mainly because the CommonLoops class precedence list 
calculation was bypassed and inheritance was maintained 
separately by COOL. An instance of an inheriting class 

consists of multiple parts, one for each direct superclass, 
recursively to the top of the superclass tree. For example, 
as shown in Fig. 5, the bordered-titled-window instance 
has the following parts: 

a. A pointer to the object piece corresponding to self, 

b. A pointer to the class object, 

c. A part containing storage for the instance’s slots, 

d. A pointer to an object piece for each direct 
superclass. 

3.2 CommonObjects Methods 
Since CommonObjects classes do not use the 
CommonLoops class precedence list for method 
inheritance, method inheritance must be arranged 
differently. In fact, CommonObjects semantics require 
method inheritance to be computed at compile time, so 
method inheritance in COOL is done by automatically 
defining a method on the inheriting class which simply 
calls the superclass method directly. 

The CommonLoops class precedence list is used, 
however, for the “universal methods.*’ CommonObjects 
semantics require that all CommonObjects classes have a 
set of standard methods defined on them at class 
definition time, which implement certain universally 
useful operations [Snyder86a]. The class precedence list 
for all CommonObjects classes is ordered with the class 
itself first, then the CommonObjects metaclass 
(common-objects-class), then the CommonLoops class 
object, which is a specifier for some of the kernel 
methods, such as print-instance. The CommonLoops 
class precedence list for a CommonObjects class having 
the inheritance structure in Fig. 2 would be: 

( bordered-titled-window 
common-objects-class 
object 

IT 

Thus the CommonObjects inheritance tree is maintained 
seperately from the CommonLoops class precedence list. 
The set of universal methods can, in effect, be shared by 
all CommonObjects classes by defining them on the 
metaclass common-objects-class. Only the :initialize- 
variables method need be generated on a per class basis. 
since programmers are allowed to specify custom 
initialization code for slots and CommonObjects 
semantics require that the code execute in the context of a 
method definition. This arrangement modifies the 
semantics of undefining a CommonObjects method 
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somewhat, since a user can no longer undefine a default 
universal method. Redefining a universal method on a 
class, or undefining a universal method that has been 
redefined is still valid, however. 

3.3 Difficulties 

The lack of hooks into the PCL code walker made the 
implementation of a number of features impossible. One 
of them was lexical reference to parent slots. Checking 
for improper use of the distinguished lexical variable self 
within a method, and the checking of slot types were also 
not implemented because of the code walker difficulties. 

Another area where CommonObjects semantics has been 
lost is in the ability to define methods that have varying 
numbers of required parameters. Since the number of 
required formal parameters must match between 
CommonLoops methods with the same generic function 
name, the ability to define methods with differing 
numbers of method parameters is no longer possible*. 
CommonObjects methods are simply implemented as 
CommonLoops generic functions, so the CommonLoops 
restriction must he propagated to them as well. 

The generic function style of programming is somewhat 
different from the message operator style, which 
CommonObjects supports. In the generic function style, 
name clashes are avoided by convention and use of the 
package system, while the message operator style avoids 
clashes by partitioning the method name space on the 
basis of class name. Clashes are possible using the 
message operator style if one tries to define a subclass 
with two superclasses having inconsistent definitions of a 
method. Implementing the message operator style on top 
of the generic function style increases the potential for 
clashes. For example the move operation applied to a file 
object might take only one argument, the name of the new 
file, while the same operation applied to an icon might 
require two, the x and y co-ordinates of the new location. 
With the generic function style, either one of the two 
operations would have to be renamed or put in a sepamte 
package, or the operation to move an icon could be 
redefined to take a single point argument, which is then 
decomposed into co-ordinates within the method. 

A more serious restriction resulted from 
underspecification of the compile time semantics of 
CommonLoops. CommonObjects uses a form of case 
analysis called “moderation compilation” [Creech85] to 
carefully control when a class or method definition is 

8. The CLOS could potentially allow this difference to bc finessed 
through method combiiticn. 

replaced in the compile time environment. Enough 
information about a class or method is maintained in the 
compilation environment so that method inheritance 
between a superclass method and an inheriting subclass 
defined in the same file will compile correctly. 
CommonLoops methods are not defined until load time. 
As a result, it is not possible to compile the COOL 
methods for a superclass and the class definition for an 
inheriting subclass in the same file, since the superclass 
methods are not available until load time. In addition, 
since CommonLoops fully defines classes as objects at 
compile time, any preexisting definition will be destroyed. 

Perhaps the most serious problem with implementing 
COOL was the inability to implement the 
CommonObjects call-method or apply-method 
correctly. These forms provide a means whereby a 
method can call another method on a class or one of the 
direct superclasses without going through method lookup. 
Implementing the semantics requires that it be possible to 
create compiled code which will reference a symbol that 
can only be created at load time. Although Common Lisp 
has a reader macro that is supposed to arrange for 
execution at load time, this functionality is undefined if 
the code is being processed by the compiler. Common 
Lisp also has a top level form, eval-when, that allows 
load time control over evaluation of other forms at the top 
level. The lack of a Common Lisp function to execute a 
form at load time within macro generated code required 
the implementation of a very fragile solution depending 
on equivalence of interned symbols in the compile and 
execution environments. The solution has the serious 
drawback that name clashes could occur in the symbol 
names, although the names are chosen to avoid clashes as 
often as possible. 

3.4 Size 

The total number of noncommented source lines in 
COOL is 1842, 6133 including the PCL kernel. This 
compares favorably with the native Lisp implementation 
of CommonObjects, which is 4726 noncommented source 
lines. For a slightly larger system, COOL provides most 
of CommonObjects semantics with the additional 
functionality of the CommonLoops language, and the 
extensibility of the CommonLoops kernel. Thus COOL 
gives programmers more options, since those who want to 
program in either the encapsulation style of 
CommonObjects or the mixin style of 
Flavors/CommonLoops can easily do so. 

3.5 Portability and AvaiIability 

In addition to running on HP Common Lisp, in which it 
was developed, COOL has been ported to Kyoto 
Common Lisp’. COOL was designed to be as portable as 
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PCL, and therefore should run on any Common Lisp that 
runs PCL. A series of regression tests and performance 
tests are included with the distribution. The PCL version 
on which COOL currently runs is also included in the 
distribution, to avoid software tracking problems. 

4. Performance 

Performance analysis helped to identify problem areas in 
COOL and also served as a useful benchmarking 
mechanism to obtain a rough comparison of COOL 
performance with the Portable CommonLoops language 
implementation and with the native Lisp CommonObjects 
implementation. As an example of how performance 
analysis helped improve COOL, an initial naive 
implementation of COOL generating universal methods 
on a class by class basis was almost three orders of 
magnitude slower during compilation than the native 
CommonObjects. A solution involving the 
CommonLoops class precedence list, as described in 
Section 3.2 above, allowed default universal methods to 
be defined on all CommonObjects classes via common- 
objects-class. 

The hardware configuration used during performance 
testing was an HP9OOO/Series 320 68020 workstation, 
running at 16.5 MHz with 6 megabytes of main memory. 
The tests were run with the HP-UX operating system in 
state 1, so no other background processes were in 
operation, and the Common Lisp image size was 10 
megabytes. The paging disc was an HP 7914. A special 
10 psec clock was used to obtain the measurements, so 
the measured times should be accurate to 10 psec. Both 
the CommonLoops language and COOL were compiled 
with the maximum portable optimization on (e.g. 
(optimize (speed 3) (safety O))), the native 
CommonObjects was as distributed with the HP Common 
Lisp Development Environment [Hp86]. 

The tests were executed by using a Common Lisp macro 
to generate a function that performed the operation to be 
tested 20 times, and the function was subsequently 
compiled and executed. No compiler optimizations were 
turned on for the tests, except those that the 
CommonLoops language and COOL locally enabled. 
Both the compilation time and execution time of the 
function were measured. Care was taken to avoid garbage 
collection by garbage collecting before the measurements, 
to avoid paging by doing the full test (i.e. 20 iterations) 

9. COOL is currently available thnwgh anammyous FTP from 
ingres.berkeley.arpa in the directory /pub/cool or by electronic 
mail request from cool@hplabs. 

before a series of the same tests, and to prime the 
workstation’s cache by doing each operation once before 
the measurements were made. 

All measurements are given as the ratio of the time taken 
by an operation for COOL or the CommonLoops 
language to the time taken by the same operation for the 
native Lisp code implementation of CommonObjects. 

4.1 Definition Performance 

The performance of class and method definition was 
measured for all three implementations. Class definition 
operations consisted of defining a class with zero, one, 
two or three slots but no parents, then with one, two, or 
three parents but no slots. For each implementation, the 
default slot accessibility was used, thus slot accessors 
were not generated for COOL or CommonObjects but 
were for the CommonLoops language. Method definition 
operations consisted of defining a method for which zero, 
one, two or three methods of the same name existed for 
different classes. The generated CommonLoops language 
method was classical (i.e. not a multimethod). 

Operation Slots supers COOL/CO 
0 0 0.30 
1 0 0.47 

Define 2 0 0.67 
Class 3 0 0.76 

0 1 0.89 
0 2 0.95 
013 1.04 
010 57.00 
1 0 7.14 

Create 2 0 7.55 
rnstiince 3 0 3.39 

0 1 12.96 
0 2 8.93 
0 3 21.22 

Inherited - 0 5.67 

PCWCO 
0.93 
1.88 
2.61 
3.44 
1.04 
0.94 
0.87 

24.52 
4.55 
4.69 
2.25 
4.90 
2.39 
4.15 
4.83 
4.29 
4.86 
4.43 

TABLE 1. Class Definition, Instance Creation, and 
Inherited Operation Invocation 

The results for class definition are tabulated in the upper 
part of Table 1 while the upper part of Table 2 shows the 
results for method definition. COOL compares favorably 
with CommonObjects, as does the CommonLoops 
language, with the exception of the increase in class 
definition time as the number of slots increases for the 
CommonLoops language, due to the generation of 
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accessor functions. Presumably, a similar increase would 
occur in COOL and CommonObjects if slot accessors 
were requested during class definition. 

An explanation for the greater amount of time involved in 
class definition for CommonObjects as opposed to the 
CommonLoops language and COOL can probably be 
found in the richer compilation semantics of 
CommonObjects, as explained in Section 3.3. Moderation 
compilation takes longer than simply defining the class 
outright. As mentioned above, CommonLoops 
compilation semantics simply defines a class fully at 
compile time, and does not fully define a method until 
load time. The extra amount of checking required to 
implement moderation compilation makes 
CommonObjects definition operations somewhat slower 
than COOL or the CommonLoops language. 

It should be noted that redefinition times for COOL 
classes were more than 30 times slower than the initial 
definition times. This was not true of either the 
CommonLoops language or CommonObjects, and is 
probably due to the algorithm in the COOL 
implementation used to determine whether an 
incompatible change to the class occured. Some room for 
improvement exists there. 

Operation 

Define 
operation 

operation 
Invocation 

Functions 
0 

: 
3 
1 5.67 4.83 
2 25.67 24.67 
3 19.38 18.75 
4 22.86 21.43 

COOL/CO FcIfco 
0.57 0.45 
0.70 0.46 
0.76 0.50 
0.83 0.49 

TABLE 2. Method Definition and Operation Invocation 

4.2 Method Invocation and Instance 
Creation Performance 

The method invocation test consisted of invoking a 
method when one, two, three, or four methods were 
defined on the same generic function symbol. Since PCL 
caches most recently used methods in the generic 
function, a special strategy was used to avoid simply 
measuring the speed of a cached invocation and thus to 
obtain measurements of method lookup time. When more 
than one method was defined on the generic function, 
invocation proceeded sequentially through. instances of 
the various classes. This assured that the FCL method 
cache would be cleared and the actual method lookup 
time would be measured, rather than simply measuring 

the time to invoke a cached method. The inherited 
method invocation test consisted of invoking a method 
inherited through zero, one, two or three parents. Times 
for compiling the invocation form are not included in the 
measurements, since they were the same for all three 
systems. The instance creation test was performed by 
simply creating 20 instances of a class with the 
appropriate number of slots and parents. 

The results of the method invocation tests are tabulated in 
the lower parts of Tables 1 and 2. Clearly, for method 
invocation, the native Lisp implementation of 
CommonObjects is the better performer, especially for 
inherited methods, by factors of from 5 to 25. The 
superior performance of CommonObjects can probably be 
ascribed to a number of factors. CommonObjects uses 
some special assembly code to implement inherited 
methods, while COOL simply generates a Common Lisc 
function that calls the superclass method. An assembly 
coded function is also used during method dispatch in 
CommonObjects. In addition, the portable dispatch 
function in FCL is not properly tail recursive, so 
optimization of the actual method function call to a direct 
jump, without pushing the return address on the stack, is 
not done by the compiler. 

For instance creation, the native Lisp CommonObjects 
also performs better. However, the performance of COOL 
and CommonLoops improves as the number of slots 
increases. As the number of parents increase, the timings 
of both COOL and CommonLoops become slower, 
though COOL becomes slower faster than 
CommonLoops. A possible reason is that the 
initialization protocol in COOL requires more messaging 
than in CommonLoops, so more time may be transpiring 
during messaging. 

In an effort to improve method dispatch performance, a 
dispatch function for classical methods was hand coded in 
assembler and the implementation of the method table in 
the generic function discriminator was changed from 
being an association list to a fixed size hash table. 
Additionally, the underlying representation of classes (but 
not instances) was changed so every class has a unique, 
28 bit id which is used as a hash key. The resulting 
speedup made method dispatch between 20% to 50% 
faster than CommonObjects for classical methods. Since 
most of the PCL kernel is implemented using methods, 
the speedup of method dispatch had a significant effect on 
the performance of the entire system. 

5. Conclusions and Suggestions for Further 
Research 

Although most of the code for handling inheritance in 
COOL was written with minimal use of the 
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CommonLoops kernel, the metaclass protocol provided a 
supporting mechanism for maintaining information about 
defined methods and classes. This information could be 
useful in a programming environment, for example, since 
the kernel provides a standardized interface for accessing 
information about all object-oriented languages in the 
environment. For implementing a language with 
linearizing inheritance, more of the met&ass kernel 
could probably be used. Perhaps most importantly, the 
ability to provide two languages with different inheritance 
semantics in the same system allows users to choose a 
particular style of inheritance to fit their application, while 
still allowing the two languages to share some common 
code. The performance figures indicate that generic 
functions should be efficiently implementable on 
conventional architectures such as the MC68020. though 
the efficiency of multimethods remains an open question. 

The results of the code measurments reported in Section 
2.2 suggest that generic functions were more heavily used 
in Beatrix than in the CommonLoops kernel itself. For 
multimethods, the code measurements imply that 
discrimination on a single argument, or classical methods, 
was more heavily used than discrimination on multiple 
arguments. An examination of the CommonLoops 
method definition code suggests, however, that 
multimethods might actually be more important than the 
statistics imply, and that the statistics may rather be a 
reflection of prior programmer experience. In addition, 
multimethods in the CommonLoops kernel l may 
contribute to making the system more extendable. 

Another example of how multimethods might be even 
more useful than first appears comes from the realm of 
user interfaces. One of the often mentioned advantages of 
object-oriented programming for user interfaces is that a 
display method can be defined on a class, and thus 
objects of various classes can display themselves in a 
class dependent manner without requiring the 
programmer to use extensive case analyses to determine 
how to display something. The Smalltalk Model-View- 
Controller [Goldberg841 evolved as a response to this 
need, but segregating functionality into these three 
categories has proven difficult. The difficulty is that 
displaying an object requires knowing the particular 
characteristics of the output device, as well as the 
characteristics of the object to be displayed. Displaying 
an object in a text window requires different low level 
actions from displaying it in a graphics window, for 
example. Users of traditional object-oriented languages 
are therefore required to write a case analysis into the 
model or display classes to handle different types of 
displays. An interesting direction for future research 
would be to explore the use of multimethods in 
programming user interface systems. 

The analysis in Section 2 brings up a point related to 
computer language design and engineering. While most 
language designs are subject to a prototyping phase, in 
which a small community of trial users implement in the 
language and give feedback to the language designers, 
language designers rarely attempt to quantitatively access 
which constructs were most useful and which were less 
so, or if particular idioms could be built into the language 
to save programmer effort. Most trial user feedback 
comes in the form of qualitative comments. Often it is 
difficult to judge whether these comments are peculiar to 
the particular group of trial users, or whether the 
comments have wider applicability. 

As languages become more and more complex and evolve 
further and further away from being models of the 
underlying processor, it becomes more important to 
quantitatively access the usefulness of particular language 
features. Removal of rarely used features in the early 
stages of a design can save later implementers much extra 
effort. Similarly, identification of features that appear on 
the surface to be relatively unused but which, when used, 
perform a very crucial function (as is the case with 
multimethods) can suggest areas where extra 
documentation and programmer education may be 
needed. In addition, identification of commonly occuring 
language idioms may suggest areas where the language 
design can be augmented to provide additional 
functionality. 

Developers of new languages might therefore consider 
building statistical collection code into their translation 
software tools, and, after properly informing their trial 
user community, have the results summarized and mailed 
to them periodically to facilitate collection of quantitative 
information on language construct usage. Such a 
procedure, commonly followed in other engineering 
disciplines, could allow language designs to evolve on a 
more quantitative basis. 

Acknowledgements 
We would like to thank Larry Rowe and his Objfads 
study group, for letting us use ingres to distribute the 
COOL software and the ANSI Common Lisp Object 
System standardization subcommittee, for listening to our 
comments on the metaclass kernel. Special thanks go to 
Gregor KiczaIes, whose valiant efforts against the Dragon 
of Importability have yielded the Sugar Magnolia: a 
flexible, portable object-oriented programming system. 

References 
[ANSI871 Daniel Bobrow, David Moon, et al,, “Common 
Lisp Object System Specification,” ANSI X3J13 
Document 87-002, American National Standards Institute, 
Washington, DC, 1987. 

October 4-8, 1987 OOPSLA ‘87 Proceedings 225 



[Ballard831 Stoney Ballard and Stephen Shirron, “The 
Design and Implementation of VAX/Smalltalk-80”, in 
Smalltalk-80: Bits of History, Words of Advice, Glenn 
Kramer, ed., pp. 127-149, 1983, 

[BobrowS Daniel Bobrow, et al., “CommonLoops: 
Merging Common Lisp and Object-Oriented 
Programming,” Proceedings of OOPSLA, SIGPLAN 
Notices, 21(11), pp. 17-29, 1986. 

[Borning82] Alan Boming and Daniel Ingalls, “Multiple 
Inheritance in Smalltalk,” Proceedings of AAAI, pp. 
234-237, 1982. 

[Cagan86] Martin Cagan, “An Introduction to Hewlett- 
Packard’s AI Workstation Technology,” Hewlett- 
Packard Journal, Vol. 37(3), pp. 4-14.1986. 

[Cannon821 H. I. Cannon, “Flavors: A Non-Hierarchical 
Approach to Object-Oriented-Programming,” 1982. 

[Cox86] Brad Cox, Object-Oriented Programming, 
Addison-Wesley, Reading, MA, 274 pp., 1986. 

fCreech851 Michael Creech, “The Compile Time 
Environment,” STL Internal Memorandum, 1985. 

[Falcone83] Joseph R. Falcone and James Stinger, “The 
Smalltalk- Implelmentation at Hewlett-Packard,” in 
Smalltalk~SO: Bits of History, Words of Advice, Glenn 
Krasner, ed., pp. 79-112, 1983. 

[Goldberg831 Adele Goldberg and David Robson, 
Smalltalk-80:The Language and Its Implementation, 
Addison-Wesley, Reading, MA, 714 pp., 1983. 

[Goldberg841 Adele Goldberg, Smalltalk-80:The 
Interactive Programming Environment, Addison- 
Wesley, Reading, MA, 1984. 

[HP861 Lisp Programmer’s Guide, Hewlett-Packard 
Co., 1986. 

lLiskov77] Barbara Liskov, et al., “Abstraction 
Mechanisms in CLU,” Communications of the ACM, 
Vol. 20(8), pp. 564-576, 1977. 

[McCullough831 Paul McCullough, “Implementing the 
Smalltalk- System: The Tektronix Experience,” in 
Smalltalk-80: Bits of History, Words of Advice, Glenn 
Krasner, ed., pp. 59-78,1983. 

[Moon861 David Moon, “Object-Oriented Programming 
with Flavors,” Proceedings of OOPSLA, SIGPLAN 

Notices, 21(11), pp. l-8, 1986. 

[Schaffert86] Craig Schaffert, et al., “An Introduction to 
Trellis/Owl,” Proceedings of OOPSLA, SIGPLAN 
Notices, 21(11), pp. 9-16, 1986. 

[Scheifler86] Robert Scheifler and Jim Gettys, “The X 
Window System,” MIT LCS Memo LCS-TM-368, 
Massachutsetts Institute of Technology, Cambridge, MA., 
1986. 

[Snyder86a] Alan Snyder, “CommonObjects: An 
Overview,” SIGPLAN Notices, 21(10), pp. 19-28, 1986. 

ESnyder86bl Alan Snyder, “Encapsulation and 
Inheritance ’ Object-Oriented Programming 
Languages,” Leedings of OOPSLA, SIGPLAN 
Notices, 21(H), pp. 38-45, 1986. 

[Steele841 Guy Steele, Common Lisp: The Language, 
Digital Equipment Corp., 465 pp., 1984. 

[stroustrup863 Bjame stroustrup. The c++ 
Programming Language, Addison-Wesley, Reading, 
MA, 327 pp., 1986. 

[Symbolics84] “FLAV Objects, Message Passing, and 
Flavors,” Symbolics, Inc., 1984. 

JWeinreb81] Daniel Weinreb and David Moon, Lisp 
Machine Manual, Symbolics, Inc., 1981. 

226 OrlPSLA ‘87 Proceedings October 4-8,1987 


